January 2008

Vertical Profiling of Precipitation with Passive Microwaves over Mid-Latitudes

> Z.S. Haddad, K.-W. Park and S.L. Durden Jet Propulsion Laboratory California Institute of Technology

Contents:

- Making optimal use of space-borne radar (TRMM, GPM)
- How much vertical variability does rainfall exhibit anyway? 2)
- What can we do about the remaining ambiguities? (Bayesian approach) 3)
- 5 cases: Mediterranean, Sea of Japan, Eastern Atlantic, Western Atlantic, Eastern Pacific (Northern Hemisphere) 4)

1) Making optimal use of space-borne radar (TRMM, GPM):

 \Rightarrow Use joint radar+radiometer swath to "teach" radiometer how to retrieve the vertical structure

Sea of Japan:

This assumes that the radar tells the truth, the whole truth It also assumes that the radiometer measurements are highly correlated with the vertical structure

- \Rightarrow Must characterize the "amount" of structure,
- \Rightarrow and its correlation with the radiometer measurements

2) How much vertical variability does rainfall exhibit anyway?

Data: TRMM radar retrievals January-August 2007

Principal Component decomposition of log(R) (16x1 vector)

					-40 -150	-100	-50	0	50 100	150
Eigenvalues:	"Sea of Japan"		"Mediterranean"		"Eastern Atlantic"		"Western Atlantic"		"Eastern Pacific"	
	51.43	90.98	36.12	78.7%	19.33	82.2%	52.37	90.4%	14.30	80.7%
	3.34	5.9%	6.31	13.7%	2.58	10.5%	3.64	6.3%	2.06	11.6%
	0.89	1.6%	1.77	3.9%	0.83	3.5%	0.96	1.7%	0.68	3.9%
	0.26	0.5%	0.57	1.2%	0.24	1.0%	0.27	0.5%	0.23	1.3%
	etc		etc		etc		etc		etc	

Two cases: \Rightarrow

Average profiles whose first Principal Component is

one-sigma-or-more below the mean,

within-one-sigma-by-default from the mean,

within-one-sigma-by-excess from the mean,

and one-sigma-or-more above the mean

 \Rightarrow Try to use the 9 passive microwave radiances to estimate the first 3 rain principal components

• Would capture > 92% of variability

• Canonically sets the "vertical resolution" of the estimates

• Must have simultaneous radar/passive-microwave core

(e.g. TRMM, GPM) – accuracy depends on core accuracy and representativity

• Quantify uncertainty in estimates

 \Rightarrow Bayesian

3) What can we do about the remaining ambiguities? (Bayesian approach)

What is "Bayesian"?

Given

instantaneous noisy measurements (passive radiometers),

and a priori joint statistics of

rain variables & measurements,

make unbiased estimate of variables and "correlations":

E{rain variable I measurements} = Σ_T variable e^{-dist(measurements,T)}

Why Bayesian is good (especially when measurements are few):

minimize bias and residual error

QUANTIFY THE UNCERTAINTY

allow incorporation of additional data in future

On-line: Measure T's and estimate R's

Sea of	f Japan:		Mediterranean:				
	Τ ₁ '	T ₂ '			Т ₁ '	T ₂ '	
10V:	0.241	-0.141		10V:	0.125	-0.161	
10H:	0.440	-0.249		10H:	0.224	-0.288	
19V:	0.304	0.043		19V:	0.262	-0.126	
19H:	0.572	0.055		19H:	0.497	-0.265	
37V:	0.213	0.264		37V:	0.304	0.057	
37H:	0.491	0.410		37H:	0.658	-0.009	
85V:	-0.167	0.503		85V:	0.046	0.554	
85H:	-0.114	0.650		85H:	- 0.302	0.704	
	emission	scattering		→ Sea-surface effect			

scattering from precipitation is largely unpolarized, SO ...

 \Rightarrow Try using a "Weighted Polarization Difference in Precipitation" discriminant to sort data:

What happens when we filter according to "WPDiP" for the Mediterranean?

4) (How well) does it work?

Applied the procedure diagnostically: gathered core data for large granules during time period,

- built the database, 2.
- then retrieved for other granules 3.

Apply separately in each region, and compile statistics

(Also, tested performance of one region's database on retrievals in another region)

Conclusions:

- Vertical profiling capability can require characterizing the radiometrically cold (and highly polarized) sea surface,
- particularly in Mediterranean-like regions where the precipitating area may not extend over the entire radiometer field of view.

• However, in general, we can successfully estimate vertical profiles (with quantifiable - and small - bias) or flag measured T_b vector as mixed with "open" sea surface requiring quantification, if representative radar samples are consistently available