Direct Dark Matter Searches with WARP

Discovery of Underground Source or Argon depleted in ³⁹Ar

Cristiano Galbiati Princeton University

FNAL Batavia, IL October 1, 2006

Direct Dark Matter Detection: Very Exciting Moment

WIMP Dark Matter well supported by independent cosmological arguments, CMB and astrophysical observations, SUSY models

Very High Discovery Potential

Field set and ready for a "quantum leap" in sensitivity (many orders of magnitude) thanks to liquified noble gas detectors

liquified noble gas detector to be scale by $\times 100 - \times 1000$ soon!

Exciting developments in particle, atomic physics and and significant improvements detector technology

Dark Matter

- Dark Matter comprises 22% of Universe
- Intriguing Hypothesis: Weakly Interacting, Massive Particles (WIMPs)
- Predicted by SUSY theories (neutralinos etc.)
- How to detect WIMPs?

WIMP Coherent Scattering

The highest sensitivity is obtained by exploiting elastic neutral-current scattering of nuclei by WIMPs. The idea was originally proposed by Drukier and Stodolski to detect solar and reactos neutrinos [PRD **30**, 2295, 1985)].

Sensitivity to hypothetic WIMPs detailed by Goodman and Witten [PRD 31, 3059 (1985)].

Halo particle of mass m (100 GeV), velocity v = 300 km/s on nucleus of mass M (100 GeV):

p = 2mv (max possible value) $\lambda = hbar/p = hbar/(2mv) =$ $= (197 \text{ MeV fm } c^{-1})/(2 \times 100 \text{ GeV } c^{-2} \times 10^{-3} \text{ c}) \sim \text{fm}$ $R_A = 1.0 \times A^{1/3} \text{ fm}$ $E_{kin} = (2mv)^2/2M \sim 2mv^2 =$ $= (2 \times 100 \text{ GeV } c^{-2} \times 10^{-3} \text{ c})^2 = 200 \text{ keV}$ WIMPs and Neutrons scatter from the Atomic Nucleus

> Photons and Electrons scatter from the Atomic Electrons

Supersymmetry Reach

Current CDMS II limit PRL 96, 011302 (2006) (~20 attobarn⁻¹)

Kim et al. 2002 yellow (MSSM scan)

Baltz & Gondolo 2004 cyan (mSUGRA)

Battaglia et al. 2004 red circles (post-LEP benchmark points)

Guidice & Romanino 2004 black crosses (split SUSY)

Pierce 2004 black dots (split SUSY)

Many model frameworks 10⁻⁸-10⁻¹⁰ pb

Supersymmetry Reach

Current CDMS II limit PRL 96, 011302 (2006) (~20 attobarn⁻¹)

25 kg of Ge or Xe 100 kg Ar

1000 kg of Ge or Xe 4000 kg of Ar

Supersymmetry Reach

Current CDMS II limit PRL 96, 011302 (2006) (~20 attobarn⁻¹)

25 kg of Ge or Xe 100 kg Ar

1000 kg of Ge or Xe 4000 kg of Ar

Direct detection is crosssection limited, sensitive to TeV WIMPs

Colliders are mass limited

48

WARP Collaboration

INFN and Università degli Studi di Pavia

P. Benetti, E. Calligarich, M. Cambiaghi, L. Grandi, C. Montanari, A. Rappoldi, G.L. Raselli, M. Roncadelli, M. Rossella, C. Rubbia, C.Vignoli

INFN and Università degli Studi di Napoli

F. Carbonara, A. Cocco, G. Fiorillo, G. Mangano

INFN Laboratori Nazionali del Gran Sasso

R. Acciarri, F. Cavanna, F. Di Pompeo, N. Ferrari, A. Ianni, O. Palamara, L. Pandola

Princeton University

A. Burgers, F. Calaprice, A. Chavarria, C. Galbiati, B. Loer, A. Nelson, R. Saldanha

IFJ PAN Krakow A.M. Szelc

INFN and Università degli Studi di Padova

B. Baibussinov, S. Centro, M.B. Ceolin, G. Meng, F. Pietropaolo, S. Ventura

50

TARGET: Atomic number 40

No loss of coherence at intermediate energies Complete retention of gold plated events (60-120 keV)

TARGET: Atomic number 40
 No loss of coherence at intermediate energies
 Complete retention of gold plated events (60-120 keV)

 WIMP CANDIDATES IDENTIFICATION: Highest discrimination between nuclear recoils and beta/gamma-like background

³⁹Ar, I Bq/kg \rightarrow need 3×10⁸ rejection against betas (for 140 kg detector)

WARP Collaboration, Benetti et al., astro-ph/0603131

TARGET: Atomic number 40
 No loss of coherence at intermediate energies
 Complete retention of gold plated events (60-120 keV)

 WIMP CANDIDATES IDENTIFICATION: Highest discrimination between nuclear recoils and beta/gamma-like background ³⁹Ar, I Bq/kg → need 3×10⁸ rejection against betas (for 140

kg detector)

WARP Collaboration, Benetti et al., astro-ph/0603131

• Spin 0 for ⁴⁰Ar:

Sensitive only to spin-independent interactions

WARP: the Target

• Form factor very different from Xe, Ge targets

- Lower A results in lower rate per unit mass at 10 keV threshold
- For M_X>100 GeV, "Gold Plated" events (>60 keV) still abundant!
- Can run with a significantly higher threshold than other experiments and be very competitive

Two-Phase Argon Drift Chamber

The WARP Technology

Highest discrimination of minimum ionizing events, in favor of potential WIMP recoils, with three simultaneous and independent criteria:

Pulse shape discrimination of primary scintillation (S1) based on the very large difference in decay times between fast (≈ 7 ns) and slow (1.6 µs) components of the emitted UV light
 Minimum ionizing: slow/fast ~ 3/1
 Nuclear recoils: slow/fast ~ 1/3
 Hitachi et al., Phys. Rev. B 27, 5279 (1983)

Theoretical Identification Power exceeds 10⁸ for > 60 photoelectrons Boulay & Hime astro-ph/0411358

 Both prompt scintillation (S1) and drift time-delayed ionization (S2) are simultaneously detected with a pulse ratio strongly dependent from recombination of ionizing tracks.

Rejection ~ 10²-10³ P. Benetti *et al.*, NIM A **332**, 395 (1993)

• Precise determination of events location in 3D: 5 mm x-y, 1 mm z

Additional Rejection for multiple neutron recoils and γ background

Events are characterized by: the ratio S2/S1 between the primary (S1) and secondary (S2) the rising time of the S1 signal

Minimum ionizing particles: high S2/S1 ratio (~100) and by slow S1 signal

Alfa particles and Ar recoils: low (<5) S2/S1 ratio and fast S1 signal

Events are characterized by: the ratio S2/S1 between the primary (S1) and secondary (S2) the rising time of the S1 signal

Minimum ionizing particles: high S2/S1 ratio (~100) and by slow S1 signal

Alfa particles and Ar recoils: low (<5) S2/S1 ratio and fast S1 signal

First Dark Matter Results

Selected events in the n-induced single recoils window during the WIMP search run: None

Energy Calibration

First Dark Matter Results

Most Recent Results on Discrimination

After recent electronics upgrade, pulse shape discrimination between m.i.p. and nuclear recoils better than 3x10⁻⁷ Shape of distribution does not change by applying S2/S1 cut. Two discriminations seemingly independent.

WARP 140-kg Detector

The WARP 140-kg detector to be installed and commissioned at LNGS
140 kg active target, to reach into 10⁻⁴⁵ cm² and cover critical part of SUSY parameter space
Complete neutron shield!
4π active neutron veto (9 tons Liquid Argon, 300 PMTs)
3D Event localization and definition of

fiducial volume for surface background rejection

Detector designed for positive confirmation of a possible WIMP discovery

Active control on nuclide-recoil background, owing to unique feature (LAr active veto) Cryostat designed to allocate a possible

1400 kg detector

100 liters Chamber Active Veto

Passive neutron and gamma shield

One year, 140 kg, null measurement, 30 keV threshold One year, 1400 kg, null measurement, 30 keV threshold WARP Update Cryostat for 140-kg detector in Hall B Operating 2008 WARP Update Cryostat for 140-kg detector in Hall B Operating 2008

MACK!

Discovery of underground reservoir of argon with low level of ³⁹Ar

FNAL - October I 2007 Cristiano Galbiati, on behalf of ...

Discovery of underground argon with low level of radioactive ³⁹Ar and possible applications to WIMP dark matter detectors

D. Acosta-Kane,¹ R. Acciarri,² O. Amaize,¹ M. Antonello,² B. Baibussinov,³ M. Baldo Ceolin,³ C. J. Ballentine,⁴ R. Bansal,⁵ L. Basgall,⁶ A. Bazarko,⁷ P. Benetti,⁸ J. Benziger,⁹ A. Burgers,¹ F. Calaprice,¹ E. Calligarich,⁸ M. Cambiaghi,⁸ N. Canci,² F. Carbonara,¹⁰ M. Cassidy,¹¹ F. Cavanna,² S. Centro,³ A. Chavarria,¹ D. Cheng,¹ A. G. Cocco,¹⁰ P. Collon,¹² F. Dalnoki-Veress,¹ E. de Haas,¹ F. Di Pompeo,² G. Fiorillo,¹⁰ F. Fitch,¹³ V. Gallo,¹⁰ C. Galbiati,^{1, *} M. Gaull,¹ S. Gazzana,¹⁴ L. Grandi,¹⁴ A. Goretti,¹ R. Highfill,⁶ T. Highfill,⁶ T. Hohman,¹ Al. Ianni,¹⁴ An. Ianni,¹ A. LaCava,¹⁵ M. Laubenstein,¹⁴ H. Y. Lee,¹⁶ M. Leung,¹ B. Loer,¹ H. H. Loosli,¹⁷ B. Lyons,¹ D. Marks,¹ K. McCarty,¹ G. Meng,³ C. Montanari,⁸ S. Mukhopadhyay,¹⁸ A. Nelson,¹ O. Palamara,¹⁴ L. Pandola,¹⁴ R. C. Pardo,¹⁶ F. Pietropaolo,³ T. Pivonka,⁶ A. Pocar,¹⁹ R. Purtschert,^{17,†} A. Rappoldi,⁸ G. Raselli,⁸ K. E. Rehm,¹⁶ F. Resnati,²⁰ D. Robertson,¹² M. Roncadelli,⁸ M. Rossella,⁸ C. Rubbia,¹⁴ J. Ruderman,¹ R. Saldanha,¹ C. Schmitt,¹² R. Scott,¹⁶ E. Segreto,¹⁴ A. Shirley,²¹ A. M. Szelc,^{22,2} R. Tartaglia,¹⁴ T. Tesileanu,¹ S. Ventura,³ C. Vignoli,⁸ C. Visnjic,¹ R. Vondrasek,¹⁶ and A. Yushkov¹⁴

Why is underground argon desirable?

- Radioactive ³⁹Ar produced by cosmic rays in atmosphere
 - decays betas, Q = 565 keV, $t_{1/2} = 269 \text{ years}$
- In atmospheric argon:
 - ³⁹Ar/Ar ratio 8×10⁻¹⁶
 - specific activity | Bq/kq
- Limits size and sensitivity of argon detectors

Why is underground argon desirable?

- ³⁹Ar-depleted argon available via centrifugation or thermal diffusion, but expensive at the ton scale!
- ³⁹Ar production by cosmic rays strongly suppressed underground
- Shielding of hydrocarbons in deep underground reservoirs results in low cosmogenic ¹⁴C, important for solar neutrino detection
 - Borexino just reported measurement of solar ⁷Be neutrinos
 - Background from ¹⁴C defeated through use of scintillator from petrochemicals

Necessary to pre-scan sources of interest for ³⁹Ar

³⁹Ar also produced underground by neutron activation, from fission and (α,n) neutrons

• ³⁹K(n,p)³⁹Ar

- ³⁹Ar content depends on local content of U,Th, and K, and on rock porosity
- In some groundwater samples ³⁹Ar/Ar ratio measured up to a factor 20× (2000%) of the atmospheric ratio
- Cannot rely on ³⁹Ar simply being low. Pre-scan of

Analytical techniques to measure ³⁹Ar

Three main techniques:

- Counting of argon gas in low-background proportional detectors
- Accelerator Mass Spectrometry (AMS)
- Counting of argon in low-background liquid-phase detectors

Counting of argon gas in lowbackground proportional counters

- First established (Loosli 1969) and still today standard method for ³⁹Ar determination
 - Collaborators Loosli and Purtschert run in Bern underground Lab dedicated facility for ³⁹Ar measurements since 1969
- Small samples (I-2 liters STP) of argon and limited depth (I00 m.w.e.) required to measure ³⁹Ar at or below atmospheric level
- ³⁹Ar sensitivity limited by detector background. Detector background must be carefully characterized by measurement with reference argon gas depleted in ³⁹Ar
- Current limit on sensitivity at 5% of atmospheric level

Accelerator Mass Spectrometry (AMS)

- Requires special Electron Cyclotron Resonance (ECR) ion source to create positive ions in multiple (7+,8+) ionization states
- Combination of ECR source and ATLAS linear accelerator unique facility at Argonne National Labs
- In 2002 campaign, reached a sensitivity for ³⁹Ar/Ar equivalent to 5% of atmospheric level
- Most flexible tool: measurement requires few ml of

ATLAS at Argonne National Labs

AMS: 2002 Test

³⁹Ar-spiked argon at 3000% of atm. activity

Deep ocean argon at 30% of atm. activity

Sensitivity limited by presence of ³⁹K background from ion source walls, intrinsic to aluminum

AMS: 2007 Test

- I week run in June 2007, ECR source upgraded with addition of high purity aluminum liner
- Reduction of K background by factor 13
- Sensitivity potentially increased to 0.5% of atmospheric level
- Next step:
 Poquest of c

Request of additional 2 weeks of time Measurement of large pool of samples at 0.5% atm. level

Counting in Liquid-phase detectors

- WARP 3.2-kg reached accuracy of 10% of atmospheric level
- Specially designed low background detector with 10-kg mass could reach below 0.1% of atmospheric level
- Requires first large batch of argon from underground reservoir

Sample Preparation

- Challenge: Ar in subsurface gases typically at few hundred ppm concentration. Needs large quantities with purity >50%
- I+yr R&D program in Princeton run by graduate student Ben Loer, senior Daniel Marks, freshman Daniel Acosta-Kane
- Resulted in construction of two stages separation plant, deployable on the field
- Chromatographic plant removes strongly adsorbing components (methane, ethane, heavy hydrocarbons, nitrogen, carbon dioxyde)
- Cold trap removes helium, hydrogen
- Achieves production of argon samples with purity exceeding 80%

Discovery of low ³⁹Ar from underground reservoirs

	Count Rate [µBq]
Underground Ar	2036±43
³⁹ Ar-Depleted Reference	2035±49
Atmospheric Ar	3625±77
(Under. Ar) - (Ref.)	1±65
(Atm. Ar) - (Ref.)	1589±91
(³⁹ Ar/Ar) _{und} /(³⁹ Ar/Ar) _{atm}	0.00 ± 0.05

Submitted to Phys. Rev. Lett. on Aug 30, 2007

Conclusions

- Discovery of underground reservoir with argon low in radioactive ³⁹Ar! Depletion factor at least 20 relative to atmospheric argon
- No ³⁹Ar detection, represents only upper limit. Motivates development of new, more sensitive techniques
- Reservoir able to supply argon target for multi-ton WIMP/neutrino detector.
- Collaboration developing with industry infrastructure for massive collection and underground storage of depleted argon

The End