Observational problems in reconstruction of peculiar velocities of galaxies

Guilhem Lavaux, IAP (Paris/France)

Ph.D. subject: "Reconstruction of primordial density fluctuations"

<u>Advisors:</u> Roya Mohayaee (IAP/Paris), Brent Tully (IfA/Honolulu) Stéphane Colombi (IAP)

Astro-ph 0707.3483, MNRAS G. Lavaux, R. Mohayaee, S. Colombi, R. B. Tully, F.Bernardeau, J. Silk

Tuesday 30th October 2007

Fermilab

The algorithms

- Lagrangian reconstructions:
 - Least-Action (Peebles 1989)
 - MAK (Monge-Ampère-Kantorovitch) (Brenier et al. 2003, Lavaux et al. 2007)
- Eulerian reconstructions (e.g. POTENT Bertschinger&Dekel 1989)

The algorithms

Lagrangian reconstructions:

- Least-Action (Peebles 1989)
- MAK (Monge-Ampère-Kantorovitch) (Brenier et al. 2003, Lavaux et al. 2007)
- Eulerian reconstructions (e.g. POTENT Bertschinger&Dekel 1989)

- Particle-oriented description (e.g. galaxies) ⇒ No need for a smooth field.
- Linear regime of Lagrangian perturbation theory already gives nonlinear phenomena in Eulerian perturbation theory.

- 1. The MAK reconstruction
- 2. Presentation of mock catalogs
- 3. Presentation of observational biases
- 4. Preliminary results on NBG-3k catalog
- 5. Ongoing work on 2MASS redshift survey...
- 6. Future work: SDSS

1. The MAK reconstruction

Mass conservation

The MAK reconstruction

The true galaxy orbits

The MAK reconstruction

The **MAK** displacements

Comoving coordinates

MAK Scale ?

Slightly non-linear regime: MAK

Images: Projet Horizon, Springel 99

Algorithmic

 Direct solving of the minimization problem is practically impossible (O(N!) time complexity).

Algorithmic

- Direct solving of the minimization problem is practically impossible (O(N!) time complexity).
- Use a better algorithm developed by Dimitri Bertsekas (originally to solve economics problem). $\Rightarrow O(N^{2.25})$ time complexity.
- MPI/OpenMP implementation (publicly available later this year http://www.iap.fr/users/lavaux/)

Direct testing on simulation

Simulation

Mohayaee et al. 2005 128^3 particles (but results do not change with a 512^3)

Direct testing on simulation

2. The mock catalogs

- ~25000 galaxies within 80 Mpc/h including their redshift
- built principally from ZCAT (B band)
- similar incompleteness as 2MASS redshift survey

Three basic mock catalogs

Three basic mock catalogs

Example for 8k-mock6

3. Observational biases

M/L assignment

M/L assignment

M/L assignment

Simulated in Mock Catalogs by injecting a scatter $|\Delta Log M| = 1$

M/L assignment

M/L functions

M/L assignment, scatter

1000 km/s

M/L assignment, scatter

M/L assignment, scatter

M/L assignment, systematic effect

Simulation 100 50 Mpc/h -50 -100 -100 -50 50 100 0 Mpc/h

-1000 km/s

M/L assignment, systematic effect

M/L assignment, systematic effect

HIGH DENSITY CONTRASTS

LESS DENSITY CONTRASTS

Position of the red objects ???

Detected galaxies

True mass distribution

HIGH DENSITY CONTRASTS

LESS DENSITY CONTRASTS

Unobserved mass put in halo

Unobserved mass put in background

Incompleteness

Incompleteness

Incompleteness

1000 km/s

-1000 km/s

1000 km/s

-1000 km/s

Zone of Avoidance (ZOA)

Zone of Avoidance (ZOA)

Methods:

- SPH filtering (Fontanot et al. 2003)
- Yahil method (Yahil et al. 1991)
- Shaya method (Shaya et al. 1995) \Rightarrow simplest

(introduced in Shaya et al. 1995, ApJ)

Zone of Avoidance (ZOA)

Result (with redshift distortion)

Cosmic variance

Statistical analysis of a scatter

Merging the two problems...

The bayesian chain

Example

4. Application to NBG-3k

- Nearby Galaxy Catalog (Tully 1987)
- 30 Mpc/h deep
- 743 groups with high quality distances $(5\% < \Delta D/D < 20\%)$
 - Tully-Fisher
 - Tip of the Red giant branch
 - Fundamental plane
 - Surface brightness fluctuation

4. Result on observational data

Catalogue redshift/distances NBG-3k (courtesy of Brent Tully)

4. Result on observational data

Catalog redshift/distances NBG-3k (courtesy of Brent Tully)

M/L = 300 for ellipticals + M/L = 100 spirals

4. Result on observational data

Catalog redshift/distances NBG-3k (courtesy of Brent Tully)

M/L = 300 for ellipticals + M/L = 100 spirals

Carlo

- Missing estimation of the error due to unobserved mass
- Incompleteness correction needs better treatment.
- Use deeper catalog (2MRS and/or NBG-8k) to minimize possible boundary effects.

5. Ongoing work on 2MRS...

 Post-processing of 2MRS to account for all mentioned effects...

- Post-processing of 2MRS to account for all mentioned effects...
- And some more:
 - Luminosity corrections (estimation of the real total magnitude, distance estimation)

- Post-processing of 2MRS to account for all mentioned effects...
- And some more:
 - Luminosity corrections (estimation of the real total magnitude, distance estimation)
 - parameter adjustment in finger-of-god detection

Finger-of-god compression

Finger-of-god compression

- Post-processing of 2MRS to account for all mentioned effects...
- And some more:
 - Luminosity corrections (estimation of the real total magnitude, distance estimation)
 - parameter adjustment in finger-of-god detection
 - → M/L estimation

M/L in 2MRS

Density and velocity field in redshift

Conclusion

Conclusion / Perspectives

