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Abstract 

 
We have begun to expand the NIST quantum key 
distribution (QKD) system into a quantum network to 
support secure cryptography. We are starting with a 
simple three-node network, one Alice switched between 
Bob1 and Bob2. To support such a quantum network, 
we have implemented a quantum network manager that 
not only handles the switch and QKD protocol startup 
operations but also handles multiplexing and 
synchronization of secret key streams. We describe the 
function, structure and interfaces of this quantum 
network manager and report on initial switching 
overhead. We also discuss some steps we plan to take 
to optimize that overhead as well as hide its latency for 
certain applications. 
 
1. Introduction 
 

The NIST Quantum Information program has 
produced a number of record setting quantum key 
distribution (QKD) systems [1,10,12]. These point-to-
point QKD systems do not themselves send secure 
messages. Rather, a QKD system develops secure keys 
between two end points over unsecured channels that 
can then be used to encrypt messages that are sent over 
open networks, such as the Internet. Similarly a 
quantum network is not a network to send secure 
messages, it is a network through which one can 
develop secure keys. Extending QKD systems into a 
network is the next step towards deployment 
feasibility. 

A number of researchers discuss quantum networks. 
Jackson, et. al. [5] outline the need for a quantum 
network. They propose to develop quantum network 

architecture and associated protocols, suggesting the 
solution depends on the ability to delay arriving 
photons. Curcic, et. al. [2] also discuss the need for a 
quantum network but focus more on quantum 
repeaters. BBN [3, 4] has implemented a quantum 
network to support QKD based cryptography. Four of 
the BBN nodes, two Alice and Bob pairs, use different 
technologies and are not switchable. They use a hop-
by-hop key transport to provide end-to-end keys. Two 
other Alice and Bob pairs use compatible technology 
and are networked via a Micro-Electro-Mechanical 
System (MEMS) switch. BBN uses VPN tunnels 
through IPsec but does not mention a quantum network 
manager.  

Even if IPsec is the only utility using the QKD 
network and all applications do their 
encryption/decryption through IPsec, a quantum 
network manager is necessary to manage the QKD 
switching fabric and any associated Alice/Bob 
initialization. It can also provide multiplexing of 
independent key streams while keeping them 
synchronized. This is a necessary function that would 
otherwise have to be handled by IPsec, especially if 
one-time pad encryption is offered. If these key 
streams lose synchronization, then we no longer have a 
shared secret that can be used to successfully decrypt 
messages. We present an outline of our initial 
implementation of a quantum network manager that 
can provide this support. We start off with a brief 
overview of our QKD network configuration. 
 
2. QKD configuration and startup 
 

Our point-to-point QKD configuration, as shown in 
Fig 1, is discussed in [1,7,10,12]. Although we have 
successfully used a single fiber to wavelength division 
multiplex (WDM) the quantum channel and the 
classical channel, we have found there is some WDM 
mode mixing that adds noise to both channels resulting 
in a higher quantum error rate. As a result we have 



been using separate fibers for the two channels to 
minimize the error rate and thus maximize our overall 
secret key generation rate. The associated QKD 
protocol stack is shown in Fig 2. The raw key stream 
generation and management along with the sifting 
algorithm is implemented in hardware, a custom 
printed circuit board (PCB). This hardware allows us 
to send photons at GHz to retrieve Mb/s of sifted key, 
which is a more manageable rate for the remainder of 
our protocol stack implemented in software. Our 
enhanced software versions of the Cascade 
reconciliation algorithm and the privacy amplification 
algorithm have the capacity to yield a few Mb/s of 
secret key. Planned enhancements to our custom PCB 
[8] will allow us to migrate these software algorithms 
to hardware with a capacity of between 10 and 20 Mb/s 
of secret key. The output from our QKD protocol stack 
is an ordered set of identical bits (secret keys) at both 
Bob and Alice. 

 
Fig. 1. NIST QKD system configuration. 

 
 

Fig. 2. NIST QKD infrastructure protocol stack. 
 

A quantum network manger needs to handle startup 
procedures. Our QKD system requires polarization 

recovery and compensation, and quantum-to-classical 
channel timing alignment. Polarization recovery and 
compensation [6] is necessary because polarization 
changes occur as a photon transits through a fiber optic 
cable. This procedure recovers the current polarization 
drift for each independent polarization base (both 
BB84 and B92 have two independent bases) and 
adjusts piezo-driving polarization controllers to 
compensate for that drift. Once this procedure is 
completed the optics are operationally ready. Different 
photon encoding schemes may require different start-
up procedures that may vary in complexity and time. 

Quantum-to-classical channel timing alignment is 
necessary because we use the classical channel to 
establish our timing reference points and to recover the 
transmit clock frequency. Even when the classical and 
quantum channels share a common fiber, their data 
paths are different and we need to compensate for 
those differences. On the PCB we have independent 
sub-bit timing alignment to compensate for any phase 
difference between each quantum channel and the 
classical channel. Within the programmable chip (an 
FPGA – Field Programmable Gate Array) on the PCB, 
we have independent multiple bit timing alignment to 
compensate for any delays each quantum bit stream 
may encounter. 
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Fig. 3. NIST QKD network configuration. 

 
As a first extension towards a quantum network 

we’ve added an additional Bob and a pair of MEMS 
optical switches, one for the classical channel and the 
other for the quantum channel. These switches are 
configured to operate together simultaneously. When 
configured to share a single fiber for both channels, 
only a single switch is needed. Fig 3 shows both the 
switch on the quantum network that develops the secret 
keys and the Internet over which the encrypted 
messages travel. 

 



3. Network manager functionality 
 

A quantum network manager needs to set the switch 
as directed, complete any QKD start-up procedures, 
start the QKD protocols to enable the secret key flow 
and then stop the protocols to disable the flow when 
switching is requested. Providing the synchronization 
and multiplexing of independent secret key streams 
between both source and destination is also beneficial. 

To support synchronized multiplexing we use the 
concept of a FIFO. Each user can operate one or more 
FIFOs, where a FIFO contains an independent stream 
of secure keys. A duplicate FIFO exists at both the 
source and destination. The FIFO pairs are filled with 
the same amount and the same sequence of secure 
keys. For example, an application on Alice and Bob1 
can each open two FIFO pairs, one pair for encrypting 
data to be sent to Bob1 and the other pair for 
decrypting data received from Bob1. If the application 
also existed on Bob2, then another two FIFO pairs 
could be used to encrypt/decrypt messages between 
Alice and Bob2. This way each message stream has its 
own FIFO pair to use for secret keys and incurs no 
additional overhead in trying to synchronize the keys 
among the messages. Otherwise both source and 
destination applications would have to coordinate and 
reserve the same key material for each message. 

 
 

Fig. 4. Quantum Network Manager structure. 
 
Our quantum network manager, depicted in Fig 4, 

consists of a main loop that spawns a number of 
threads [11] as well as our QKD protocol stack as a 
separate process The coordination manager thread 
(COORD_Mgr) controls various equipment such as the 
switch, the polarization compensation module and the 
manager at the other end of quantum network link. The 
FIFO multiplex manager (MUX_Mgr) synchronizes the 
key flow from the secret key store of our QKD 
protocol stack into the various FIFOs, as illustrated in 
Fig 5. It uses a separate socket to exchange information 

with its cooperating counterpart at the other end of the 
quantum network link about which keys are to be 
added to each FIFO. For each FIFO, the manager 
spawns a FIFO interface thread (Fifo_Int) which 
provide the user interface between the application and 
the FIFO. 

 
 

Fig 5. The MUX_Mgr synchronizes keys 
entering all FIFOs. 

 
The code skeleton of the quantum network manager 

is shown in Fig 6. The main loop functions as the Open 
operation for the quantum network and accomplishes 
two tasks. It reserves a FIFO (Fifo_ID) and establishes 
a socket interface (sock_fd) between the application 
and that FIFO. An application can open a number of 
instances of the quantum network. Each instance is 
associated with a different FIFO. 

 
Spawn COORD_Mgr Thread 

Spawn MUX_Mgr Thread 

While (FOREVER) { 
   sock_fd = Wait_for_Appl2Open_Q_Net 
   if (Fifo_ID <  0) 
  Fifo_ID = assign_new_Fifo_ID 
   else 
   Process_existing_Fifo_ID 
   if (Fifo_ID == VALID) 
  Spawn FIFO_Interface Thread 
   else 
  close (sock_fd) 
 } 

 
Fig 6. Skeleton of quantum network manager. 

 
We use sockets as our communications interface, 

since the quantum network manager is a distributed 
application and doesn’t need to exist on the same 
machine as the applications that uses it or the utilities 
that it invokes. This implies that the manager and its 
calling applications must exist within a secure enclave. 
All applications and the manager related to Alice are in 



one secure enclave while those associated with Bob1 
are within a separate secure enclave. 

As an example, one side of an application opens the 
quantum network asking for a new Fifo_ID. It then 
sends a message to the other sides of the application to 
use this newly reserved Fifo_ID. Then the other sides 
of the application opens the quantum network with that 
Fifo_ID value, allowing that application interface to be 
associated with the same FIFO as its cooperating 
application. This is similar to opening a socket with 
one side “listening” while the other side “connects”. 
The Fifo_ID functions similarly to the socket port 
number to provide a common link between the 
cooperating applications, except here it is initially 
assigned by the quantum network rather than by the 
application. 
 
4. Key synchronization loss and recovery 
 

Since duplicate secret keys are kept at the respective 
ends of the channel, there is always a concern the some 
bits may be dropped or corrupted. A few corrupted bits 
will ruin a key, but future keys will not be affected. A 
few dropped bits (loss of key synchronization) 
however, can be disastrous. Since the keys exist as an 
ordered set of random bits duplicated at each end, if 
any are dropped then all future key streams will differ 
at their respective ends and all future encrypted 
messages will be undecodeable. 

Recovery from a few corrupted bits can be 
accomplished by discarding that key and obtaining a 
new key. Preventing such an occurrence can be 
accomplished by exchanging an error detection (hash 
or CRC) code for each group of keys transferred at 
each layer. This incurs some additional overhead and 
also requires that some bits of the key be discarded to 
eliminate information potentially revealed by the hash 
code. For example, if 1 Mbit of key is transferred from 
the privacy amplification layer to this network manager 
and a 64-bit error detection code is exchanged to verify 
their equivalence, then 64-bits of key will need to be 
discarded to compensate for any revealed information 
about the secret keys. If the codes don’t match, then 
that entire group of keys will be discarded. 

At each layer, steps are taken to prevent loss of key 
synchronization. At the reconciliation layer, if the 
duplicate sets of bits don’t match, they are discarded. If 
high error rates are detected, then our custom PCB is 
reset and restarted. This detects and corrects both 
corrupted and dropped bits. In the privacy 
amplification layer each byte of the secret key is 
assigned a sequential value. When a group of bits is 
transferred out of the privacy amplification layer, the 
sequential value associated with the first byte is also 

sent, called an ID stamp. The receiving process, in this 
case the MUX_Mgr of the quantum network manager, 
knows the ID stamp and the amount of the previous 
group of keys it received, so it can compute the 
expected ID stamp of the next group of keys. The 
MUX_Mgrs also exchange their respective ID stamps 
to verify synchronization. If they don’t match, the keys 
will be discarded and the entire protocol stack will be 
reset and restarted in coordination with the cooperating 
MUX_Mgr. An alternative to this draconian reset and 
restart strategy is to assume that key was lost in the 
transfer of data but that the ID stamps are correct. In 
that case, the MUX_Mgrs can coordinate a strategy that 
only requires the two sides to discard the last group of 
keys and use the ID stamp to find a new 
synchronization point in the key stream. The concept 
of an ID stamp associated with the secret key is 
continued at the quantum network manager layer, 
which provides a separate, independent ID stamp for 
the keys in each FIFO for all of its user processes. 
 
5. Quantum Network APIs 
 

The application program interface (API) functions 
for the quantum network manager are listed in Fig 7. 
The q_open_net function reserves a FIFO and 
establishes a socket interface between the application 
and that FIFO. The FIFO is not allocated until the 
initial connection is established. This is accomplished 
through the q_connect function. Through the “qos” 
parameter, an application can specify the class of keys 
desired (e.g., a few kbits for a standard AES encryption 
or a large stream of bits for a one-time pad). In 
addition to allocating the FIFO, q_connect sets the 
switch, runs the polarization compensation setup and 
initiates the QDK protocol stack, if not already active. 
If the network is already connected, we only verify that 
the request is for this current connection, otherwise the 
request fails. We have no restrictions as to who may set 
the switch. The only requirement is that no one is 
currently connected when a request is made. The 
q_disengage function allows an application to signal 
that it is temporarily finished with the current 
connection for a specific FIFO and that no new secret 
keys should be added to that FIFO. Although the 
Mux_Mgr handles the synchronization and assures that 
the same keys are put into a FIFO, the application is 
responsible for keeping track of the keys it takes out of 
a FIFO. The q_disengage function is a prerequisite for 
switching the network or permanently closing a FIFO. 
Only when all FIFOs are disengaged do we allow 
switching to occur. The application can still get data 
and information on a FIFO when it has been 
disengaged. Only the operations associated with filling 



a FIFO stop once its disengaged.  The q_close_net 
function permanently closes and deallocates a FIFO, 
but first it must have been disengaged. Any secret keys 
remaining in that FIFO are discarded. The FIFO is now 
eligible for reassignment to another user. 

 
Fig 7. Quantum Network Manager APIs. 

 
Three API functions provide data and information 

to the application. The q_get_fifo_size function is a 
non-blocking function and returns the number of bytes 
of secret keys available in the FIFO. The 
q_get_fifo_stamp function is a non-blocking function 
and returns the number of bytes read out of the FIFO 
and is meant to be used by the application to identify 
specific keys. If an application uses keys in other than 
sequential order or if it randomly decides to change 
keys, it can send the current FIFO stamp to its peer to 
establish the keys it is using. The q_get_data function 
places secret keys from the FIFO in the buffer and 
returns the number of bytes it has placed in the buffer. 
This is normally a blocking function but can be 
optionally invoked as a non-blocking function. 
 
6. Test results 
 

We have implemented two test applications for this 
quantum network manager, a simple test application 
and a video application. Our simple test application 
establishes two FIFOs at each node, one for a transmit 
stream and the other for a receive stream. Initially 
Alice connects to Bob1. They both send 1 Kbyte of 
keys as a message to each other. Alice sends from 
FIFO “0” and Bob1 sends from FIFO “1”. Upon 
receipt of the message they read the keys from the 
appropriate FIFO and compare them against what was 
received and then print out an accumulated error count. 
This count should always be zero. They then check 
how full the FIFO is, get the “stamp” value, and then 
disengage to prepare for switching. After disengaging, 
they partially empty their FIFOs and Alice switches to 

Bob2 and repeats this same sequence of operations. 
Alice continues to switch between Bob1 and Bob2 
executing these operations until it is stopped. 

 
Table 1. Initial Switching Time Distribution 
 

 
 
 
 
 
 

 
 

For this test application we have measured the 
circuit switching time and how that time is distributed. 
Our results are shown in Table 1. The switching time 
between Bob1 and Bob2 is less than 1 ms. Our 
polarization compensation procedure takes about 40 
sec. Alignment for our custom printed circuit board 
takes about 5 sec but this only occurs once, the first 
time we connect to a node. Lastly there is the delay as 
we acquire raw keys and execute the QKD protocol. 
This currently takes about 50 sec, because we operate 
on multi-Mbit chunks of raw keys, yielding about 16 
Mbits of secret keys before our initial deposit to the 
secret key store. After this initial delay, our deposits to 
the key store average between 0.25 and 1.1 Mb/s 
depending on our operating conditions. 

Our simple test application is used for functional 
testing and no effort has been made to optimize or hide 
the latency of these switching operations. We have 
developed a video application that encrypts webcam 
video in real time using a one-time pad [9]. We have 
employed strategies to optimize and hide the switching 
overhead by continuing to send encrypted video from 
Bob1, while the switching begins. Since the FIFO is 
disengaged, we rely on its accumulated key to prevent 
stall of video. We will modify our QKD protocols to 
operate on smaller amounts of raw key, resulting in 
faster deposits of secret key in smaller chunks. During 
the initial key acquisition we change the video flow 
from Bob1 to Bob2, and depending on the remaining 
key left in Bob2’s FIFO, we can start sending 
encrypted video before we start getting new secret key. 
Although this does not completely eliminate the 
switching delay, it reduces it and hides a large portion 
of it. 

 
7. Summary 
 

We have begun to expand our QKD system into a 
quantum network to support secure cryptography. We 
have started with a simple three-node network, one 

Operation Time (sec) 
Switch .001 
Polarization Compensation 40 
Board Alignments 5 
Initial Key Acquisition Delay 50 

Total 95 



Alice switched between Bob1 and Bob2. To support 
that quantum network, we have implemented a 
quantum network manager that not only handles the 
switch and QKD protocol startup operations but also 
handles multiplexing and synchronization of secret key 
streams. We have described the function, structure and 
interfaces of this quantum network manager and have 
reported on its initial switching overhead. We also 
discussed some steps we plan to take to optimize that 
overhead as well as hide its latency for certain 
applications. 

An additional benefit of a quantum network 
manager that provides independent synchronized key 
streams is that it can support multiple 
users/applications. As an example, it could 
simultaneously support IPsec, Transport Layer 
Security and a number of other independent 
applications. Although we present a simple FIFO 
interface to users, something more complex, like a file 
interface that supports random access, may be more 
appropriate if the application needs to handle packet 
assembly and out-of-order packets. 
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