Sterile Neutrinos As Subdominant Warm Dark Matter

Daniel Cumberbatch

Beecroft Institute for Particle Astrophysics & Cosmology Oxford University

A. Palazzo, **D. Cumberbatch**, A. Slosar and J. Silk, arXiv:0707.1495

Outline

+ Introduction

- + Neutrinos and the **Dark Sector** of the Universe
- + The properties of sterile neutrinos
- + Motivations for sterile neutrino dark matter
- Experimental constraints on sterile neutrino dark matter
 - + Constraints from observations of X-ray sources
 - + Constraints from high redshift measurements of the Lyman- α forest
- Experimental constraints on *sub-dominant* sterile neutrino dark matter
 - + Constraints from the *HEAO-1* measurements of the **diffuse** X-ray background
 - + Constraints from the SDSS measurements of the Lyman- α forest
 - Theoretical predictions Vs. Experimental constraints
 - Treatment of theoretical uncertainties associated with hadronic interactions during the QCD epoch
 - Determination of upper limits on the fraction f_s of dark matter in the form of sterile neutrinos.

+ Summary

Neutrinos and the Dark sector

- + There are many candidates for dark matter (e.g. SUSY particles, Longlived hadronically-decaying particles, Compact Composite Objects).
- + The only *confirmed* particle candidate is the *hot* SM neutrino (decouples from thermal background at ~1 MeV).
- + However, measurements of the power spectra of the distribution of galaxies and CMB anisotropies yield the stringent constraint $\Omega_v h^2 < 0.0067$.
- Independent measurements of flavour oscillations of Solar (e.g. SNO), Atmospheric (e.g. Super-K) and Reactor-based neutrinos (e.g. KamLAND) require MASSIVE neutrinos with

 $\Delta(m_{12}^2)_{\text{SNO}} \approx 7 \times 10^{-5} \text{ eV}^2$, $\Delta(m_{23}^2)_{\text{SK}} \approx 3 \times 10^{-3} \text{ eV}^2$, $\Delta(m_{12}^2)_{\text{KLD}} \approx 7 \times 10^{-5} \text{ eV}^2$

- Particle physics beyond the standard model permits massive neutrinos aswell as the existence of (right-handed) sterile neutrinos.
- Sterile neutrinos possessing keV masses would be viable dark matter candidates.

What are Sterile Neutrinos?

+ SU(3)xSU(2)xU(1) gauge singlet (Pontecorvo, 1967)

- + "Sterile" interacts only via weak mixing with "active" v states
- + vMSM (MSM+3 sterile v) may explain $m_v \sim eV$, $B \neq 0$ and dark matter

$$L_{\upsilon MSM} = L_{SM} + i\overline{N}^{I}(i\partial_{\mu}\gamma^{\mu})N_{I} - \left(\overline{L}_{\alpha}M^{D}_{\alpha I}N_{I} + \frac{1}{2}M_{I}\overline{N}^{c}_{I}N_{I}\right) + h.c$$

- + Unlike see-saw mechanism, small Yukawa couplings, $F_{\alpha I}$, $(M^{D}_{\alpha I}=F_{\alpha I}<H>)$ give rise to small m_{ν} to explain their oscillations
- + Small $F_{\alpha I}$ also crucial for baryogenesis and to assure that $\tau_1 \sim H_0^{-1}$
- + The actual origin of $F_{\alpha I}$, and hence M_I , are unknown
- + Exponentially suppressed $F_{\alpha I}$ originate in theories of extra dimensions.

+ Sterile v have a variety of production mechanisms ...

vs Production Mechanisms

Non-resonant oscillations

- + Generated through v_a - v_s oscillations involving off-diagonal elements of mixing matrix, predominantly at $T_{max.} \approx 133 (m_s/1 \text{keV})^{1/3} \text{MeV}$
- + Small mixing angles ensure non-equilibrium \Rightarrow low densities
- + Don't require L≠0
- Simplest model: Dodelson-Widrow (DW) mechanism
 - + Standard thermal history
 - + No additional couplings
 - + Produces minimal relic density (few exceptions, see below)

+ Alternatives to DW mechanism

- + Entropy Dilution massive particle decay following neutrino production
- + Additional Couplings (e.g. to SUSY particles, Inflaton, Higgs Singlet)
- + Low T_R cosmologies production suppressed for $T_R < T_{max}$.

Resonant Oscillations

- +Non-thermal Sterile Neutrinos
 - +L=0 drives MSW resonant conversion process
 - + Favours low energy neutrinos \Rightarrow 'Cool' Sterile Neutrinos,
 - +Limits from free-streaming effects relaxed

Decay modes

+ Dominant decay to **3 active neutrinos** $(v_s \rightarrow 3v_a)$

+ Loop-suppressed radiative decay ($v_s \rightarrow \gamma v_a$)

Pal & Wolfenstein)

+ Photon Energy $E_{\gamma} = (m_s^2 - m_a^2)/2m_s \approx m_s/2$ for $m_s \gg m_a$

For $m_s \sim 1 \text{keV} \Rightarrow \textbf{X-rays}$

Use X-ray observations to constrain m_s and $\sin^2(2\theta_s)$

(and later, f_s) for keV SN DM

Motivations for keV SN DM

- Resolution to inconsistencies from ACDM halo simulations
 - + Overproduction of small scale matter structures in galaxy distribution
 - + Central cores in low-mass galaxies (Dalcanton & Hogan)
 - + Overpopulation of small-scale satellites (Kauffman et al., Klypin et al.)
- Contribution to unresolved diffuse X-ray background (Abazajian et al.)
- ← Facilitates HI production/star formation ⇒ Early Reionisation (Mapelli et al., Biermann & Kusenko)
- + Pulsar "kick" velocities (Kusenko & Segre, Fuller et al.)
- + Re-generation of Supernova shockwaves (Hidaka and Fuller)
- + Formation of early SMBH (10^9M_{\odot} at $z \approx 6.5$) (Munyaneza & Biermann)
- + Baryon asymmetry (Asaka)

Experimental constraints on m_s and $\sin^2(2\vartheta_s)$

+ X-rays (Clusters, dSphs, MW, Galaxies, XRB)

(Ruchayskiy, arXiv:0704.3215)

- All these sources have similar orders of N_H and L but different thermal emissions
- + F.O.V. and Energy resolution of instruments dictate sensitivity

Experimental constraints on m_s and $\sin^2(2\vartheta_s)$

+Lyman-α

+Sensitive to small-scale matter perturbations where SN are significant +Operates at high-z before non-linear growth erases free-streaming effects

(Abazajian, astro-ph/0511630)

(Seljak et al., astro-ph/0602430)

+⇒ m_s >14 keV includes 10% suppression from non-thermal nature of SN +Recent calculations imply $\langle p_s \rangle / \langle p_a \rangle$ can be as low as 0.8

 $\Rightarrow m_s > 11.5 \text{ keV} (< p_s > / < p_a > \sim 0.8)$

Is Dodelson-Widrow SN DM still permitted?

Spectral Analysis of HEAO-1 XRB data

+ Fit *HEAO-1* data to a prescribed power-law model (Gruber et al.)

$$\varphi_E^{Gruber} \equiv \frac{d^2 F_E^{Gruber}}{d\Omega dE} = C_{\text{XRB}} \exp\left(-\frac{E}{T_{\text{XRB}}}\right) \left[\frac{E}{60 \text{ keV}}\right]^{-\Gamma_{\text{XRB}}+1} \text{sr}^{-1} \text{cm}^{-2} \text{s}^{-1}$$

(Such a spectrum could potentially be generated by a population of obscured AGN)

- + Add MW and extragalactic (EG) contributions from SN DM (for given m_s), correcting for finite energy resolution of *HEAO-1* ($\Delta E/E \sim 0.25$)
- + Vary C_{XRB} , T_{XRB} , Γ_{XRB} and $\sin^2(2\theta_s)$ until χ^2 worsens by $\Delta\chi^2$ corresponding to a 3σ C.L.
- Determine $\sin^2(2\theta_s)$ for all m_s within range of data

Spectral Analysis of HEAO-1 XRB data

(Boyarsky et al., astro-ph/0512509)

EG and MW flux from SN DM

+ Extragalactic differential energy flux

$$\varphi_E^{\rm EG} = \frac{d^2 F_E^{\rm EG}}{d\Omega dE} = f_s \frac{\Gamma_{\gamma}}{4\pi m_s} \frac{\Omega_{\rm dm} \rho_c}{H(\{m_s/2E\} - 1)}$$

+ Flat, Λ -matter dominated Universe ($\Omega_{dm} \approx 0.21$)

$$H(z) \approx H_0 \sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}, \ (\Omega_m \approx 0.26, \ \Omega_{\Lambda} \approx 0.74, H_0 \approx 73 \text{ km s}^{-1} \text{ Mpc}^{-1}$$

+ Local differential energy flux from MW

$$\varphi_E^{\rm MW} \equiv \frac{d^2 F_E^{\rm MW}}{d\Omega dE} = f_s \frac{\Gamma_{\gamma}}{4\pi m_s} \int_{\rm l.o.s.} \rho_{\rm dm}(x,\phi) dx \equiv f_s \frac{\Gamma_{\gamma}}{4\pi m_s} S_{\rm dm}(\phi)$$

$$\Rightarrow R = \frac{\int \varphi_E^{\text{MW}} dE}{\int \varphi_E^{\text{EG}} dE} \approx 0.7 \left(\frac{S_{\text{dm}}(\phi)}{0.01 \,\text{g cm}^{-2}} \right) \sim 1 \text{ for typical profiles (away from GC)}$$

X-ray constraints on m_s and $\sin^2(2\vartheta_s)$

Ly- α constraints on m_s and $\sin^2(2\vartheta_s)$ ($f_s < 1$)

- + $m_s > 11.5$ keV ($f_s = 1$) from limiting suppression of P(k) for $k > \sim 1$ Mpc⁻¹
- + For $f_s < 1$ its most appropriate to run a grid of hydrodynamical simulations involving WDM+CDM and relate Ly- α power spectrum to parameters.
- + Alternatively, we can obtain reliable constraints by "rescaling" $f_s=1$ results
- Using CAMB (Lewis et al.), we grow perturbations in a $WDM(f_s)+CDM(1-f_s)$ scenario using a SN relic abundance of

$$\Omega_s h^2 = \beta \left(\frac{m_s}{93.2 \mathrm{eV}} \right)$$

+ Owing to "pencil-beam" nature of Ly- α measurements we use $P_{1D}(k)$

$$P_{1\mathrm{D}}(k) = \frac{1}{2\pi} \int_{k}^{\infty} P_{3\mathrm{D}}(k) k dk$$

+ Determine $(m_s)_{min.}$, for $f_s < 1$, by invoking $P_{1D}(k_f, f_s < 1) \neq P_{1D}(k_f, f_s = 1)$ at $k_f \sim 2h$ Mpc⁻¹, where SDSS Ly- α data is most sensitive.

+ Reliable results for $f_s > 0.1$ for $1 < k_f/(h \text{ Mpc}^{-1}) < 5$ (<10% variation).z

Ly- α constraints on m_s and $\sin^2(2\vartheta_s)$ ($f_s < 1$)

Theoretical uncertainties

+ SN which are non-resonantly produced have a relic abundance (Asaka et al.)

$$\Omega_s h^2 = 0.275 F(m_s, \vartheta_{\alpha}^{a=e,\mu,\tau}) \left(\frac{m_s}{1 \text{keV}}\right)^2 \left(\frac{\sin^2(2\vartheta)}{10^{-7}}\right)^2$$

+ Accounting for hadronic uncertainties during QCD epoch, best-fit relation between f_s , m_s and $\sin^2(2\theta_s)$ is

$$\log_{10}(f_s^{\text{av.}}) = 0.20 + 1.84 \log_{10}\left(\frac{m_s}{1 \text{keV}}\right) + \log_{10}\left(\frac{\sin^2(2\vartheta_s)}{10^{-7}}\right)$$

+ Pushing all errors in the same direction, one either obtains the minimal...

$$\log_{10}(f_s^{\min}) = -0.07 + 1.74 \log_{10}\left(\frac{m_s}{1 \text{keV}}\right) + \log_{10}\left(\frac{\sin^2(2\vartheta_s)}{10^{-7}}\right)$$

...or the maximal abundances

$$\log_{10}(f_s^{\text{max.}}) = 0.62 + 1.74 \log_{10}\left(\frac{m_s}{1 \text{keV}}\right) + \log_{10}\left(\frac{\sin^2(2\vartheta_s)}{10^{-7}}\right)$$

We conservatively consider these extreme cases to represent a 2σ C.L.

Experimental constraints & Theoretical predictions (2σ)

Constraints on the DW scenario (2σ)

+ Plot corresponding points (A,B), (C,D) and (E,F) for all $f_s < 1$

Theoretical uncertainties (Quantitative treatment)

- + Vary f_s around f_s^{av} given by best-fit formula.
- + Adopt a normal distribution of $log_{10}(f_s)$ with a s.d. equal to half the excursion, determined by extreme formulae.
- + This corresponds to adding a penalty factor η to the total χ^2

 $\chi^2 = \chi^2_{\text{X-ray}}(\sin^2(2\vartheta_s, m_s, f_s) + \chi^2_{\text{Ly}-\alpha}(m_s, f_s) + \eta(\sin^2(2\vartheta_s, m_s, f_s))$

$$\eta(\sin^2(2\vartheta_s, m_s, f_s) = \left(\frac{\log_{10}(f_s) - \log_{10}(f_s^{\text{av.}})}{\Delta \log_{10}(f_s)}\right)$$

with 1σ (asymmetric) errors

 $\Delta \log_{10}(f_s) = 0.5 \left[\log_{10}(f_s^{\text{max.}}) - \log_{10}(f_s^{\text{av.}}) \right] \quad (f_s > f_s^{\text{av.}})$ $\Delta \log_{10}(f_s) = 0.5 \left[\log_{10}(f_s^{\text{av.}}) - \log_{10}(f_s^{\text{min.}}) \right] \quad (f_s < f_s^{\text{av.}})$

• Marginalising χ^2 wrt f_s (or m_s or sin²(2 θ_s)), we obtain new constraints...

Constraints on the DW scenario

Summary & Conclusions

+ Recent results disfavour keV dominant sterile neutrino dark matter produced via the Dodelson-Widrow mechanism.

+ Relaxing the presumption that $\Omega_s = \Omega_{dm}$, we have shown how X-ray and Ly- α constraints can be re-interpreted for $\Omega_s < \Omega_{dm}$.

We have shown how current data provides a conservative upper bound on the fraction f_s of DW SN DM, and limits on m_s and sin²(2θ_s) for a given ~0.1<f_s< (f_s)_{max}.

• We obtained the limits $f_s < \sim 0.7$ (2 σ), with $f_s = 1$ rejected at $\sim 3\sigma$.

More sensitive X-ray observations, a better understanding of the systematics in Ly- α measurements and a reduction in the theoretical uncertainties all have a crucial role in improving our results.