

Spin-Dependent Interactions and Fundamental Physics

Claire Cramer Particle Astrophysics Seminar Fermilab, Batavia IL 22 October, 2007

We Would Like to Know:

What the universe is made of
 How the universe works

How Does the Universe Work?

<section-header><section-header><section-header><complex-block>

assume Lorentz symmetry, CPT, EP, causality, etc.

Spin-coupled Interactions

- 1. Preferred-frame effects: broken rotational or boost symmetry
- 2. Dynamical effects of broken Lorentz symmetry
- 3. "New" particles
- 4. Non-commutative geometries
- 5. Torsion, the role of spin in gravity

Lorentz and CPT violation

Spontaneous breaking of Lorentz symmetry ⇒ spin-coupled background field:

$$H = -\widetilde{b}_{j}^{e} \sigma_{e}^{j}$$

R. Bluhm and V.A. Kostelecky, Phys. Rev. Lett. 84, 1381 (2000)

Dynamical Effects of Lorentz and CPT violation

Spontaneous breaking of Lorentz symmetry ⇒ Nambu-Goldstone ghost bosons

1. Ghost condensate defines a preferred frame

2. Cosmological constant: M ~ 1 meV

3. Dark matter: M ~ 1 eV

N. Arkani-Hamed, et al., JHEP 7, 29 (2005)

Ghost Condensate Potential #1

$$V = \frac{M^2}{F} \vec{s} \cdot \vec{v}$$

- Lorentz and CPT-violating
- distinguishes between left and right helicity

Ghost Condensate Potential #2

The GC mediates a novel spin-spin interaction:

$$V_{\pi}(\vec{r},\vec{v}) = \frac{1}{8\pi} \left(\frac{M}{F}\right)^2 (\vec{s}_1 \cdot \vec{\nabla}) (\vec{s}_2 \cdot \vec{\nabla}) \int \frac{d^3k}{(2\pi)^3} \frac{e^{i\vec{k}\cdot\vec{r}}}{M^2(\vec{v}\cdot\vec{k}) - k^4}$$

If v=0,

$$V_{\pi}(\vec{r},0) = -\frac{1}{8\pi} \left(\frac{M}{F}\right)^2 \frac{(\vec{s}_1 \cdot \vec{s}_2) - (\vec{s}_1 \cdot \hat{r})(\vec{s}_2 \cdot \hat{r})}{r}$$

Ghost Condensate Potential #2

Velocity dependence ⇒ non-uniform spatial profile

Low-mass Boson Exchange, Part 1

Generically, we can look for three interactions between polarized spins and unpolarized matter:

$$\begin{split} V(\vec{r}) &= \frac{g_p g_s}{\hbar c} \frac{\hbar^2}{8\pi m_e} (\sigma \cdot \hat{r}) \left(\frac{1}{r\lambda} + \frac{1}{r^2} \right) e^{-r/\lambda} \\ &+ \frac{f_\perp}{\hbar c} \frac{\hbar^2}{8\pi m_e} (\sigma \times \hat{r}) \left(\frac{1}{r\lambda} + \frac{1}{r^2} \right) e^{-r/\lambda} \\ &+ \frac{f_v}{\hbar c} \frac{\hbar c}{8\pi} (\sigma \cdot \vec{v}) \frac{e^{-r/\lambda}}{r} \end{split}$$

B.A. Dobrescu and I. Mocioiu, JHEP **11**, 5 (2006) J.E. Moody and F. Wilczek, Phys. Rev. D **30**, 130 (1984)

Low-mass Boson Exchange, Part 2

And three more interactions between two polarized spins:

$$V(\vec{r}) = \frac{g^2}{4\pi\hbar c} \frac{\hbar^3}{4m_e^2 c} \left[(\sigma_1 \cdot \sigma_2) \left(\frac{1}{r\lambda} + \frac{1}{r^2} \right) - (\sigma_1 \cdot \hat{r}) (\sigma_2 \cdot \hat{r}) \left(\frac{1}{\lambda^2 r} + \frac{3}{\lambda r^2} + \frac{3}{r^3} \right) \right] e^{-r/\lambda}$$

$$+D_1\hbar c(\sigma_1\cdot\sigma_2)rac{e^{-r/\lambda}}{r}$$

$$+D_2 \frac{\hbar^2}{m_e} ((\sigma_1 \times \sigma_2) \cdot \hat{r}) \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}$$

B.A. Dobrescu and I. Mocioiu, JHEP **11**, 5 (2006) J.E. Moody and F. Wilczek, Phys. Rev. D **30**, 130 (1984)

Spin-coupled Interactions

- 1. Preferred-frame effects: broken rotational or boost symmetry
 - 2. Dynamical effects of broken Lorentz symmetry
 - 3. "New" particles
 - 4. Non-commutative geometries
 - 5. Torsion, the role of spin in gravity

Low-Energy Experimental Searches

Electron sector: torsion balance

Proton sector: hydrogen maser

Neutron sector: noble gas maser

The Electron Sector: Torsion Balance Experiments

C.C., B.R. Heckel, E.G. Adelberger Center for Nuclear Physics and Astrophysics University of Washington

A Generic Torsion Pendulum

The Spin Pendulum

- 10²³ polarized
 electron spins
- negligible external magnetic field

- minimal composition dipole
- negligible higher order gravitational moments

- gold-plated
- magnetically shielded
- 4 mirrors

The Gyrocompass Effect

The pendulum experiences a torque in the rotating frame:

$$\tau_z = -(\Omega \times J) \cdot \hat{n}$$

$$= -S\Omega\cos\lambda\cos\phi$$

$$=-\frac{N_p\hbar}{2}\Omega\cos\lambda\cos\phi$$

So the pendulum wants to point south by an amount proportional to its net spin

The Pendulum's Net Spin

Calculated Estimate:

$(9.7 \pm 2.7) \times 10^{22}$ spins

Measured Value:

 $(9.78 \pm 0.25) \times 10^{22}$ spins

4 days of data
binned over sidereal day
fit to:

$$V = \vec{\sigma} \cdot \vec{A}$$

best fit: $A_x = (-0.20 \pm 0.76) \times 10^{-21} \text{ eV}$ $A_y = (-0.23 \pm 0.76) \times 10^{-21} \text{ eV}$

> hypothetical signal: $A_x = 2.5 \times 10^{-20} \text{ eV}$

Spin Pendulum Data Set

linear regression fit to global data set

Torsion Pendulum Result

$$\begin{split} \tilde{b}_x^e &= -0.91 \pm 1.44 \times 10^{-22} \\ \tilde{b}_y^e &= 0.84 \pm 1.44 \times 10^{-22} \\ \tilde{b}_z^e &= -3.7 \pm 21.2 \times 10^{-22} \end{split}$$

benchmark value: $m_e^2/M_{Planck} = 10^{-17} \text{ eV}$

The Proton Sector: Hydrogen Maser Experiments

M.A. Humphrey, D.F. Phillips, R.L. Walsworth Harvard-Smithsonian Center for Astrophysics Harvard University

Hydrogen Atom Transitions

Measuring the Zeeman Frequency

• Apply static field B_0 to fix quantization axis, v_Z

• Apply oscillating field $B_{dr} \perp$ to B_0

- Induced shift in maser frequency is antisymmetric fn of v_{dr} v_Z
- When $v_{dr} = v_Z$, the maser frequency is unperturbed

- Sweep v_{dr} through resonance, fit resulting lineshape

Hydrogen Maser Apparatus

- hexapole magnet selects states for population inversion
- static 1 mG field defines quantization axis
- 4 layers of magnetic shielding
- active stabilization of solenoid current removed daily fluctuations in Bfield
- referenced to unperturbed H-maser

The Hydrogen Maser

D.F. Phillips, et al., Phys. Rev. D 63, 111101(R) (2000)

The Neutron Sector: Dual-Species Maser Experiments

A. Glenday, D. Bear, F. Cane, D.F. Phillips, R.E. Stoner, R.L. Walsworth Harvard-Smithsonian Center for Astrophysics Harvard University

³He and ¹²⁹Xe Comagnetometer

- no net electronic spin
- spin 1/2 nuclei
- nuclear spin from neutron
- maser frequencies:

$$\omega_{He} = \gamma_{He} B_0 + \omega_{LV}$$
$$\omega_{Xe} = \gamma_{Xe} B_0 + \omega_{LV}$$

• use Xe to lock B_0

Sensitivity to Lorentz-Violation

$$\omega_{He} = \frac{\gamma_{He}}{\gamma_{Xe}} \omega_{Xe} + \left(1 - \frac{\gamma_{He}}{\gamma_{Xe}}\right) \omega_{LV}$$

constant varying sidereally

$$rac{\gamma_{He}}{\gamma_{Xe}} = 2.75$$

Dual-Species Maser Apparatus

- Double-bulb glass cell
- 30-50 Torr of ¹²⁹Xe,
- 600 -1000 Torr of ³He,
- 80 Torr of N₂ (buffer gas)
- **Rb** metal
- σ^+ light, Rb D₁ transition
- $B_0 \approx 6 G$
- Field gradients \leq 30 ppm/cm
- + $\nu_{Xe^{\prime}}$ ν_{He} \approx 7, 20 kHz
- referenced to H-maser

Dual-Species Maser Apparatus

Dual-Species Maser Result

benchmark value: $m_n^2/M_{Planck} = 10^{-13} \text{ eV}$

D. Bear, et al., PRL 85, 5038 (2000)

Improved Maser Performance

Current Status of Lorentz/CPT measurements

Experiment	b_{\perp}^{e} (GeV)	b_{\perp}^{p} (GeV)	b_{\perp}^{n} (GeV)
¹²⁹ Xe/ ³ He maser			10-32
(Harvard)			
¹⁹⁹ Hg- ¹²³ Cs precession	10-27	10-27	10-30
(UW)			
H-maser double resonance	10-27	10-27	
(Harvard)			
K- ³ He comagnetometer	10-28	10-30	10-31
(Princeton)			
Spin-polarized torsion pendulum (UW)	10-31		

Results: Ghost Condensate

95% confidence level exclusion limits

Results: ALP monopole-dipole

95% confidence level exclusion limits

Results: Low-Mass Boson Monopole-dipole Interactions

$$g_p g_s / \hbar c = (-4.8 \pm 8.5) \times 10^{-37}$$

 $f_v / \hbar c = (0.96 \pm 2.5) \times 10^{-56}$
 $f_1 / \hbar c = (0.39 \pm 1.08) \times 10^{-32}$

$$\begin{split} V(\vec{r}) &= \frac{g_p g_s}{\hbar c} \frac{\hbar^2}{8\pi m_e c} (\sigma \cdot \hat{r}) \left(\frac{1}{r\lambda} + \frac{1}{r^2} \right) e^{-r/\lambda} \\ &+ \frac{f_v}{\hbar c} \frac{\hbar c}{8\pi} (\sigma \cdot \hat{v}) \frac{e^{-r/\lambda}}{r} + \frac{f_\perp}{\hbar c} \frac{\hbar^2}{8\pi m_e} (\sigma \times \hat{r}) \left(\frac{1}{r\lambda} + \frac{1}{r^2} \right) e^{-r/\lambda} \end{split}$$

Results: Low-Mass Boson Dipole-dipole Interactions

$$D_1 = (-1.5 \pm 3.6) \times 10^{-41}$$

 $D_2 = (-0.5 \pm 1.3) \times 10^{-28}$

$$V(\vec{r}) = D_1 \hbar c (\sigma_1 \cdot \sigma_2) \frac{e^{-r/\lambda}}{r} + D_2 \frac{\hbar^2}{m_e} ((\sigma_1 \times \sigma_2) \cdot \hat{r}) \left(\frac{1}{\lambda r} + \frac{1}{r^2}\right) e^{-r/\lambda}$$

Conclusions

- We can make very precise low energy measurements of forces coupled to electron, proton and neutron spins
- These measurements set stringent limits on fundamental symmetry breaking and couplings to "new" particles
- We may also set limits on extensions to GR and the role that spin may play in determining the geometry of space-time
- New experiments will soon push these limits even further . . .