TRMM Third NASA/JAXA International Conference February 6, 2008

Accurate retrieval of cirrus cloud properties from satellite measurements

Kazuhiko Masuda and Takahisa Kobayashi

Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052 Japan

Summary

We retrieved <u>optical thickness</u> (τ) and <u>effective radius</u> (\mathbf{R}_{eff}) of ice clouds using 0.63 and 1.61µm channels of VIRS.

From the estimated τ and R_{eff} together with the <u>brightness temperature of</u> <u>10.8µm channel</u> [BT(10.8)], characteristics of ice clouds are examined in precipitation and non-precipitation areas which are determined from surface rain rate measured by PR.

It is observed that

- [1] Median value of τ increase with decreasing of BT(10.8),
- [2] Frequency of precipitation is large for areas with τ >10 and BT(10.8)<220K ,
- [3] R_{eff} near the top of cloud converges to $\approx 30 \mu m$ with decreasing of BT(10.8).

TRMM data is very useful to better understanding of ice cloud properties in precipitation area.

Method

Single scattering properties of ice crystal model

Dmx: maximum dimension, R_{eff} : effective radius defined as R_{eff} = (3/4)×V/P [Ref.1], where V and P are volume and averaged projected area, respectively, w_0 : single scattering albedo, g: asymmetry factor.

Calculation

Geometrical Optical Approximation [Ref.2] (Ray tracing + Fraunhofer diffraction) Crystal habit Type 1 Aggregates [Ref.3] Type 2 Koch Fractals (generation=2) [Ref.4] Type 3 Hexagonal columns Size (Maximum dimension (Dmx [μ m])) 25, 50, 100, 200, 400, 800 Roughness of crystal surface Gaussian with σ =30°

Single scattering properties

Dmx	Reff w0	(0.63) v	v0(1.61)	g(0.63)	g(1.61)	
Aggregates						•
25	3.8	1.00	0.99	0.74	0.76	
50	7.6	1.00	0.98	0.75	0.77	1 and 1 and
100	15.2	1.00	0.96	0.75	0.78	
200	30.5	1.00	0.92	0.75	0.79	
400	60.9	1.00	0.86	0.75	0.82	
800 1	21.8	1.00	0.78	0.75	0.86	
Koch fractals						
25	5.2	1.00	0.98	0.76	0.77	-
50	10.3	1.00	0.97	0.76	0.78	100
100	20.6	1.00	0.95	0.76	0.79	-,
200	41.3	1.00	0.90	0.76	0.81	
400	82.5	1.00	0.83	0.76	0.84	
800 1	65.0	1.00	0.73	0.76	0.89	
columns						
25	7.2	1.00	0.98	0.78	0.80	
50	14.3	1.00	0.96	0.78	0.81	CALCULATION OF
100	28.6	1.00	0.93	0.79	0.83	
200	49.3	1.00	0.88	0.80	0.85	
400	76.3	1.00	0.84	0.82	0.88	
800 1	14.2	1.00	0.79	0.83	0.91	
000 1		1.00		0.00		

Retrieval of τ and R_{eff} using 0.63 & 1.61 μm reflectance

Top: June, 2006; bottom: December, 2006 Retrievals were performed using "aggregate" ice crystal model, at grid points with both BT(10.8) and BT(12.0) < 273.15K. τ increases with decreasing BT(10.8).

Number of samples, BT(10.8) < 220K, in non-precipitation area is much smaller than precipitation area. On average, τ in non-precipitation area is smaller than that in precipitation area.

June, 2006

 τ estimated using "column" model are slightly larger than those using "aggregate" and "Koch fractal" models.

Top: June, 2006, bottom: December, 2006. Retrievals were performed using "aggregate" ice crystal model, at grid points with both BT(10.8) and BT(12.0) < 273.15K. R_{eff} converges to 25~35µm with decreasing BT(10.8).

Top: June, 2006, bottom: December, 2006. R_{eff} converges to 25~35µm with decreasing BT(10.8).

Sensitivity of R_{eff} estimation to ice crystal model assumptions

June, 2006

R_{eff} estimated using "aggregate" model are larger than those using "column" and "Koch fractal" models.

References

- [1] Foot, J. S., 1988, Some observation of the optical properties of clouds. Part II: Cirrus. *Quart. J. Roy. Meteorol. Soc. Res.*, **105**, 4699-4718.
- [2] Masuda, K., and T. Takashima, 1997, Scattering matrix of nonspherical ice particles determined by the geometrical optics approximation method. *Proceedings SPIE's International Symposium on Optical Science, Engineering and Instrumentation*, 27 July –1 August, 1997, San Diego, CA.
- [3] Yang, P., and K.N. Liou 1998, Single-scattering properties of complex ice crystals in terrestrial atmosphere. *Contr. Atmos. Phys.*, **71**, 223-248.
- [4] Macke, A., 1996, Single scattering properties of atmospheric ice crystals. *J. Atmos. Sci.*, **53**, 2813-2825.
- [5] Masuda, K., and T. Takashima, 1990, Deriving cirrus information using the visible and near-IR channels of the future NOAA-AVHRR radiometer. *Remote Sens. Environ.*, **31**, 65-81.