
ITL Bulletins are published by the
Information Technology Laboratory
(ITL) of the National Institute of
Standards and Technology (NIST).
Each bulletin presents an in-depth
discussion of a single topic of
significant interest to the information
systems community. Bulletins are
issued on an as-needed basis and
are available from ITL Publications,
National Institute of Standards and
Technology, 100 Bureau Drive, Stop
8900, Gaithersburg, MD 20899-8900,
telephone (301) 975-2832. To be
placed on a mailing list to receive
future bulletins, send your name,
organization, and address to this
office.

Bulletins issued since November 1998

❐ Common Criteria: Launching the
International Standard, November
1998

❐ What Is Year 2000 Compliance?,
 December 1998

❐ Secure Web-based Access to High
Performance Computing Resources,
 January 1999

❐ Enhancements to Data Encryption
and Digital Signature Federal
Standards, February 1999

❐ Measurement and Standards for
Computational Science and
Engineering, March 1999

❐ Guide for Developing Security Plans
for Information Technology Systems,
April 1999

❐ Computer Attacks: What They Are
and How to Defend Against Them,
May 1999

❐ The Advanced Encryption Standard:
A Status Report, August 1999

❐ Securing Web Servers, September 1999

❐ Acquiring and Deploying Intrusion
Detection Systems, November 1999

❐ Operating System Security: Adding
to the Arsenal of Security
Techniques, December 1999

❐ Guideline for Implementing
Cryptography in the Federal
Government, February 2000

March 2000

SECURITY IMPLICATIONS
OF ACTIVE CONTENT

By Wayne Jansen and Tom
Karygiannis
Computer Security Division,
Information Technology Laboratory,
National Institute of Standards and
Technology

Introduction

In today’s world, both private and
public sectors depend upon informa-
tion technology (IT) systems to per-
form essential and mission-critical
functions. Often, as technology
improves to provide new capabilities
and features, new vulnerabilities are
introduced along with these functional
improvements. Organizations imple-
menting and using these advanced
technologies must, therefore, be
increasingly on guard.

One such emerging technology is
active content. Although the term has
different connotations among individ-
uals, it is used here in its broadest
sense to refer to electronic documents
that, unlike ASCII character documents
of the past, are able to automatically
carry out or trigger actions without the
intervention of a user. Examples of
active content include PostScript® doc-
uments, Java™ applets, JavaScript™,
word processing and spreadsheet
macros, and executable electronic
mail attachments.

The purpose of this bulletin is to pro-
vide an overview of this technology so
that the reader is better informed
about the associated security risks and
can make more informed IT security
decisions. The bulletin provides real-
world examples involving commonly
available products and development
tools as a way of increasing the under-
standing and awareness of the poten-
tial risks involved. A glossary of
relevant terms and links to useful
online references are also included at
the end of this publication.

Background

Having the ability to download files
and electronic documents off the
Internet is a useful function and a
common practice for many people
today. While there are risks involved if
one visits an unknown site, it appears
at first glance that there should be no
harm in downloading information as
long as the files are non-executables.
Even if a browser plug-in or utility is
downloaded, it is recognized as such
and must be explicitly installed in
order to function, so careful judgment
and appropriate preparation can be
taken in advance. This view on risks,
however, is incorrect. Today, elec-
tronic documents are themselves pro-
grams or contain programs that can be
self-triggered. Loading a document
into a word processor can produce the
same effect as executing a program,
requiring appropriate caution to be
taken. After all, if you would not
knowingly execute a program from an
unknown source, why would you
indirectly execute one embedded in
an electronic document?

In striving to offer greater functionality
and flexibility, software developers
will continue to blur the distinctions
between program and data. While the
developer’s intentions are presumably
good, they can often have a negative
impact when the need for security is
not fully taken into account. Such doc-
uments are said to have active content,
which involves new technology such
as built-in macros, scripting languages,
and virtual machines. The trend
towards active content has been
spurred by the popularity of the Web.
A dynamic weather map, a stock
ticker, and live camera views or pro-
grammed broadcasts appearing on a
Web page are common examples of
how this technology is being applied.
Like any technology, active content
can provide a useful capability, but
can also become a source of vulnera-
bility for an attacker to exploit.

Continued on page 2

2 March 2000

Active content can be considered to be
a form of mobile code, whereby the
code in the form of a script, macro, or
other portable representation can
move either indirectly (e.g., via an
electronic mail attachment) or directly
(e.g., via a Web page) from one plat-
form to another where it eventually
executes. Because the technology is
designed to be seamless, a user is
often unaware of what is happening.
The problem with mobile code in gen-
eral, and active content in particular, is
that it can embed a Trojan horse or
other form of malicious code into a
system.

The prevalence of unintentional
implementation errors in software
applications that process electronic
documents plagues active content
technology. Even if a design is correct
and secure, the implementation may
unintentionally contain a serious vul-
nerability that can be exploited by
malicious code conveyed in the active
content portion of a document.
Together, active content and imple-
mentation errors can damage or sub-
vert an IT system. An attacker needs
only to learn what software their target
is using, find an appropriate exploit,
and send the document to the target.

The trend in application software
development is to add more features
and greater complexity to products.
Complexity begets more code, more
code interacts with other code and,
hence, more implementation errors
occur. This trend, combined with the
competitive pressures facing manufac-
turers to be first to the market, the
technical and cost barriers to extensive
testing, and a marketplace that
chooses functionality over security,
ensures attackers continual opportuni-
ties in the future.

Technology-Related Risks

Some popular active-content technol-
ogies are described below. They are
provided as present-day examples and
do not imply an endorsement of the
technology or product by NIST. A
number of them share the characteris-
tic of providing a useful capability
when used in a Web browser environ-
ment. However, an attacker can
exploit them. The motivation for these
technologies is to improve functional-
ity and gain flexibility for the user. In a
Web application, this involves moving
code processing away from the Web

server onto the client’s Web browser.
Allowing remote systems to run arbi-
trary code on a local system, however,
poses serious security risks. Tradi-
tional client-server systems do not
involve such risks since they rely on
static code on both the server and cli-
ent sides.

PostScript®

One of the earliest examples of active
content is PostScript® document repre-
sentation, still in wide use today. Post-
Script® is a page description language
that is widely used on most computer
platforms. It is the de facto standard in
commercial typesetting and printing
houses. PostScript® commands are
language statements in ASCII text that
are translated into the printer's
machine language by a PostScript®
interpreter built into the printer. The
interpreter uses scalable fonts, elimi-
nating the need to store a variety of
font sizes. A PostScript® file contains a
document description, which is speci-
fied in the PostScript® page descrip-
tion language. The language is a
powerful interpreted language, com-
parable to many programming lan-
guages, and, therefore, PostScript®
documents inherently convey active
content. For example, the language
defines primitives for file manipula-
tion, which can be used in a Post-
Script® document to modify arbitrary
files when the document is displayed
or printed.

An early exploit of PostScript® technol-
ogy involved the language's ability to

set a password held by the interpreter.
In some hardware implementations of
the language interpreter, if the pass-
word was set, it remained in non-
volatile memory and prevented subse-
quent documents from being printed
unless they contained the same pass-
word. An attacker sending a pass-
word-setting document could disable
the printer in this way, requiring hard-
ware replacement to rectify the situa-
tion. Some PostScript® interpreters can
be set to disable potentially harmful
primitives, but such actions can also
inhibit useful functions. This dilemma
is a recurring theme with active
content.

Java™

Java is a full-featured programming
language compiled into platform-
independent byte code that is exe-
cuted by an interpreter called the
Java™ Virtual Machine. The resulting
byte code can be executed where
compiled or transferred to another
Java-enabled platform (e.g., conveyed
via an HTML Web page as an applet).
Java is useful for adding functionality
to Web sites and many services offered
by various popular Web sites require
the user to have a Java-enabled
browser. The developers of Java tried
to address the problem of security and
were successful to a large extent. Java
code is confined to a sandbox that
restricts the access of the code to com-
putational resources based on its per-
missions. Permissions are assigned
primarily based on the source of the
code (where it came from) and the
author of the code (who developed it).

The Java sandbox is designed to pre-
vent Web applets from inspecting or
changing files on a client file system
and using network connections to cir-
cumvent file protections or people's
expectations of privacy. Hostile
applets, however, still pose security
threats even while executing within
the sandbox. A hostile applet can con-
sume or exploit system resources in an
inappropriate manner or cause a user
to perform an undesired or unwanted
action. Examples of hostile applets
exploits include denial-of-service, mail
forging, invasion of privacy (e.g.,
exporting of identity, electronic mail
address, and platform information)
and installing backdoors to the system.
The Java security model is fairly com-
plex and can be difficult for a user to
understand and manage, which can

Who we are

The Information Technology
Laboratory (ITL) is a major research
component of the National Institute
of Standards and Technology (NIST)
of the Technology Administration,
U.S. Department of Commerce. We
develop tests and measurement
methods, reference data, proof-of-
concept implementations, and
technical analyses that help to
advance the development and use
of new information technology. We
seek to overcome barriers to the
efficient use of information
technology, and to make systems
more interoperable, easily usable,
scalable, and secure than they are
today.

March 2000 3

increase risk. Moreover, many imple-
mentation bugs have also been found,
which allow one to bypass security
mechanisms.

JavaScript™ and Visual
Basic® Script

JavaScript is a general-purpose, cross-
platform scripting language whose
code can be embedded within stan-
dard Web pages to create interactive
documents. JavaScript, which is similar
to Microsoft® Jscript®, was developed
by Netscape. Both are founded on the
same standard, the ECMAScript Lan-
guage Specification, ECMA-262. The
scripting language is extremely power-
ful and able to perform anything a user
can do within the context of the
browser. Design and implementation
bugs have been discovered in both
commercial scripting products. Java-
Script does not have methods for
directly accessing a client file system
or for directly opening connections to
other computers besides the host that
provided the content source.

Visual Basic® Script (VBScript) is a
programming language developed by
Microsoft® for creating scripts that can
be embedded in Web pages for view-
ing with the Internet Explorer browser.
VBScript is a subset of the widely used
Microsoft® Visual Basic® program-
ming language and also works with
Microsoft® ActiveX® Controls. The lan-
guage is similar to JavaScript and
poses similar risks.

In theory, confining a scripting lan-
guage to boundaries of a Web browser
should provide a relatively secure
environment. In practice, this has not
been the case. The main sources of
problems have been twofold: the
prevalence of implementation flaws
and the close binding of the browser
to related functionality such as an elec-
tronic mail facility or the underlying
operating system. Past exploits include
sending a user's URL history list to a
remote site, and stealing the mail
address of the user and forging
electronic mail.

ActiveX®

ActiveX® is a set of technologies from
Microsoft® that provide tools for link-
ing desktop applications to the Web.
ActiveX® controls are reusable compo-
nent program objects that can be
attached to electronic mail or down-
loaded from a Web site. ActiveX® con-

trols also come preinstalled on
Windows® platforms. Unlike Java,
which is a platform-independent pro-
gramming language, ActiveX® controls
are distributed as executable binaries
and must be separately compiled for
each target machine and operating
system.

The ActiveX® security model is consid-
erably different from the Java sandbox
model. The Java model restricts the
permissions of applets to a set of safe
actions. ActiveX®, on the other hand,
places no restrictions on what a con-
trol can do. Instead, ActiveX® controls
are digitally signed by their author
under a technology scheme called
Authenticode. The digital signatures
are verified using identity certificates
issued by a trusted certificate authority
to an ActiveX® software publisher. For
an ActiveX® publisher's certificate to
be granted, the software publisher
must pledge that no harmful code will
be knowingly distributed under this
scheme. The Authenticode process
ensures that ActiveX® controls cannot
be distributed anonymously and that
tampering with the controls can be
detected. This certification process,
however, does not ensure that a con-
trol will be well behaved. The
ActiveX® security model assigns the
responsibility for the computer sys-
tem's security to the user.

Before the browser downloads an
unsigned ActiveX® control or a control
whose corresponding publisher's cer-
tificate was issued by an unknown cer-
tifying authority, the browser presents
a dialog box warning the user that this
action may not be safe. Users can
choose to abort the transfer or may
continue the transfer if they assume
the source is trustworthy or they are
willing to assume the risk. Users may
not be aware of the security implica-
tions of this decision, which may result
in poor decisions. Even when the user
is well informed, attackers may trick
the user into approving the transfer. In
the past, attackers have exploited
implementation flaws to cover the user
dialogue window with another that
displays an unobtrusive message such
as "Do you want to continue?" while
exposing the positive indication but-
ton needed to launch active content.
Recent versions of Internet Explorer
allow the user to customize the behav-
ior of ActiveX® controls depending on
whether they are downloaded from a
site on the Internet, a site on the local

area network, or a site belonging to
sets of identified trusted and untrusted
sites.

Desktop Application Macros

Developers of popular spreadsheet,
word processing, and other desktop
applications created macros to allow
users to automate and customize
repetitive tasks. A macro is a series of
menu selections, keystrokes, and com-
mands that have been recorded and
assigned a name or key combination.
When the macro name is called or the
macro key combination is pressed, the
steps in the macro are executed from
beginning to end. Macros are used to
shorten long menu sequences as well
as to create miniature programs within
an application. Macro languages often
include programming controls (IF,
THEN, GOTO, WHILE, etc.) that auto-
mate sequences like any programming
language. A virus can be written into a
macro that is stored in a spreadsheet
or word processing document. When
the document is opened, the macro is
executed and the virus is activated. It
can also attach itself to subsequent
documents that are saved with the
same macro.

The recent Melissa virus is an example
of the potential risk involved. A
Microsoft® Word document contain-
ing a malicious Visual Basic® for Appli-
cations macro propagated itself
through the Internet by sending the
host document as an electronic mail
attachment addressed to contacts
found in the victim’s address book.
The newer generation of electronic
mail applications, including the ones
built into Web browsers, allows mail
attachments to contain active content
such as document macros or Java-
Script programs. Since active content
provides a number of avenues for
exploits, such enclosures should be
opened only after due consideration
of the inherent risks.

Plug-Ins

Plug-ins are programs that work in
conjunction with software applications
to enhance their capabilities. Plug-ins
are often added to Web browsers to
enable them to support new types of
content (audio, video, etc.). Such
plug-ins can be downloaded from
either the browser vendor’s site or
from a third-party site. Browsers typi-
cally prompt the user to download a
new plug-in when a document that

4 March 2000

requires functionality beyond the
browser’s current capabilities.
Although plug-ins allow browsers to
support new types of content, they are
not active content in and of them-
selves, but simply an active-content-
enabling technology. Windows®
Media Player, RealPlayer, Thing-
Viewer, QuickTime, Shockwave, and
Flash are all examples of plug-ins that
allow browsers to support new con-
tent types ranging from audio, video,
interactive animation, and other forms
of “new media.”

From a security standpoint, plug-ins
contain executable code and, there-
fore, precautions should be exercised
in obtaining and installing them, as
with any other software application.
Downloading free software code and
authorizing its installation by simply
clicking an “Install now” or equivalent
button is risky. Downloading plug-ins
from reputable manufacturers can mit-
igate the risk, but even in this case, it is
difficult for the user to always be
aware of the security implications. In
the past, unwanted side effects such as
changes to browser security settings
and tracking of a user’s content prefer-
ences, however well intentioned, have
occurred. Plug-ins designed to ani-
mate cursors or hyperlinks have also
been designed to better track user
preferences and viewing habits across
a particular Web site. Although these
additional capabilities may improve
the user's experience with a particular
Web site, the privacy and security
implications are often not readily dis-
closed. Even if the site has a valid
identity certificate associated with the
signed downloaded code, this only

tells the user that the manufacturer of
the code has been verified by a certifi-
cate authority, but not whether the
code obtained from them will behave
non-maliciously or correctly. Users of
plug-ins should be cautioned to read
the fine print before agreeing to down-
load executables and to take adequate
measures to back up their system in
case there are problems.

Countermeasures

A number of steps can be taken to mit-
igate the risks in using active content.
The following sections highlight some
of the more useful countermeasures
one can apply.

Security Policy

Having or establishing an organiza-
tional security policy is an important
first step in applying countermeasures
for active content. For example, an
Internet security policy can address
enabling Java, JavaScript, or ActiveX®
on individual user's Web browsers in
various ways:

■ Functionality must be disallowed
completely;

■ Functionality is allowed, but only
from internal organizational servers;

■ Functionality is allowed, but only
from trusted external servers; and

■ Functionality is allowed from any
server.

If the policy is not stated clearly and
consistently, and not made known
throughout an organization, it creates
a situation ripe for exploitation.

Application Settings

The desktop applications that handle
documents containing active content
typically have built-in controls that can
be used to control or prevent access.
For example, both Netscape and
Microsoft® Web browsers have an
options menu that can be used to
select appropriate security settings
regarding active content within down-
loadable documents. Spreadsheet,
word processor, and presentation
graphic software applications have
similar controls. Even today, many
manufacturers deliver products with
insecure default settings. Users of such
applications need to become familiar
with the security options available and
use them in accordance with organiza-
tional policy.

Automated Filters

If malicious content has been identi-
fied and understood, it can be
detected and eliminated or rejected
completely from entering. For exam-
ple, many firewalls are capable of fil-
tering electronic mail attachments for
well-known file types, such as .exe
executable files, and deleting them at
the point of entry. More sophisticated
filters can perform checks for viruses
within executables and hidden macros
within document files. Anti-virus soft-
ware has also become increasingly
capable of detecting electronic docu-
ments having active content with
malicious code.

Version Control

Users can gain better security by
applying security patches when avail-
able. This is a well-known and effec-
tive remedy, but for a variety of
reasons, it is also an often-ignored
one. Users can also take advantage of
security enhancements to their appli-
cations by upgrading to newer ver-
sions. Microsoft® Windows® 98 users
can use the Windows® update feature
to find bug fixes and product updates
and download them automatically
from the Web. Using this feature, how-
ever, requires the user to use code that
will scan the computer for installation
information in order to properly install
any upgrades. The Microsoft® Web site
states that none of this information is
sent to Microsoft® or over the Internet.
Updating software products automati-
cally over the Web is becoming
increasingly popular, as the benefits to
the user are considerable. As this prac-
tice becomes more commonplace,
users must be better aware of the
implicit decisions they make when
allowing vendors to run software on
their machine. For example, updating
an audio player on a computer may
allow the vendor to track the user’s
musical preferences.

Readers

Occasionally, manufacturers of desk-
top applications provide free software
readers, which are capable of inter-
preting their proprietary file formats,
for recipients of the documents who
do not own the application. The
Adobe® Acrobat® Reader, for example,
allows users to view and print Portable
Document Format (PDF) files, but
does not allow users to edit them.
Since the software readers are only

ITL Bulletins Via E-Mail

We now offer the option of delivering
your ITL Bulletins in ASCII format
directly to your e-mail address. To
subscribe to this service, send an e-
mail message to listproc@nist.gov
with the message subscribe itl-
bulletin, and your proper name,
e.g., John Doe. For instructions on
using listproc, send a message to
listproc@nist.gov with the message
HELP. To have the bulletin sent to an
e-mail address other than the From
address, contact the ITL editor at 301-
975-2832 or
elizabeth.lennon@nist.gov.

March 2000 5

intended to produce a readable rendi-
tion of the document and are not full-
fledge applications, they bypass many
potentially harmful features and
exploits based on implementation vul-
nerabilities contained in a specific
application. Besides manufacturer-
provided readers, general-purpose
software readers are commercially
available, which are capable of render-
ing dozens of file formats. A related
measure is the selection of documents
with less capable formats of active
content, when multiple choices are
offered. Some Web sites offer an elec-
tronic document in a variety of formats
such as native word processor format,
PostScript®, or PDF. While PDF repre-
sents text and graphics using the imag-
ing model of the PostScript® language,
PDF is not a programming language
and contains no language constructs,
making it the safest alternative.

System Isolation

Isolation works two ways. First, a pro-
duction computer system that is
unable to receive documents contain-
ing active content is unlikely to be
affected by malicious hidden code.
Although it is not always possible to
isolate a system physically, logical iso-
lation may be applied, at least to some
degree. Second, risky functions, such
as Web browsing, may be confined to
a second system designated exclu-
sively for that purpose. Often older or
spare systems are available and could
be put to good use this way.

Summary

Active-content documents offer sev-
eral benefits to both the users of these
documents and their authors. Java
applets, JavaScript, and ActiveX® pro-
vide additional functionality to Web
pages, plug-ins enable browsers to
support new types of content, Post-
Script® offloads the processing and
interpretation of the presentation of
documents to the printer, and macros
automate repetitive word processing
and spreadsheet tasks. The benefits of
each of these active-content technolo-
gies must be carefully weighed against
the risks they pose. Security is not
black or white, but shades of gray.
When employing active-content tech-
nology, security measures should be
put in place to reduce risk to an
acceptable level and to recover if an
incident occurs.

Informed security officers, administra-
tors, and other IT professionals are
responsible for developing security
policies based on their organization’s
specific security needs and level of
acceptable risk. Unfortunately, there is
rarely a “one size fits all” guideline that
fits the unique needs of every organi-
zation and each organization must
decide what constitutes an acceptable
level of risk. Establishing an organiza-
tional security policy is an important
step in developing and applying
appropriate security measures. The IT
and security staff have a responsibility
for keeping abreast of the associated
risks with emerging technologies by
subscribing to security mailing lists
and visiting vendor Web sites for infor-
mation and updates for products used
within their organization. As active
content moves beyond desktop per-
sonal computers to mobile handsets,
television sets, and a wide variety of
other consumer electronic goods,
users will be faced with competing
and difficult tradeoffs between privacy
and security, with increased function-
ality and ease-of-use.

Before handling documents contain-
ing active content, consider seriously
the following checklist, which summa-
rizes some recommendations drawn
from the previous material:

■ Identify critical information
resources and maintain regular
backups.

■ Identify and assess the risk to critical
information resources from active
content.

■ Develop (or follow) the enterprise
security policy regarding active
content.

■ Evaluate and install virus scanners,
firewalls, and active-content filters
according to enterprise security
requirements. Keep these products
upgraded to the latest version.

■ Become knowledgeable of the secu-
rity settings of desktop applications.

■ Keep informed of the latest security
advisories from CERT and subscribe to
security mailing lists.

■ Obtain and install the latest software
upgrades and patches that address
security vulnerabilities in desktop
applications, such as Web browsers,
readers, and electronic mail.

■ Obtain all software through
approved distribution channels.

■ Institutionalize the download, eval-
uation, and distribution of needed
plug-ins and freeware from the Inter-
net to the organization.

■ Read the fine print before agreeing
to download application software and
plug-ins.

■ Do not run active content or soft-
ware from untrusted sources. Enable
ActiveX® code only from trusted Web
sites that require its use.

■ Consider using an isolated system
and safe browser settings when visit-
ing untrusted Web sites.

■ Do not open documents containing
active content or execute any elec-
tronic mail attachments without first
verifying them with the sender. Be
especially wary of attachments to elec-
tronic chain mails that have been for-
warded from friends of friends.

Glossary

The following definitions highlight key
concepts used throughout this
bulletin:

■ Active Content: Active content refers
to electronic documents that are able
to automatically carry out or trigger
actions without the intervention of a
user.

■ Computer Virus: A computer virus is
similar to a Trojan horse (see below)
insofar as it is a program that contains
hidden code, which usually performs
some unwanted function as a side
effect. The main difference is that the
hidden code in a computer virus can
replicate by attaching a copy of itself
to other programs and may also include
an additional "payload" that triggers
when specific conditions are met.

■ Interpreter: An interpreter is a pro-
gram that processes a script or other
program expression and carries out
the requested action, in accordance
with the language definition.

■ Malicious Code: Malicious code
refers to programs that are written
intentionally to carry out annoying or
harmful actions. They often masquer-
ade as useful programs or are embed-
ded into useful programs, so that users
are induced into activating them.
Types of malicious code include Tro-
jan horses and computer viruses.

PRSRT STD
POSTAGE & FEES PAID

NIST
PERMIT NUMBER G195

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
100 Bureau Drive, Stop 8900
Gaithersburg, MD 20899-8900

Official Business
Penalty for Private Use $300

Address Service Requested

6 March 2000

■ Script: A script is a sequence of com-
mands, often residing in an ASCII file
that can be interpreted and executed
automatically. Unlike compiled pro-
grams, which execute directly on a
computer processor, a script must be
processed by another program that
carries out the indicated action.

■ Scripting Language: A scripting lan-
guage defines the syntax and seman-
tics for writing scripts. Typically,
scripting languages follow the conven-
tions of a simple programming lan-
guage, but they can also take on a
more basic form such as a macro or a
batch file. JavaScript, VBScript, and
Perl are examples of scripting
languages.

■ Trojan Horse: A Trojan horse is a
useful or seemingly useful program that
contains hidden code of a malicious
nature. When the program is invoked,
so is the undesired function whose
effects may not become immediately
obvious. The name stems from an
ancient exploit of invaders' gaining entry
to the city of Troy by concealing them-
selves in the body of a hollow wooden
horse, presumed to be left behind by
the invaders as a gift to the city.

Online Resources

A wealth of security information is
available online. The following are a
few notable sites that one can begin to
explore for further information:

■ Microsoft® Internet Explorer Secu-
rity Page. Microsoft® posts information
and code fixes for security problems
here as soon as they are available.
http://www.microsoft.com/

windows/ie/security/default.asp

■ Netscape Security Page. Latest news
concerning the security of Netscape’s
client, server, and development
software.
http://home.netscape.com/security/

notes/

■ Computer Security Resource Clearing-
house (CSRC). The CRSC contains cur-
rent U.S. security policy documents,
calendar of events, security publications,
training resources, and information on
various computer security subjects.
http://csrc.nist.gov

■ The Federal Computer Incident
Response Capability (FedCIRC). Fed-
CIRC provides a government focal
point for incident reporting, handling,
prevention and recognition.
http://www.fedcirc.gov/

■ WWW Security FAQ. The World
Wide Web Consortium site contains a
repository of information about the
World Wide Web for developers and
users.
http://www.w3.org/Security/Faq/

■ System Administration, Network-
ing, and Security (SANS) Institute. The
SANS community creates four types of
products and services: system and
security alerts and news updates, spe-
cial research projects and publications,
in-depth education, and certification.

http://www.sans.org

■ Computer Emergency Response
Team (CERT) Coordination Center.
CERT issues security advisories, helps
start other incident response teams,
coordinates the efforts of teams when
responding to large-scale incidents,
provides training to incident response
professionals, and researches the
causes of security vulnerabilities.

http://www.cert.org/

■ RISKS forum. ACM Committee on
Computers and Public Policy forum on
risks to the public in computers and
related systems.

http://catless.ncl.ac.uk/Risks/

™ Java and all Java based marks are
trademarks or registered trademarks of
Sun Microsystems, Inc., in the United
States and other countries.

Disclaimer: Any mention of commer-
cial products or reference to commer-
cial organizations is for information
only; it does not imply recommenda-
tion or endorsement by the National
Institute of Standards and Technology
nor does it imply that the products
mentioned are necessarily the best
available for the purpose.

