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Neutrinos and the Dark sector
 There are many candidates for dark matter (e.g. SUSY particles, Long-

lived hadronically-decaying particles, Compact Composite Objects).

 The only confirmed particle candidate is the hot SM neutrino (decouples
from thermal background at ~1 MeV).

 However, measurements of the power spectra of the distribution of
galaxies and CMB anisotropies yield the stringent constraint
Ων h2<0.0067.

 Independent measurements of flavour oscillations of Solar (e.g. SNO),
Atmospheric (e.g. Super-K) and Reactor-based neutrinos (e.g.
KamLAND) require MASSIVE neutrinos with

 Particle physics beyond the standard model permits massive neutrinos
aswell as the existence of (right-handed) sterile neutrinos.

 Sterile neutrinos possessing keV masses would be viable dark matter
candidates.

∆(m12
2)SNO≈7x10-5 eV2, ∆(m23

2)SK≈3x10-3 eV2, ∆(m12
2)KLD≈7x10-5 eV2



What are Sterile Neutrinos?
 SU(3)xSU(2)xU(1) gauge singlet (Pontecorvo, 1967)
 “Sterile” - interacts only via weak mixing with “active” ν states
 νMSM (MSM+3 sterile ν) may explain mν~eV, B≠0 and dark matter

 Sterile ν have a variety of production mechanisms …
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 Unlike see-saw mechanism, small Yukawa couplings, FαI,
(MD

αI=FαI<H>) give rise to small mν to explain their oscillations

 Small FαI also crucial for baryogenesis and to assure that
τ1~H0-1

 The actual origin of FαI, and hence MI , are unknown

 Exponentially suppressed FαI originate in theories of extra
dimensions.



Non-resonant oscillations
 Generated through νa-νs oscillations involving off-diagonal elements

of mixing matrix, predominantly at Tmax.≈133(ms/1keV)1/3 MeV
 Small mixing angles ensure non-equilibrium ⇒ low densities
 Don’t require L≠0

 Simplest model: Dodelson-Widrow (DW) mechanism
 Standard thermal history
 No additional couplings
 Produces minimal relic density (few exceptions, see below)

 Alternatives to DW mechanism
 Entropy Dilution - massive particle decay following neutrino production
 Additional Couplings (e.g. to SUSY particles, Inflaton, Higgs Singlet)
 Low TR cosmologies - production suppressed for TR< Tmax.

Resonant Oscillations
Non-thermal Sterile Neutrinos

L≠0 drives MSW resonant conversion process
Favours low energy neutrinos ⇒ ‘Cool’ Sterile Neutrinos
Limits from free-streaming effects relaxed

νs Production Mechanisms



Decay modes
 Dominant decay to 3 active neutrinos (νs → 3νa)

 Loop-suppressed radiative decay (νs → γ νa)

 Photon Energy Eγ=(ms
2-ma

2)/2ms≈ms/2 for ms»ma

 For ms~1keV ⇒ X-rays
 Use X-ray observations to constrain ms and sin2(2θs)

(and later, fs ) for keV SN DM
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Motivations for keV SN DM

 Resolution to inconsistencies from ΛCDM halo simulations
 Overproduction of small scale matter structures in galaxy distribution
 Central cores in low-mass galaxies (Dalcanton & Hogan)
 Overpopulation of small-scale satellites (Kauffman et al., Klypin et al.)

 Contribution to unresolved diffuse X-ray background (Abazajian et al.)

 Facilitates HI production/star formation ⇒ Early Reionisation
(Mapelli et al., Biermann & Kusenko)

 Pulsar “kick” velocities (Kusenko & Segre, Fuller et al.)

 Re-generation of Supernova shockwaves (Hidaka and Fuller)

 Formation of early SMBH (109M
 at z≈6.5) (Munyaneza & Biermann)

 Baryon asymmetry  (Asaka)



Experimental constraints on ms and sin2(2ϑs)
 X-rays (Clusters, dSphs, MW, Galaxies, XRB)

 All these sources have similar orders of NH and L but different 
    thermal emissions
 F.O.V. and Energy resolution of instruments dictate sensitivity

(Ruchayskiy, arXiv:0704.3215) 
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Experimental constraints on ms and sin2(2ϑs)
Lyman-α

Sensitive to small-scale matter perturbations where SN are significant
Operates at high-z before non-linear growth erases free-streaming effects

⇒ ms >14 keV includes 10% suppression from non-thermal nature of SN
Recent calculations imply <ps>/<pa> can be as low as 0.8 

⇒ms>11.5 keV  (<ps>/<pa>~0.8)

(Abazajian, astro-ph/0511630) (Seljak et al., astro-ph/0602430) 



Is Dodelson-Widrow SN DM still permitted?

If fs=1 is excluded, how large can fs be?

DW SN DM for fs=1 (ΩDM=0.24)  
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(Yuskel et al., arXiv:0706.4084) 



Spectral Analysis of HEAO-1 XRB data

 Fit HEAO-1 data to a prescribed power-law model (Gruber et al.)

(Such a spectrum could potentially be generated by a population
of obscured AGN)

 Add MW and extragalactic (EG) contributions from SN DM (for
given ms), correcting for finite energy resolution of HEAO-1
(ΔE/E~0.25)

 Vary CXRB, TXRB, ΓXRB and sin2(2θs) until χ2 worsens by Δχ2

corresponding to a 3σ C.L.

 Determine sin2(2θs) for all ms within range of data
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Spectral Analysis of HEAO-1 XRB data

(Boyarsky et al., astro-ph/0512509 )



EG and MW flux from SN DM
 Extragalactic differential energy flux

 Flat, Λ-matter dominated Universe (Ωdm ≈ 0.21)
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 Local differential energy flux from MW
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H(z) " H0 #$ +#m (1+ z)3 ,  (#m " 0.26, #$ " 0.74, H0 " 73 km s%1 Mpc-1)
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X-ray constraints on ms and sin2(2ϑs)

 For fs<1 we expect a “rigid” shift in constraints to larger sin2(2θs) by 1/fs
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Ly-α constraints on ms and sin2(2ϑs) (fs<1)
 ms>11.5 keV (fs=1) from limiting suppression of P(k) for k>~1Mpc-1

 For fs<1 its most appropriate to run a grid of hydrodynamical simulations 
    involving WDM+CDM and relate Ly-α power spectrum to parameters.

 Alternatively, we can obtain reliable constraints by “rescaling” fs=1 results

 Using CAMB (Lewis et al.), we grow perturbations in a 
   WDM(fs)+CDM(1-fs) scenario using a SN relic abundance of

 Owing to “pencil-beam” nature of Ly-α measurements we use P1D(k)

 Determine (ms)min., for fs<1, by invoking P1D(kf, fs<1)=P1D(kf, fs=1)
    at kf ~2h Mpc-1, where SDSS Ly-α data is most sensitive.

 Reliable results for fs>0.1 for 1<kf/(h Mpc-1)<5  (<10% variation).z
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P(kf,fs)~(1-0.23)PCDM(kf,fs=1)

Ly-α constraints on ms and sin2(2ϑs) (fs<1)



Theoretical uncertainties
 SN which are non-resonantly produced have a relic abundance (Asaka et al.)

 Accounting for hadronic uncertainties during QCD epoch, best-fit relation
between fs, ms and sin2(2θs) is

 Pushing all errors in the same direction, one either obtains the minimal…

     …or the maximal abundances

 We conservatively consider these extreme cases to represent a 2σ C.L.
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Experimental constraints & Theoretical predictions (2σ)

DW SN DM excluded for fs=1 DW SN DM permitted for fs=0.2

(2.5<ms/1keV<16, 10-10<sin2(2θs)<2.5x10-9)
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Constraints on the DW scenario (2σ)
 Plot corresponding points (A,B), (C,D) and (E,F) for all fs<1

⇒ 0.55<(fs)max.<0.75 
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Theoretical uncertainties (Quantitative treatment)

 Vary fs around fsav. given by best-fit formula.

 Adopt a normal distribution of log10(fs) with a s.d. equal to half
    the excursion, determined by extreme formulae.

 This corresponds to adding a penalty factor η to the total χ2

     with 1σ (asymmetric) errors
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 Marginalising χ2 wrt fs (or ms or sin2(2θs)), we obtain new

    constraints…



Constraints on the DW scenario

⇒ (fs)max.≈0.7 (2σ), (fs)max.=1 (~3σ) 

fs≈1

fs≈0.7



Summary & Conclusions

 Recent results disfavour keV dominant sterile neutrino dark
matter produced via the Dodelson-Widrow mechanism.

 Relaxing the presumption that Ωs=Ωdm, we have shown how X-ray
and Ly-α constraints can be re-interpreted for Ωs<Ωdm.

 We have shown how current data provides a conservative upper
bound on the fraction fs of DW SN DM, and limits on ms and
sin2(2θs) for a given ~0.1<fs< (fs)max.

 We obtained the limits fs<~0.7 (2σ), with fs=1 rejected at ~3σ.

 More sensitive X-ray observations, a better understanding of the
systematics in Ly-α measurements and a reduction in the
theoretical uncertainties all have a crucial role in improving our
results.


