D observation at CDF

Dmitry Litvintsev (Fermilab CD)

for CDF

June 15, 2007

Special seminar

Content

Introduction

- Charged hyperons at CDF
- Analysis Strategy
- Mass measurement
- Other channels and plans
- Conclusion

Introduction

- Happy to show another observation in a string of discoveries of new bottom hadrons in Run 2
- We showed this result at the P5 review last week
- First 2 fb^{-1} level CDF analysis
- We appreciate this opportunity to share our result
- Congratulations to DØ on their success!
- This talk will be short.

Cascades at CDF

- $\sim \Xi^{-}$ long lived & charged
- Can be tracked in the SVX (technique previously used at LEP)
- ✓ CDF developed tracking of Ξ. 1st in hadron collider experiment.
 - Form of a \equiv candidate using standard decay chain $\equiv \rightarrow \Lambda \pi, \ \Lambda \rightarrow p \pi^-$
 - Convert \equiv momentum and vertex position into helix in CDF track parameter (cu, ϕ_0 , d_0 , λ , z_0) basis and convert elements of Vertex fit error matrix into track 5 \times 5 error matrix
 - Use this track to seed Outside In (OI)Z tracking
 - Attach silicon hits starting from vertex point and going to PV
 - Store SVX \equiv tracks in the event record on the file for subsequent analysis.

Cascade Tracked!

Event Display of generated Hyperons Tracked in Silicon

 \sim Same approach used to discover $B_c \to J/\psi\pi$. Should work even better for $\Xi_b \to J/\psi\Xi$.

Unbinned fit uses estimate of mass uncertainty of each candidate to improve mass resolution. Linear background

- Assume flat distribution of events in the mass region [5.7-6.5] GeV/c²
- The p-value is defined as probability to toss $N_{total} = 23$ events contained in this interval, so that there are $N_{signal} = 17$ observed events in 60 MeV/c² signal range ($\pm 2\sigma$).

$$p = 1 - \sum_{i=0}^{N_{signal}-1} \mathcal{B}(i, N_{total}, \frac{60}{800})$$

• putting in the numbers we get $4.1 \cdot 10^{-15}$ which corresponds to 7.8σ Gaussian significance.

Tracking Momentum Scale

Fit	yield	mass	
base	17.5	$(5, 792.9) \text{ MeV/c}^2$	
free sigma	17.4	$(5,791.8) \text{ MeV/c}^2$	
double Gaussian	18.1	$(5,794.4) \mathrm{MeV/c^2}$	

 Reasonable variation of background function and fit range does not change parameters of the peak appreciably

• Take maximum deviation as $\pm 1.5~{
m MeV/c^2}$

Error source	value
Tracking Momentum scale	$\delta m = \pm 0.4 \text{ MeV/c}^2$
PDG Masses(J/ψ , Ξ , Λ)	$\delta m = \pm 0.14 \text{ MeV/c}^2$
Mass scale calibration	$\delta m = \pm 0.6 \text{ MeV/c}^2$
Fit model/resolution	$\delta m = \pm 1.5 \text{ MeV/c}^2$
Total	$\delta m = \pm 1.7 \text{ MeV/c}^2$

 $M(\Xi_b^-) = (5,792.9 \pm 2.4(stat.) \pm 1.7(syst.)) \text{ MeV/c}^2$

Accessible channels at CDF

• J/ψ trigger:

$$\Xi_b \to \boxed{J/\psi} \Xi^- + n\pi \quad , \ \Omega_b \to \boxed{J/\psi} \Omega^- + n\pi \\ \hookrightarrow \Lambda \pi^- \qquad \hookrightarrow \Lambda \mathsf{K}^-$$

TTT trigger:

$$\begin{split} \Xi_b &\to \ \Xi_c + \mathbf{n}\overline{\pi} &, \ \Omega_b \to \ \Omega_c + \mathbf{n}\overline{\pi} \\ &\hookrightarrow \ \Xi^- + \mathbf{n}\overline{\pi} & \hookrightarrow \ \Omega^- + \mathbf{n}\overline{\pi} \\ &\hookrightarrow \ \Lambda \pi^- & \hookrightarrow \ \Lambda \mathsf{K}^- \end{split}$$

$$\Xi_b
ightarrow ~{
m D}^0 \Lambda$$
 , $\Omega_b
ightarrow ~{
m D}^0 \Xi^-$

$$\Xi_b
ightarrow \Lambda_c \mathsf{K} + \mathsf{n}\pi$$
 , $\Omega_b
ightarrow \Xi_c \mathsf{K} + \mathsf{n}\pi$

SVT+lepton trigger:

$$\Xi_{b} \rightarrow \Xi_{c} + \underbrace{\ell^{-}}_{c} X \quad , \Omega_{b} \rightarrow \Omega_{c} + \underbrace{\ell^{-}}_{c} X \\ \hookrightarrow \Xi^{-} + n \underbrace{\pi}_{c} \qquad \hookrightarrow \Omega^{-} + n \underbrace{\pi}_{c} \\ \hookrightarrow \Lambda \pi^{-} \qquad \hookrightarrow \Lambda K^{-}$$

Conclusion

- CDF observes Ξ_b . Significance is 7.8 σ
- The \equiv_b mass is measured to be

 $M(\Xi_b^-) = (5,792.9 \pm 2.4(stat.) \pm 1.7(syst.)) \text{ MeV/c}^2$

Backup Slides

Dmitry Litvintsev, Fermilab, CDF

pre-selection cuts:

- ← All three track have >= 3 $r \phi$ silicon hits (Ξ have >=2 hits)
- $< p_T(\mu) > 1.5 \ {
 m GeV/c}$
- $p_T(K/\Xi) > 1. \text{ GeV/c}$
- ✓ if CMU muon $\chi^2 < 9$ (of track-stub match)
- ✓ if CMX muon $\chi^2 < 9$ (of track-stub match)
- \checkmark form 2-track J/ψ vertex, do vertex fit with $prob(\chi^2(3D)) > 10^{-3}$.
- *✓* require $|M(\mu\mu) M(J/\psi)| < 0.08 \text{ MeV}/c^2$
- ← Attach K/Ξ -track to J/ψ vertex, perform vertex fit. Require $prob(\chi^2(3D)) > 10^{-4}$.

 $B^+ \rightarrow J/\psi K^+/\Xi$ pre-cuts

Selection variable	Optimization A	Optimization B
$p_T(K/\Xi)$ [GeV/c]	> 1.7	> 2.5
$p_T(J/\psi K/\Xi)$ [GeV/c]	> 5.	> 6.
$ct(J/\psi K/\Xi)$ [cm]	> 0.008	> 0.01
$\delta[ct(J/\psi K/\Xi)]$ [cm]	< 0.003	< 0.0025
Pointing angle	< 0.4 radians	< 0.3 radians
$prob(\chi^2(3D))$	$> 10^{-3}$	$> 10^{-2}$
$ d_0(K/\Xi) $ [cm] (w.r.t sec. vtx.)	< 0.01	< 0.008
$\left d_0(J/\psi K/\Xi) \right ^{-1}$ [cm] (w.r.t p.v.)	< 0.0075	< 0.006
$ d_0(K/\Xi)_{sig} $ (w.r.t p. v.)	$> 2.5\sigma$	$> 3.0\sigma$

- Apply Optimization A. If candidate fails just one cut, apply Optimization B. Accept if it does not fail any other cuts in Optimization B.
- Any single cut has almost 90% signal efficiency

