Untitled Document
ANTD Home Page ANTD Staff ANTD Publications ANTD Products Search ANTD Information Technology Laboratory Home Page NIST Home Page
Untitled Document
Project Mission
To conduct quantum information related research to:
blue bullet
Provide solutions for advanced quantum information science and technology to enhance US industrial competitiveness.
blue bullet
Develop and exploit new calibration and metrology techniques to achieve standardization in the area of quantum information and communication.
blue bullet
Provide an infrastructure for quantum key distribution metrology, testing, calibration, and technology development.
Small horizontal rule
blue bullet About Us
blue bullet Publications
blue bullet Links
blue bullet Collaborations
blue bullet Team
blue bullet Developments
blue bullet Opportunities
Small horizontal rule

R&D 100 Award (2007)


IET Finalist Award (2007)


DoC Bronze Medal (2005)

ITL Outstanding Authorship (2007)

Small horizontal rule
Most Resent Publications
Lijun Ma Senior Member, IEEE, Tiejun Chang, Alan Mink Member, IEEE, Oliver Slattery, Barry Hershman, and Xiao Tang, "Experimental Demonstration of a Detection-time-bin-shift Polarization Encoding Quantum Key Distribution System", IEEE Communications Letters, Vol. 12, NO. 6, June 2008.

Lijun Ma, Tiejun Chang, Alan Mink, Oliver Slattery, Barry Hershman, and Xiao Tang, "Experimental demonstration of an active quantum key distribution network with over Gbps clock synchronization", IEEE Communications Letters, Vol. 11, No. 12, P.1019, December 2007.

Alan. Mink, Lijun Ma, Hai Xu, Oliver Slattery, Barry Hershman and Xiao Tang, "A Quantum network manager that supports a one-time pad stream", Proc of the 2nd International Conference on Quantum, Nano, and Micro Technology, St. Luce, Martinique, Feb 10-15, 2008, pp 16-21.

L. Ma, T.Chang, X. Tang, "Detection-Time-Bin-Shift Polarization Encoding Quantum Key Distribution System," Conference on Laser and Electro-Optics/ Quantum electronics and Laser Science Conference 08, CLEO/QELS Technical Digest, QWB4 (2008).

L. Ma, H. Xu, T.Chang, O. Slattery, X. Tang, "Experimental Implementation of 1310-nm Differential Phase Shift QKD System with Up-Conversion Detectors," Conference on Laser and Electro-Optics/ Quantum electronics and Laser Science Conference 08, CLEO/QELS Technical Digest JTuA105, (2008).

Hai Xu, Lijun Ma, Alan Mink, Barry Hershman and Xiao. Tang. " 1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm ", Optics Express, Vol. 15, Issue 12, pp. 7247-7260 (May 30, 2007).

All Publications.

Small horizontal rule
Search ANTD
Search ITL
Search NIST
Small horizontal rule
Back to NIST Home
 
Thin black line

Record key speed set by fiber QKD system at NIST

Code for ‘Unbreakable’ Quantum Encryption Generated at Record Speed over Fiber

April 18, 2006
CONTACT: Laura Ost
(301) 975-4034

View a video about this topic (2:32 minutes). (Requires free player.)

Gaithersburg, Md.—Raw code for “unbreakable” encryption, based on the principles of quantum physics, has been generated at record speed over optical fiber at the Commerce Department’s National Institute of Standards and Technology (NIST). The work, reported today at the SPIE Defense & Security Symposium in Orlando, Fla.,* is a step toward using conventional high-speed networks such as broadband Internet and local-area networks to transmit ultra-secure video for applications such as surveillance.

NIST physicist Xiao Tang and colleagues have developed a quantum communications system that uses single photons to produce a "raw" encryption key at the rate of 4 million bits per second.

Image credit: © Robert Rathe

For a high-resolution version of this photo contact Gail Porter.

The NIST quantum key distribution (QKD) system uses single photons, the smallest particles of light, in different orientations to produce a continuous binary code, or "key," for encrypting information. The rules of quantum mechanics ensure that anyone intercepting the key is detected, thus providing highly secure key exchange. The laboratory system produced this “raw” key at a rate of more than 4 million bits per second (4 million bps) over 1 kilometer (km) of optical fiber, twice the speed of NIST’s previous record, reported just last month.** The system also worked successfully, although more slowly, over 4 km of fiber.

The record speed was achieved with an error rate of only 3.6 percent, considered very low. The next step will be to process the raw key, using NIST-developed methods for correcting errors and increasing privacy, to generate "secret" key at about half the original speed, or about 2 million bps.

NIST has previously encrypted, transmitted and decrypted Web quality streaming video using secret keys generated at 1 million bps in a 1-km fiber QKD system using a slightly different quantum encoding method.*** Using the same methods for correcting errors and improving privacy with the key generated twice as fast or faster should allow real-time encryption and decryption of video signals at a resolution higher than Web quality, according to NIST physicist Xiao Tang, lead author of the paper.

“This is all part of our effort to build a prototype high-speed quantum network in our lab,” says Tang. “When it is completed, we will be able to view QKD-secured video signals sent by two cameras at different locations. Such a system becomes a QKD-secured surveillance network."

View an animation that shows how single photons are sent and detected by the NIST QKD system.
(Requires Quicktime, a free download).

Animation credit: Bill Pietsch, Astronaut 3 Media Group Inc.

Applications for high-speed QKD might include distribution of sensitive remote video, such as satellite imagery, or commercially valuable material such as intellectual property, or confidential healthcare and financial data. In addition, high-volume secure communications are needed for military operations to service large numbers of users simultaneously and provide multimedia capabilities as well as database access.
NIST is among a number of laboratories and companies around the world developing QKD systems, which are expected to provide the next generation of data security. Conventional encryption is typically based on mathematical complexity and may be broken given sufficiently powerful computers and enough time. In contrast, QKD produces encryption codes based on the quantum states of individual photons and is considered “verifiably secure.” Under the principles of quantum physics, measuring a photon's quantum state destroys that state. QKD systems are specifically designed so that eavesdropping causes detectable changes in the system.

NIST systems are much faster, although operating over shorter distances, than previously reported QKD systems developed by other organizations. High-speed transmission is necessary for widespread practical use of quantum encryption over broadband networks. The NIST fiber QKD system was designed by physicists, computer scientists and mathematicians and is part of a testbed for demonstrating and measuring the performance of quantum communication technologies. NIST has used the testbed to demonstrate QKD in both a fiber-based system and an optical wireless system operating between two NIST buildings.

The NIST fiber QKD system has two channels operating over optical fibers that are wrapped around a spool between two personal computers in a laboratory. The photons are sent in different quantum states, or orientations of their electric field, representing 0 and 1. The system compensates for temperature changes and vibration, which could affect performance, with a NIST-designed module that automatically adjusts photon orientation on a time schedule. More extreme environmental changes are likely to occur in fibers buried or suspended outdoors as in telephone networks; the researchers plan to test a fiber QKD system in the field in the future.

After raw key is generated and processed, the secret key is used to encrypt and decrypt video signals transmitted over the Internet between two computers in the same laboratory. The high speed of the system enables use of the most secure cipher known for ensuring the privacy of a communications channel, in which one secret key bit, known only to the communicating parties, is used only once to encrypt one video bit (or pixel). Compressed video has been encrypted, transmitted and decrypted at a rate of 30 frames per second, sufficient for smooth streaming images, in Web-quality resolution, 320 by 240 pixels per frame.

The work is supported in part by the Defense Advanced Research Projects Agency.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

* X. Tang, L. Ma, A. Mink, A. Nakassis, H. Xu, B. Hershman, J. Bienfang, R.F. Boisvert, C. Clark, D. Su and C. Williams. 2006. Auto-compensated, polarization coding, fiber-based quantum key distribution system operating at sifted-key rate over 4Mbit/s. Presented April 18 at the SPIE Defense & Security Symposium, Orlando, Fla.

** X. Tang, L. Ma, A. Mink, A. Nakassis, H. Xu, B. Hershman, J.C. Bienfang, D. Su, R. Boisvert, C.W. Clark and C.J. Williams. 2005. Experimental study of high speed polarization-coding quantum key distribution with sifted-key rates over Mbit/s. Optics Express. Posted online March 20.

***A. Mink, X. Tang, L. Ma, A. Nakassis, B. Hershman, J. Bienfang, D. Su, R. F. Boisvert, C. Clark, and C. Williams. 2006. High Speed Quantum Key Distribution System Supports One-Time Pad Encryption of Real-Time Video. Presented April 18 at the SPIE Defense & Security Symposium, Orlando, Fla.


Thin black line
 

Untitled Document
Horizontal rule
www.nist.gov/quantum
 

Disclaimer Notice & Privacy Policy / Security Notice
Send comments or suggestions to webmaster@antd.nist.gov
The National Institute of Standards and Technology is an Agency of the U.S. Commerce Department's Technology Administration

Created, maintained and owned by: ANTD's webmaster
Last updated: August, 2007
Date Created: June, 2007