

The identification of any commercial product or trade
name does not imply endorsement or recommendation
by the National Institute of Standards and Technology.

A Quantum Network Manager That Supports A One-Time Pad Stream

Alan Mink, Lijun Ma, Tassos Nakassis, Hai Xu, Oliver Slattery, Barry Hershman and Xiao Tang
Information Technology Laboratory,

National Institute of Standards and Technology (NIST),
100 Bureau Dr., Gaithersburg, MD 20899

amink@nist.gov

Abstract

We have begun to expand the NIST quantum key
distribution (QKD) system into a quantum network to
support secure cryptography. We are starting with a
simple three-node network, one Alice switched between
Bob1 and Bob2. To support such a quantum network,
we have implemented a quantum network manager that
not only handles the switch and QKD protocol startup
operations but also handles multiplexing and
synchronization of secret key streams. We describe the
function, structure and interfaces of this quantum
network manager and report on initial switching
overhead. We also discuss some steps we plan to take
to optimize that overhead as well as hide its latency for
certain applications.

1. Introduction

The NIST Quantum Information program has
produced a number of record setting quantum key
distribution (QKD) systems [1,10,12]. These point-to-
point QKD systems do not themselves send secure
messages. Rather, a QKD system develops secure keys
between two end points over unsecured channels that
can then be used to encrypt messages that are sent over
open networks, such as the Internet. Similarly a
quantum network is not a network to send secure
messages, it is a network through which one can
develop secure keys. Extending QKD systems into a
network is the next step towards deployment
feasibility.

A number of researchers discuss quantum networks.
Jackson, et. al. [5] outline the need for a quantum
network. They propose to develop quantum network

architecture and associated protocols, suggesting the
solution depends on the ability to delay arriving
photons. Curcic, et. al. [2] also discuss the need for a
quantum network but focus more on quantum
repeaters. BBN [3, 4] has implemented a quantum
network to support QKD based cryptography. Four of
the BBN nodes, two Alice and Bob pairs, use different
technologies and are not switchable. They use a hop-
by-hop key transport to provide end-to-end keys. Two
other Alice and Bob pairs use compatible technology
and are networked via a Micro-Electro-Mechanical
System (MEMS) switch. BBN uses VPN tunnels
through IPsec but does not mention a quantum network
manager.

Even if IPsec is the only utility using the QKD
network and all applications do their
encryption/decryption through IPsec, a quantum
network manager is necessary to manage the QKD
switching fabric and any associated Alice/Bob
initialization. It can also provide multiplexing of
independent key streams while keeping them
synchronized. This is a necessary function that would
otherwise have to be handled by IPsec, especially if
one-time pad encryption is offered. If these key
streams lose synchronization, then we no longer have a
shared secret that can be used to successfully decrypt
messages. We present an outline of our initial
implementation of a quantum network manager that
can provide this support. We start off with a brief
overview of our QKD network configuration.

2. QKD configuration and startup

Our point-to-point QKD configuration, as shown in
Fig 1, is discussed in [1,7,10,12]. Although we have
successfully used a single fiber to wavelength division
multiplex (WDM) the quantum channel and the
classical channel, we have found there is some WDM
mode mixing that adds noise to both channels resulting
in a higher quantum error rate. As a result we have

been using separate fibers for the two channels to
minimize the error rate and thus maximize our overall
secret key generation rate. The associated QKD
protocol stack is shown in Fig 2. The raw key stream
generation and management along with the sifting
algorithm is implemented in hardware, a custom
printed circuit board (PCB). This hardware allows us
to send photons at GHz to retrieve Mb/s of sifted key,
which is a more manageable rate for the remainder of
our protocol stack implemented in software. Our
enhanced software versions of the Cascade
reconciliation algorithm and the privacy amplification
algorithm have the capacity to yield a few Mb/s of
secret key. Planned enhancements to our custom PCB
[8] will allow us to migrate these software algorithms
to hardware with a capacity of between 10 and 20 Mb/s
of secret key. The output from our QKD protocol stack
is an ordered set of identical bits (secret keys) at both
Bob and Alice.

Fig. 1. NIST QKD system configuration.

Fig. 2. NIST QKD infrastructure protocol stack.

A quantum network manger needs to handle startup
procedures. Our QKD system requires polarization

recovery and compensation, and quantum-to-classical
channel timing alignment. Polarization recovery and
compensation [6] is necessary because polarization
changes occur as a photon transits through a fiber optic
cable. This procedure recovers the current polarization
drift for each independent polarization base (both
BB84 and B92 have two independent bases) and
adjusts piezo-driving polarization controllers to
compensate for that drift. Once this procedure is
completed the optics are operationally ready. Different
photon encoding schemes may require different start-
up procedures that may vary in complexity and time.

Quantum-to-classical channel timing alignment is
necessary because we use the classical channel to
establish our timing reference points and to recover the
transmit clock frequency. Even when the classical and
quantum channels share a common fiber, their data
paths are different and we need to compensate for
those differences. On the PCB we have independent
sub-bit timing alignment to compensate for any phase
difference between each quantum channel and the
classical channel. Within the programmable chip (an
FPGA – Field Programmable Gate Array) on the PCB,
we have independent multiple bit timing alignment to
compensate for any delays each quantum bit stream
may encounter.

ALICE

Internet

Optical Fiber

Optical Fiber

BOB 2

Optics &
Electronics

BOB 1

D

Surveillance
Monitor Surveillance

Camera

Surveillance
Camera

D

Optics &
Electronics

Optics &
Electronics

Optical
Switch

Fig. 3. NIST QKD network configuration.

As a first extension towards a quantum network

we’ve added an additional Bob and a pair of MEMS
optical switches, one for the classical channel and the
other for the quantum channel. These switches are
configured to operate together simultaneously. When
configured to share a single fiber for both channels,
only a single switch is needed. Fig 3 shows both the
switch on the quantum network that develops the secret
keys and the Internet over which the encrypted
messages travel.

3. Network manager functionality

A quantum network manager needs to set the switch
as directed, complete any QKD start-up procedures,
start the QKD protocols to enable the secret key flow
and then stop the protocols to disable the flow when
switching is requested. Providing the synchronization
and multiplexing of independent secret key streams
between both source and destination is also beneficial.

To support synchronized multiplexing we use the
concept of a FIFO. Each user can operate one or more
FIFOs, where a FIFO contains an independent stream
of secure keys. A duplicate FIFO exists at both the
source and destination. The FIFO pairs are filled with
the same amount and the same sequence of secure
keys. For example, an application on Alice and Bob1
can each open two FIFO pairs, one pair for encrypting
data to be sent to Bob1 and the other pair for
decrypting data received from Bob1. If the application
also existed on Bob2, then another two FIFO pairs
could be used to encrypt/decrypt messages between
Alice and Bob2. This way each message stream has its
own FIFO pair to use for secret keys and incurs no
additional overhead in trying to synchronize the keys
among the messages. Otherwise both source and
destination applications would have to coordinate and
reserve the same key material for each message.

Fig. 4. Quantum Network Manager structure.

Our quantum network manager, depicted in Fig 4,

consists of a main loop that spawns a number of
threads [11] as well as our QKD protocol stack as a
separate process The coordination manager thread
(COORD_Mgr) controls various equipment such as the
switch, the polarization compensation module and the
manager at the other end of quantum network link. The
FIFO multiplex manager (MUX_Mgr) synchronizes the
key flow from the secret key store of our QKD
protocol stack into the various FIFOs, as illustrated in
Fig 5. It uses a separate socket to exchange information

with its cooperating counterpart at the other end of the
quantum network link about which keys are to be
added to each FIFO. For each FIFO, the manager
spawns a FIFO interface thread (Fifo_Int) which
provide the user interface between the application and
the FIFO.

Fig 5. The MUX_Mgr synchronizes keys
entering all FIFOs.

The code skeleton of the quantum network manager

is shown in Fig 6. The main loop functions as the Open
operation for the quantum network and accomplishes
two tasks. It reserves a FIFO (Fifo_ID) and establishes
a socket interface (sock_fd) between the application
and that FIFO. An application can open a number of
instances of the quantum network. Each instance is
associated with a different FIFO.

Spawn COORD_Mgr Thread

Spawn MUX_Mgr Thread

While (FOREVER) {
 sock_fd = Wait_for_Appl2Open_Q_Net
 if (Fifo_ID < 0)
 Fifo_ID = assign_new_Fifo_ID
 else
 Process_existing_Fifo_ID
 if (Fifo_ID == VALID)
 Spawn FIFO_Interface Thread
 else
 close (sock_fd)
 }

Fig 6. Skeleton of quantum network manager.

We use sockets as our communications interface,

since the quantum network manager is a distributed
application and doesn’t need to exist on the same
machine as the applications that uses it or the utilities
that it invokes. This implies that the manager and its
calling applications must exist within a secure enclave.
All applications and the manager related to Alice are in

one secure enclave while those associated with Bob1
are within a separate secure enclave.

As an example, one side of an application opens the
quantum network asking for a new Fifo_ID. It then
sends a message to the other sides of the application to
use this newly reserved Fifo_ID. Then the other sides
of the application opens the quantum network with that
Fifo_ID value, allowing that application interface to be
associated with the same FIFO as its cooperating
application. This is similar to opening a socket with
one side “listening” while the other side “connects”.
The Fifo_ID functions similarly to the socket port
number to provide a common link between the
cooperating applications, except here it is initially
assigned by the quantum network rather than by the
application.

4. Key synchronization loss and recovery

Since duplicate secret keys are kept at the respective
ends of the channel, there is always a concern the some
bits may be dropped or corrupted. A few corrupted bits
will ruin a key, but future keys will not be affected. A
few dropped bits (loss of key synchronization)
however, can be disastrous. Since the keys exist as an
ordered set of random bits duplicated at each end, if
any are dropped then all future key streams will differ
at their respective ends and all future encrypted
messages will be undecodeable.

Recovery from a few corrupted bits can be
accomplished by discarding that key and obtaining a
new key. Preventing such an occurrence can be
accomplished by exchanging an error detection (hash
or CRC) code for each group of keys transferred at
each layer. This incurs some additional overhead and
also requires that some bits of the key be discarded to
eliminate information potentially revealed by the hash
code. For example, if 1 Mbit of key is transferred from
the privacy amplification layer to this network manager
and a 64-bit error detection code is exchanged to verify
their equivalence, then 64-bits of key will need to be
discarded to compensate for any revealed information
about the secret keys. If the codes don’t match, then
that entire group of keys will be discarded.

At each layer, steps are taken to prevent loss of key
synchronization. At the reconciliation layer, if the
duplicate sets of bits don’t match, they are discarded. If
high error rates are detected, then our custom PCB is
reset and restarted. This detects and corrects both
corrupted and dropped bits. In the privacy
amplification layer each byte of the secret key is
assigned a sequential value. When a group of bits is
transferred out of the privacy amplification layer, the
sequential value associated with the first byte is also

sent, called an ID stamp. The receiving process, in this
case the MUX_Mgr of the quantum network manager,
knows the ID stamp and the amount of the previous
group of keys it received, so it can compute the
expected ID stamp of the next group of keys. The
MUX_Mgrs also exchange their respective ID stamps
to verify synchronization. If they don’t match, the keys
will be discarded and the entire protocol stack will be
reset and restarted in coordination with the cooperating
MUX_Mgr. An alternative to this draconian reset and
restart strategy is to assume that key was lost in the
transfer of data but that the ID stamps are correct. In
that case, the MUX_Mgrs can coordinate a strategy that
only requires the two sides to discard the last group of
keys and use the ID stamp to find a new
synchronization point in the key stream. The concept
of an ID stamp associated with the secret key is
continued at the quantum network manager layer,
which provides a separate, independent ID stamp for
the keys in each FIFO for all of its user processes.

5. Quantum Network APIs

The application program interface (API) functions
for the quantum network manager are listed in Fig 7.
The q_open_net function reserves a FIFO and
establishes a socket interface between the application
and that FIFO. The FIFO is not allocated until the
initial connection is established. This is accomplished
through the q_connect function. Through the “qos”
parameter, an application can specify the class of keys
desired (e.g., a few kbits for a standard AES encryption
or a large stream of bits for a one-time pad). In
addition to allocating the FIFO, q_connect sets the
switch, runs the polarization compensation setup and
initiates the QDK protocol stack, if not already active.
If the network is already connected, we only verify that
the request is for this current connection, otherwise the
request fails. We have no restrictions as to who may set
the switch. The only requirement is that no one is
currently connected when a request is made. The
q_disengage function allows an application to signal
that it is temporarily finished with the current
connection for a specific FIFO and that no new secret
keys should be added to that FIFO. Although the
Mux_Mgr handles the synchronization and assures that
the same keys are put into a FIFO, the application is
responsible for keeping track of the keys it takes out of
a FIFO. The q_disengage function is a prerequisite for
switching the network or permanently closing a FIFO.
Only when all FIFOs are disengaged do we allow
switching to occur. The application can still get data
and information on a FIFO when it has been
disengaged. Only the operations associated with filling

a FIFO stop once its disengaged. The q_close_net
function permanently closes and deallocates a FIFO,
but first it must have been disengaged. Any secret keys
remaining in that FIFO are discarded. The FIFO is now
eligible for reassignment to another user.

Fig 7. Quantum Network Manager APIs.

Three API functions provide data and information

to the application. The q_get_fifo_size function is a
non-blocking function and returns the number of bytes
of secret keys available in the FIFO. The
q_get_fifo_stamp function is a non-blocking function
and returns the number of bytes read out of the FIFO
and is meant to be used by the application to identify
specific keys. If an application uses keys in other than
sequential order or if it randomly decides to change
keys, it can send the current FIFO stamp to its peer to
establish the keys it is using. The q_get_data function
places secret keys from the FIFO in the buffer and
returns the number of bytes it has placed in the buffer.
This is normally a blocking function but can be
optionally invoked as a non-blocking function.

6. Test results

We have implemented two test applications for this
quantum network manager, a simple test application
and a video application. Our simple test application
establishes two FIFOs at each node, one for a transmit
stream and the other for a receive stream. Initially
Alice connects to Bob1. They both send 1 Kbyte of
keys as a message to each other. Alice sends from
FIFO “0” and Bob1 sends from FIFO “1”. Upon
receipt of the message they read the keys from the
appropriate FIFO and compare them against what was
received and then print out an accumulated error count.
This count should always be zero. They then check
how full the FIFO is, get the “stamp” value, and then
disengage to prepare for switching. After disengaging,
they partially empty their FIFOs and Alice switches to

Bob2 and repeats this same sequence of operations.
Alice continues to switch between Bob1 and Bob2
executing these operations until it is stopped.

Table 1. Initial Switching Time Distribution

For this test application we have measured the
circuit switching time and how that time is distributed.
Our results are shown in Table 1. The switching time
between Bob1 and Bob2 is less than 1 ms. Our
polarization compensation procedure takes about 40
sec. Alignment for our custom printed circuit board
takes about 5 sec but this only occurs once, the first
time we connect to a node. Lastly there is the delay as
we acquire raw keys and execute the QKD protocol.
This currently takes about 50 sec, because we operate
on multi-Mbit chunks of raw keys, yielding about 16
Mbits of secret keys before our initial deposit to the
secret key store. After this initial delay, our deposits to
the key store average between 0.25 and 1.1 Mb/s
depending on our operating conditions.

Our simple test application is used for functional
testing and no effort has been made to optimize or hide
the latency of these switching operations. We have
developed a video application that encrypts webcam
video in real time using a one-time pad [9]. We have
employed strategies to optimize and hide the switching
overhead by continuing to send encrypted video from
Bob1, while the switching begins. Since the FIFO is
disengaged, we rely on its accumulated key to prevent
stall of video. We will modify our QKD protocols to
operate on smaller amounts of raw key, resulting in
faster deposits of secret key in smaller chunks. During
the initial key acquisition we change the video flow
from Bob1 to Bob2, and depending on the remaining
key left in Bob2’s FIFO, we can start sending
encrypted video before we start getting new secret key.
Although this does not completely eliminate the
switching delay, it reduces it and hides a large portion
of it.

7. Summary

We have begun to expand our QKD system into a
quantum network to support secure cryptography. We
have started with a simple three-node network, one

Operation Time (sec)
Switch .001
Polarization Compensation 40
Board Alignments 5
Initial Key Acquisition Delay 50

Total 95

Alice switched between Bob1 and Bob2. To support
that quantum network, we have implemented a
quantum network manager that not only handles the
switch and QKD protocol startup operations but also
handles multiplexing and synchronization of secret key
streams. We have described the function, structure and
interfaces of this quantum network manager and have
reported on its initial switching overhead. We also
discussed some steps we plan to take to optimize that
overhead as well as hide its latency for certain
applications.

An additional benefit of a quantum network
manager that provides independent synchronized key
streams is that it can support multiple
users/applications. As an example, it could
simultaneously support IPsec, Transport Layer
Security and a number of other independent
applications. Although we present a simple FIFO
interface to users, something more complex, like a file
interface that supports random access, may be more
appropriate if the application needs to handle packet
assembly and out-of-order packets.

Acknowledgement

This work was partially supported by the Defense
Advanced Research Projects Agency under the
DARPA QuIST program and by NIST under the
Quantum Information Initiative program.

References

[1] J. C. Bienfang, A.J. Gross, A. Mink, B.J. Hershman, A.
Nakassis, X. Tang, R. Lu, D.H. Su, C.W. Clark, C.J.
Williams, E.W. Hagley, and J. Wen, "Quantum key
distribution with 1.25 Gbps clock synchronization," Optics
Express, Vol. 12 (9), 2011 (2004).
<http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-9-
2011>.

[2] T. Curcic, E. Flilipkowski, A. Chtchelkanova, P.
D’Ambrosio, S. Wolf, M. Foster and D. Cochran, “Quantum
Networks: From Quantum Cryptography to Quantum
Architecture”, ACM SIGCOMM Computer Communications
Review, Vol. 34, No 5, Oct 2004.
<http://portal.acm.org/citation.cfm?doid=1039117>.

[3] C. Elliott, “Building the quantum network”, New J. of
Phys, 4 (2002), 46. <http://www.iop.org/EJ/abstract/1367-
2630/4/1/346>.

[4] C. Elliott, A. Colvin, D. Pearson, O. Pikalo, J. Schlafer
and H. Yeh, “Current Status of the DARPA Quantum
Network”, Mar. 2005. <http://arxiv.org/ftp/quant-
ph/papers/0503/0503058.pdf>.

[5] D. Jackson, D. Giliam, J.Dowling, “Quantum network
protocols”, Presented at the National Society of Black
Physicists Annual Day of Lectures Held Jointly with
National Conference of Black Physics Students, Palo Alto,
CA, Mar 2001 <http://trs-
new.jpl.nasa.gov/dspace/bitstream/2014/12536/1/01-
0726.pdf>, <http://hdl.handle.net/2014/12536>.

[6] L. Ma, H. Xu, and X. Tang, "Polarization recovery and
auto-compensation in Quantum Key Distribution network,"
Proc. of SPIE, Aug. 2006, Vol. 6305, pp. 630513.
<http://w3.antd.nist.gov/pubs/2007/Polarization recovery and
auto-compensation.pdf>.

[7] A. Mink, X. Tang, L. Ma, T. Nakassis, B. Hershman, J.
Bienfang, D. Su, R. Boisvert, C. Clark, and C. Williams,
"High Speed Quantum Key Distribution System Supports
One-Time Pad Encryption of Real-Time Video," Proc. of
SPIE Defense & Security Symposium, Orlando, FL, 17-21
April 2006, Vol. 6244, pp. 62440M 1-7.
<http://w3.antd.nist.gov/pubs/Mink-SPIE-One-Time-Pad-
6244_22.pdf>.

[8] A. Mink, ""Custom Hardware to Eliminate Bottlenecks
in QKD Throughput Performance", Proc. of SPIE Optic East:
Next-generation Photonic Sensor Technologies, Vol. .6780,
Boston, MA, 8-12 Sept 2007, pp. 678014-1.

[9] One-time pad, <http://en.wikipedia.org/wiki/One-
time_pad>, accessed Aug. 2007.

[10] X. Tang, L. Ma, A. Mink, T. Nakassis, H. Xu, B.
Hershman, J. Bienfang, D. Su, R. Boisvert, C. Clark, and C.
Williams, "Quantum Key Distibution System Operating at
Sifted-key Rate Over 4 Mbits/s," Proc. of SPIE Defense &
Security Symposium, Orlando, Vol. 6244-25, FL, 17-21
April 2006, pp. 62440P-1-7.
<http://w3.antd.nist.gov/pubs/Xiao-SPIE-QKD-4mMbps-
6244_25.pdf>.

[11] Threads,
<http://www.yolinux.com/TUTORIALS/LinuxTutorialPosix
Threads.html>, accessed Aug 2007.

[12] H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang
“1310-nm quantum key distribution system with up-
conversion pump wavelength at 1550 nm”, Optics Express,
June 11, 2007, Vol. 15, No. 12, pp 7247.
<http://www.opticsexpress.org/abstract.cfm?id=138139>.

