"CHEMICAL STRUCTURES OF CERTAIN PRODUCTS DESCRIBED IN THE EXPLANATORY NOTES TO CHAPTER 29

Page	Heading		Parag	raph	Description in the Explanatory Notes	Chemical Structure
	General	(G)			Classification of esters, salts and certain halides	
			(1)		Esters	
345				(a)		$\begin{array}{c} O \\ O \\ HO-CH_2 \cdot CH_2 \\ CH_3 \cdot C \cdot OH \\ HO-CH_2 \cdot CH_2 \\ (Diethylene glycol) \\ (Acetic acid) \\ 29.15 \end{array} \xrightarrow{O} \\ CH_3 \cdot C - O-CH_2 \cdot CH_2 \\ CH_3 \cdot C - O-CH_2 \cdot CH_2 \\ O \\ (Diethylene glycol acetate) \\ 29.15 \\ \end{array}$
				(b)		$SO_{3}H$ $O=S=O$ $+ CH_{3}OH$ 29.05 (Benzenesulphonic acid) (Methyl 29.04 benzenesulphonate) 29.05 (Methyl 29.05 (Methyl 29.05) (Methyl 20.05) (Methy
				(c)		$\begin{array}{c} \overbrace{COOH} \\ \overbrace{COOC_4H_9} \\ (Buthyl hydrogenphthalate) \\ 29.17 \end{array}$

					(000/14/160.33
(345)	(G)	(1)	(d)		COOH + HOCH ₂ COOH + C ₄ H ₉ OH COOH (Glycollic acid) (Butyl alcohol) (Phthalic acid) 29.18 29.05 29.17
					COOC ₄ H ₉ COOCH ₂ COOC ₄ H ₉ (Butyl phthalyl butyl glycollate) 29.18
	 	(2)	(d)	Solto	$\begin{array}{c} CH_{3}COOH+HOCH_{2}CH_{3} \longrightarrow CH_{3}COOCH_{2}CH_{3} \\ (Acetic acid) (Ethyl alcohol) (Ethyl acetate) \\ 29.15 29.15 \end{array}$
-	 	(2)		Salts	
346			(a)(i)		$\begin{array}{c} CH_{3}O COOH CH_{3}O COONa \\ & & & \\ & & \\ & & \\ (Methoxybenzoic acid) (Sodium methoxybenzoate) \\ & & \\ &$
					(Butyl hydrogen phthalate) 29.17
			(ii)		$(C_{2}H_{5})_{2}NH + HCl \xrightarrow{HCl} (C_{2}H_{5})_{2}NH $ $(Diethylamine) 28.06 \qquad (Diethylamine) $ $29.21 \qquad hydrochloride) $ $29.21 \qquad 29.21$

(0.40)				$(L_{1})(2)$		
(346)		(G)	(2)	(b)(i)		NH_2 CH ₃ COO NH_3
						$CH_3 \cdot C \cdot OH + \bigcirc \rightarrow \bigcirc$
						(Acetic acid)(Aniline)(Aniline acetate)29.1529.2129.21
				(ii)		$\begin{array}{c} \bigcirc \oplus \\ \mathbf{P} \cdot \mathbf{CH}_2 \mathbf{COOH} \mathbf{P} \cdot \mathbf{CH}_2 \mathbf{COO} \cdot \mathbf{NH}_3 \mathbf{CH}_3 \end{array}$
						$CH_3NH_2 + () \rightarrow ()$
						(Methylamine)
						^{29.21} (Phenoxyacetic acid) (Methylamine phenoxyacetate)
						29.18 29.18
			(3)		Halides of carboxylic acids	Q
					(Isobutyryl chloride : 29.15)	O (CH ₃) ₂ CH-C-Cl
			Ī	İ		
	29.02					
		(B)			CYCLOTERPENES	
351			(3)		Limonene	$HC - CH_2 CH_2$
						H_3C-C $CH-C$
						$\begin{array}{c} HC - CH_2 & CH_2 \\ H_3C - C & CH - C \\ 2HC - CH_2 & CH_3 \end{array}$
352				ļ	AROMATIC HYDROCARBONS	
352		(C)	(1)	(C)	o-xylene	^ ~~~
			(1)	(0)		CH ₃
						CH ₃
				(d)(1)	styrene	HC=CH ₂
I			1	1		· ·

	29.03				HALOGENATED DERIVATIVES OF HYDROCARBONS	
		(F)			HALOGANATED DERIVATIVES OF AROMATIC HYDROCARBONS	
356			(6)		1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane or dichlorodiphenyltrichloroethane (DDT)	$Cl \longrightarrow \begin{array}{c} H \\ Cl - C \\ Cl - C \\ Cl - C \\ Cl \\ Cl \\ $
	29.04				SULPHONATED, NITRATED OR NITROSATED DERIVATIVES OF HYDROCARBONS, WHETHER OR NOT HALOGENATED	
		(A)	ļ		SULPHONATED DERIVATIVES	
357			(1)	(a)	Ethylenesulphonic acid	CH ₂ =CHSO ₃ H
		(B)			NITRATED DERIVATIVES	
			(1)	(d)	Trinitromethane	$CH(NO_2)_3$
		(C)			NITROSATED DERIVATIVES	
358			(2)		Nitrosotoluene	CH ₃ NO
		(D)			SULPHOHALOGENATED DERIVATIVES	
			(1)		Chlorobenzenesulphonic acid	SO ₃ H Cl

	29.05				ACYCLIC ALCOHOLS AND THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
		(B)		1	UNSATURATED MONOHYDRIC ALCOHOLS	
360			(1)		Allyl alcohol	H ₂ C=CHCH ₂ OH
		(C)		1	DIOLS AND OTHER POLYHYDRIC ALCOHOLS	
361			(II)	(4)	Mannitol	$\begin{array}{c} CH_{2}OH\\ HOCH\\ HOCH\\ HOCH\\ HCOH\\ H$
					•••••	
	29.06	(A)			CYCLIC ALCOHOLS AND THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES CYCLANIC, CYCLENIC OR CYCLOTERPENIC	
					ALCOHOLS AND THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
362			(1)		Menthol	CH ₃ OH H ₃ C CH ₃

	29.07			PHENOLS; PHENOL-ALCOHOLS	
		(A)		MONONUCLEAR MONOPHENOLS	
365			(2)	Cresol(s)	OH OH OH OH OH OH OH OH
		(B)	T	POLYNUCLEAR MONOPHENOLS	
	•		(1)	Naphthol(s)	OH OOO OH (a-Naphthol) (ß-Naphthol)
		(C)	(1)	POLYPHENOLS Resorcinol	OH OH OH
			(3)	Bisphenol A	$HO \longrightarrow -CH_3 \longrightarrow OH$ $CH_3 \longrightarrow OH$

					•
	29.09			ETHERS, ETHER-ALCOHOLS, ETHER-PHENOLS, ETHER-ALCOHOL-PHENOLS, ALCOHOL PEROXIDES, ETHER PEROXIDES, KETONE PEROXIDES (WHETHER OR NOT CHEMICALLY DEFINED), AND THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
		(C)		ETHER-PHENOLS AND ETHER-ALCOHOL- PHENOLS	
370			(1)	Guaiacol	OH OCH ₃
		(D)		ALCOHOL PEROXIDES, ETHER PEROXIDES AND KETONE PEROXIDES	
				Ketone peroxides (Cyclohexanone peroxide)	
	29.10			EPOXIDES, EPOXYALCOHOLS, EPOXYPHENOLS AND EPOXYETHERS, WITH A THREE-MEMBERED RING, AND THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
371		(1)		Oxirane	$H_2C - CH_2$
	29.11			ACETALS AND HEMIACETALS, WHETHER OR NOT WITH OTHER OXYGEN FUNCTION, AND THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
372		(A)		ACETALS AND HEMIACETALS	$R - C < O - R_1 O - R_2 R - C < O - R_1 O - H$

	29.12				ALDEHYDES, WHETHER OR NOT WITH OTHER OXYGEN FUNCTION; CYCLIC POLYMERS OF ALDEHYDES; PARAFORMALDEHYDE	
374		(A)			ALDEHYDES	О П R—С—Н
			(IV)	(1)	Benzaldehyde	СНО
		(C)		- 5	ALDEHYDE-ETHERS, ALDEHYDE-PHENOLS AND ALDEHYDES WITH OTHER OXYGEN FUNCTION	
375			(1)		Vanillin	CHO OH OCH ₃
		(D)			CYCLIC POLYMERS OF ALDEHYDES	
			(1)		Trioxan	
	29.14				KETONES AND QUINONES, WHETHER OR NOT WITH OTHER OXYGEN FUNCTION, AND THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
378		(A)			KETONES	$ \begin{array}{c} O \\ \blacksquare \\ R_1 - C - R_2 \end{array} $

(378)	(29.14)	(A)	(II)	(1)	Camphor	H ₃ C CH ₃ CH ₃ O
380		(E)			QUINONES	
			(1)		Anthraquinone	
	29.15				SATURATED ACYCLIC MONOCARBOXYLIC ACIDS AND THEIR ANHYDRIDES HALIDES, PEROXIDES AND PEROXYACIDS; THEIR HALOGENATED SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
384		(V)	(a)		n-Butyric acid	CH ₃ CH ₂ CH ₂ COOH
	29.16				UNSATURATED ACYCLIC MONOCARBOXYLIC ACIDS, CYCLIC MONOCARBOXYLIC ACIDS, THEIR ANHYDRIDES, HALIDES, PEROXIDES AND PEROXYACIDS; THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
		(A)			UNSATURATED ACYCLIC MONOCARBOXYLIC ACIDS AND THEIR SALTS, ESTERS AND OTHER DERIVATIVES	
386		(A)	(1)		Acrylic acid	СH ₂ =СНСООН
		(C)			AROMATIC SATURATED MONOCARBOXYLIC ACIDS AND THEIR SALTS, ESTERS AND OTHER DERIVATIVES	

	(;
387	(29.16)		(1)		Benzoic acid	СООН
				(a)	Benzoyl peroxide	
				(b)	Benzoyl chloride	
	29.17				POLYCARBOXYIC ACIDS, THEIR ANHYDRIDES, HALIDES, PEROXIDES AND PEROXYACIDS; THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
		(A)			ACYCLIC POLYCARBOXYLIC ACIDS AND THEIR ESTERS, SALTS AND DERIVATIVES	
389			(3)		Azelaic acid	HOOC(CH ₂) ₇ COOH
			(5)		Maleic anhydride	
		(C)			AROMATIC POLYCARBOXYLIC ACIDS AND THEIR ESTERS, SALTS AND OTHER DERIVATIVES	
			(1)		Phthalic anhydride	

(389)	(29.17)	(C)	(2)	Terephthalic acid	СООН
~ ,	, ,				
					СООН
	29.18			CARBOXYLIC ACIDS WITH ADDITIONAL OXYGEN FUNCTION AND THEIR ANHYDRIDES,	
				HALIDES, PEROXIDES AND PEROXYACIDS;	
				THEIR HALOGENATED, SULPHONATED,	
		(A)		NITRATED OR NITROSATED DERIVATIVES CARBOXYLIC ACIDS WITH ALCOHOL FUNCTION	
		(,,)		AND THEIR ESTERS, SALTS AND OTHER	
001			(0)	DERIVATIVES	
391			(3)	Citric acid	СН ₂ СООН
					Ç(OH)COOH
					CH ₂ COOH
			(0)	Dha cudahaa lia a cid	
			(6)	Phenylglycolic acid	СООН
					Н-С-ОН
		(B)		CARBOXYLIC ACIDS WITH PHENOL FUNCTION	
				AND THEIR ESTERS, SALTS AND OTHER DERIVATIVES	
			(1)	Salicylic acid	COOLI
			` '		COOH
					OH
					\checkmark

				(000/14/1 eb. 98
393	29.19		PHOSPHORIC ESTERS AND THEIR SALTS, INCLUDING LACTOPHOSPHATES: THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	$\begin{array}{c} OR_1 \\ I \\ R_2 O - P = O \\ I \\ OR_3 \end{array}$
		(3)	Tributyl phosphate	$\begin{array}{c} C_4H_9O\\ C_4H_9O-P=O\\ C_4H_9O\end{array}$
	29.20		ESTERS OF OTHER INORGANIC ACIDS (EXCLUDING ESTERS OF HYDROGEN HALIDES) AND THEIR SALTS; THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES	
		(A)	Thiophosphoric esters	
394			Sodium O,O-dibutyldithiophosphates	$NaS - P \underbrace{\stackrel{S}{\leftarrow} O - C_4 H_9}_{O - C_4 H_9}$
		(C)	Nitrous and nitric esters	
			Methyl nitrite	CH ₃ ONO
			Nitroglycerol	CH ₂ ONO ₂ CHONO ₂ CH ₂ ONO ₂
		(D)	Carbonic or peroxocarbonic esters and their salts	
		(1)	Diguaiacyl carbonate	H_3CO O O O OCH_3

(394)	(29.20)	(E)		Silicic acid esters and their salts Tetraethyl silicate	$\begin{array}{c} C_2H_5O\\ C_2H_5O\end{array} \\ Si \\ OC_2H_5 \end{array} \\ Si \\ OC_2H_5 \end{array}$
395	29.21			AMINE-FUNCTION COMPOUNDS	$R - NH_2$ $R - NH - R$ $R - N - R$
	•	(A)		ACYCLIC MONOAMINES AND THEIR DERIVATIVES; SALTS THEREOF	
396			(4)	Ethylamine	CH_3 - CH_2 - NH_2
		(B)		ACYCLIC POLYAMINES AND THEIR DERIVATIVES; SALTS THEREOF	
			(2)	Hexamethylenediamine	H_2N CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 H_2 NH_2
		(D)		AROMATIC MONOAMINES AND THEIR DERIVATIVES; SALTS THEREOF	
397			(1)	Aniline	NH ₂
			(2)	Toluidine(s)	CH ₃
			(4)	1-Naphthylamine	NH ₂

(397)	(29.21)	(E)		AROMATIC POLYAMINES AND THEIR DERIVATIVES; SALTS THEREOF	
			(1)	Phenylenediamine(s)	NH_2 NH ₂ NH ₂
	29.22				
		(A)		OXYGEN-FUNCTION AMINO-COMPOUNDS AMINO-ALCOHOLS, THEIR ETHERS AND ESTERS; SALTS THEREOF	
399			(1)	Monoethanolamine	$H_2N-CH_2CH_2OH$
	• ···· · ··· · ··· · · · · · · · · · ·	(B)		AMINO-NAPHTHOLS AND OTHER AMINO- PHENOLS, THEIR ETHERS AND ESTERS; SALTS THEREOF	
			(1)	Aminohydroxynaphthalenesulphonic acids	H ₂ N OH SO ₃ H
			(a)	Anisidine(s)	OCH ₃ NH ₂
			(b)	Dianisidine(s)	H ₃ CO H ₂ N NH ₂
		(D)		AMINO-ACIDS AND THEIR ESTERS; SALTS THEREOF	
400			(1)	Lysine	$H_{2}N(CH_{2})_{4}C - COOH$

	29.23				QUATERNARY AMMONIUM SALTS AND HYDROXIDES; LECITHINS AND OTHER PHOSPHOAMINOLIPIDS	
401		(1)			Choline (Choline hydroxide)	$[(CH_3)_3NCH_2CH_2OH] \stackrel{\bigcirc}{O}$
		(2)			Lecithin	$ \begin{array}{c} CH_2OCOR \\ RCOO - C - H O \\ H_2C - O - P - O - R \\ O \ominus \end{array} $
	29.24				CARBOXYAMIDE-FUNCTION COMPOUNDS; AMIDE-FUNCTION COMPOUNDS OF CARBONIC ACID	
		(B)			CYCLIC AMIDES	
402			(1)	(ii)	Diethyldiphenylurea	$ \underbrace{ \bigotimes_{\substack{I_1 \\ I_2 \\ H_5 \\ O \\ C_2 \\ H_5 \\ O \\ C_2 \\ H_5 } }^{N - C - N - \bigotimes_{\substack{I_1 \\ I_2 \\ C_2 \\ H_5 \\ O \\ C_2 \\ H_5 } } $
	29.25				CARBOXYIMIDE-FUNCTION COMPOUNDS (INCLUDING SACCHARIN AND ITS SALTS) AND IMINE-FUNCTION COMPOUNDS	
		(A)			IMIDES	
403			(1)		Saccharin	O O NH SO_2
		(B)	İ	1	IMINES	
404			(1)	(a)	Diphenylguanidine	

(404)	(29.25)	(B)	(3)		Imino ethers	RC NH OR'
	29.26				NITRILE-FUNCTION COMPOUNDS	
		(1)			Acrylonitrile	CH ₂ =CHCN
		(2)			1-Cyanoguanidine	H ₂ NC NH NHCN
	29.27				DIAZO-, AZO, OR AZOXY-COMPOUNDS	
405		(A)			DIAZO-COMPOUNDS	
			(1)	(a)	Benzenediazonium chloride	
		(B)			AZO-COMPOUNDS	$\mathbf{R}_1 \mathbf{N} = \mathbf{N} \mathbf{R}_2$
406		(C)		1	AZOXY-COMPOUNDS	$R_1 - N_2 O - R_2$
			(1)		Azoxybenzene	
	29.28				ORGANIC DERIVATIVES OF HYDRAZINE OR OF HYDROXYLAMINE	
		(1)			Phenylhydrazine	NHNH ₂

(406)	(29.28)	(11)			Phenylglyoxime	C=NH→O I HC=NOH
	29.29				COMPOUNDS WITH OTHER NITROGEN FUNCTION	
407	_	(1)			Isocyanates	R-N=C=O
	S-Ch. X				ORGANO-INORGANIC COMPOUNDS, HETEROCYCLIC COMPOUNDS, NUCLEIC ACIDS AND THEIR SALTS, AND SULPHONAMIDES	
408		(A)	(1)	(a)	FIVE-MEMBERED RINGS Furan	
				(b)	Thiophen	
				(C)	Pyrrole	
			(2)	(a)	Oxazole	
				(a)	Isoxazole	

(408)	(A)	(2)	(b)	Thiazole	
			(C)	Imidazole	
		-	(c)	Pyrazole	
		(3)	(a)	Furazan	
			(b)	Triazole (1,2,4-Triazole)	
			(c)	Tetrazole	
	 (B)		ð	SIX-MEMBERED RINGS	
		(1)	(a)	Pyran (2H-Pyran)	

(408)	(B)	(1)	(b)	Thiin	
	 		(c)	Pyridine	
	 	(2)	(a)	Oxazine (1,4-Oxazine)	$\left(\bigcup_{\substack{N \\ H}}^{O} \bigcup_{N} \bigcup_{N}^{O} \right)$
			(b)	Thiazine (1,4-Thiazine)	$\left(\bigcup_{\substack{N \\ H}}^{S} \bigcup_{N \neq i}^{S} \right)$
			(c)	Pyridazine	
			(c)	Pyrimidine	
			(c)	Pyrazine	

(400)		(0)	(a)	Disercation	
(408)	(B)	(2)	(c)	Piperazine	HN NH
	(C)		1	OTHER MORE COMPLEX HETEROCYCLIC COMPOUNDS	
409		(a)		Coumarone	
		(b)		Benzopyran	
		(c)		Xanthene	
		(d)		Indole	NH OL
		(e)		Quinoline and isoquinoline	
········		(f)		Acridine	
		(g)		Benzothiophene (Thionaphthene)	S S S S S S S S S S S S S S S S S S S

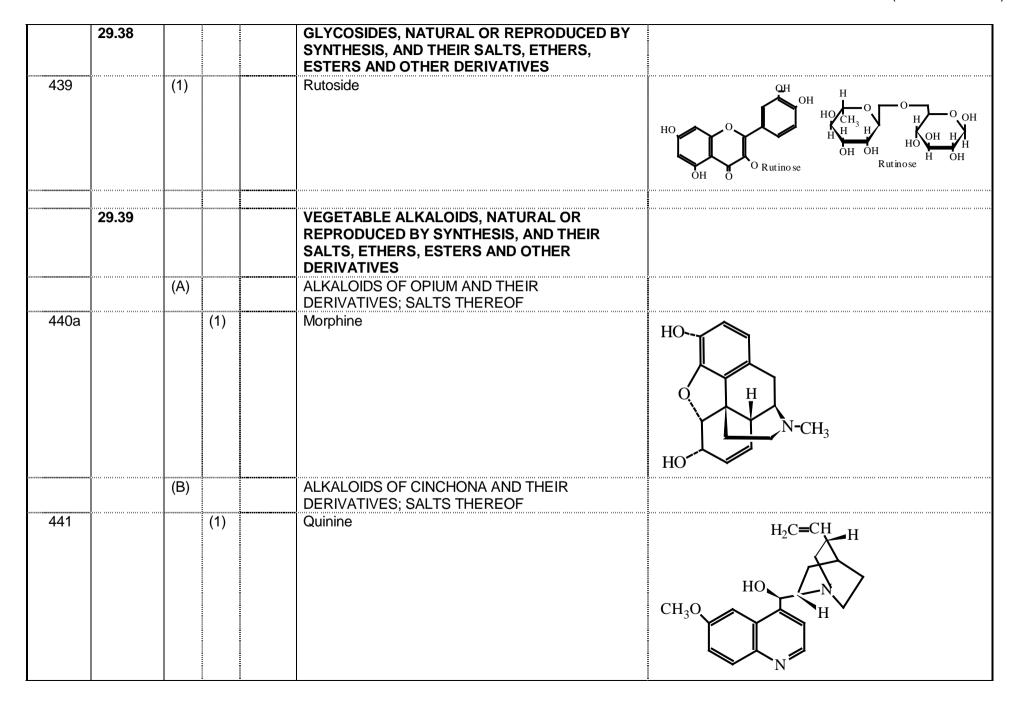
(409)	(C)	(h)	Indazole	
				N N
		(ij)	Benzimidazole	
		(k)	Phenazine	
		(1)	Phenoxazine	
	 	(m)	Benzoxazole	
		(n)	Carbazole	
		(0)	Quinazoline	
		(p)	Benzothiazole	

(409)	29.30			ORGANO-SULPHUR COMPOUNDS	Compounds with C—S bond
		(A)		DITHIOCARBONATES (XANTHATES)	CS(OR)(SR') R'=Metal
			(1)	Sodium ethyldithiocarbonate	$C_2H_5O-CS_2Na$
410		(B)	-	THIOCARBAMATES, DITHIOCARBAMATES AND THIURAM SULPHIDES	
			(2)	Dithiocarbamates	
		(C)		SULPHIDES (OR THIOETHERS)	R.S.R ₁
			(1)	Methionine	CH ₃ SCH ₂ CH ₂ CHCOOH NH ₂
		(D)		THIOAMIDES	$\sim N - C - R$
			(2)	Thiocarbanilide	
	29.31		1	OTHER ORGANO-INORGANIC COMPOUNDS	
412		(3)		Organo-silicon compounds	Compounds with C—Si bond
				Hexamethyldisiloxane	$\begin{array}{c} CH_3 & CH_3 \\ CH_3 - Si - O - Si - CH_3 \\ CH_3 & CH_3 \end{array}$
	29.32			HETEROCYCLIC COMPOUNDS WITH OXYGEN HETERO-ATOM(S) ONLY	
413		(A)		Compounds containing an unfused furan ring (whether or not hydrogenated) in the structure	(See structure of furan against page 408 for Sub- Chapter X (A) (1) (a))
			(2)	2-Furaldehyde	CHO CHO

(413)	(29.32)	(A)	(3)	Furfuryl alcohol	CH ₂ OH
		(B)	`	Lactones	
			(a)	Coumarin	
414			(p)	Phenolphthalein	HO C C O C C O C C O
		(C)		Other heterocyclic compounds with oxygen hetero- atom(s) only	
			(5)	Safrole	CH2=CH-CH2 O
415			(10)	1-(1,3-Benzodioxol-5-yl)propan-2-one	$H_2C \xrightarrow{O} O O O O O O O O O O O O O O O O O O $
				Example for esters (lactone) forming part of two rings	

(415)	(29.32)			Example for dilactone	
				Internal Hemiacetals	OH [JnO
				Ketone peroxides (exclusion) - see.29.09	$\left \begin{array}{c} R \\ N \\ R_1 \\ O - O - R_3 \end{array} \right \left \begin{array}{c} O - O \\ O - O \\ O - O \end{array} \right \left \begin{array}{c} O - O \\ O - O \\ O - O \end{array} \right \left \begin{array}{c} O - O \\ O - O \\ O - O \end{array} \right \left \begin{array}{c} O - O \\ O - O \\ O - O \end{array} \right \left \begin{array}{c} O - O \\ O - O \\ O - O \end{array} \right \left \begin{array}{c} O - O \\ O \\ O - O \end{array} \right \left \begin{array}{c} O - O \\ O \\ O - O \\ O - O \end{array} \right \left \begin{array}{c} O - O \\ O \\ O - O \\ O - O \\ O - O \\ O - O \\ O \\$
	29.33			HETEROCYCLIC COMPOUNDS WITH NITROGEN HETERO-ATOM(S) ONLY	
416		(A)		Compounds containing an unfused pyrazole ring (whether or not hydrogenated) in the structure	(See structure of pyrazole against page 408 for Sub- Chapter X (A) (2) (c))
			(1)	Phenazone	$O \xrightarrow{ \begin{array}{c} C_{6}H_{5} \\ N & CH_{3} \end{array}} CH_{3}$
		(B)		Compounds containing an unfused imidazole ring (whether or not hydrogenated) in the structure	(See structure of imidazole against page 408 for Sub-Chapter X (A) (2) (c))
			(1)	Hydantoin	
		(C)		Compounds containing an unfused pyridine ring (whether or not hydrogenated) in the structure	(See structure of pyridine against page 408 for Sub- Chapter X (B) (1) (c))
417		(D)		Compounds containing a quinoline or isoquiniline ring-system (whether or not hydrogenated), not further fused	(See structures of quinoline and isoquinoline against page 409 for Sub-Chapter X (C) (e))

			· · ·		(000/14/105.3
(417)	(29.33)		(4)	Tetrahydromethylquinoline (5,6,7,8-Tetrahydromethylquinoline)	CH ₃
		(E)		Compounds containing a pyrimidine ring (whether or not hydrogenated)or piperazine ring in the structure	(See structure of pyrimidine against page 408 for Sub-Chapter X (B) (2) (c))
			(1)	Malonylurea (Barbituric acid)	$\begin{array}{ c c } & & & & \\ & & & & \\ & & & & \\ & & & & $
418		(F)		Compounds containing an unfused triazine ring (whether or not hydrogenated) in the structure	$ \begin{array}{c} \overbrace{N}{N} \\ \overbrace{N}{N} \\ \overbrace{N}{N} \\ \hline{N} \\ \hline \hline{N} \\ \hline{N} \\ \hline \hline{N} \\ \hline \hline{N} \\ \hline \hline{N} \\ \hline \hline{N} \\ \hline \hline{N} \\ \hline \hline{N} \\ \hline \hline{N} \\ \hline \hline{N} \\ \hline \hline \hline{N} \\ \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline \hline$
			(1)	Melamine	$\underset{N \to N}{\overset{H_2N}{\underset{N \to N}{\longrightarrow}}} \underset{NH_2}{\overset{N}{\underset{NH_2}{\longrightarrow}}} $
		(G)		Lactams	[J _n NH
		(H)	3	Other heterocyclic compounds with nitrogen hetero- atom(s) only	
418a		(H)	(1)	Carbazole	
			(2)	Acridine	(See structure of acridine against page 409 for Sub- Chapter X (C) (f))


-	-				· · · · · · · · · · · · · · · · · · ·
419	(29.33)			Oxazepam	CI CI C_6H_5 NH_5 OH
				Example for amide (lactam) forming part of two rings	O N N
	29.34			NUCLEIC ACIDS AND THEIR SALTS; OTHER HETEROCYCLIC COMPOUNDS	
420		(A)		Compounds containing an unfused thiazole ring (whether or not hydrogenated) in the structure	(See structure of thiazole against page 408 for Sub- Chapter X (A) (2) (b))
		(B)		Compounds containing a benzothiazole ring-system (whether or not hydrogenated), not further fused	(See structure of benzothiazole against page 409 for Sub-Chapter X (C) (p))
		(C)		Compounds containing a phenothiazine ring-system (whether or not hydrogenated), not further fused	$H \to H \to H \to H$
	•••• •••• •••• •••• •••• •••• ••••	(D)	(4)	Other heterocyclic compounds	
			(1)	Sultones	$\begin{bmatrix} \mathbf{O} \\ \mathbf{J} \\ \mathbf{J} \\ \mathbf{I} $

(420)	(29.34)	(D)	(1)	(a)	Phenolsulphonephthalein	G SO ₂ C O OH HO
			(2)		Sultams	$\begin{bmatrix} 0 \\ J_n \\ NH \end{bmatrix}$
			(4)		Furazolidone (INN)	$ \begin{array}{c} O_2 N \\ \end{array} \\ \end{array} \\ \begin{array}{c} O_2 N \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
420a	29.35				SULPHONAMIDES	$\begin{array}{c} O\\ R_1 - \overset{U}{\overset{U}{}{}{}{}{}{}$
421		(4)			p-Aminobenzenesulphonamide	$H_2N - O - SO_2NH_2$

	29.37			HORMONES, NATURAL OR REPRODUCED BY SYNTHESIS; DERIVATIVES THEREOF, USED PRIMARILY AS HORMONES; OTHER STEROID USED PRIMARILY AS HORMONES	
429		-		Gonane	$ \begin{array}{c} 12 \\ 17 \\ 19 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$
		(III)		STEROIDS USED PRIMARILY FOR THEIR HORMONE FUNCTION	
431			(C)	Progesterone (INN)	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $
				Hydrocortisone (INN)	$HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 20C + CH_{2} = OH$ $HO = 18CH_{3} = 100$ $HO = $

т	· · · ·		
433	(29.37)	Androstane	$\begin{array}{c} 18CH_{3} \\ 19CH_{39} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $
		Cortisone (INN)	$\begin{array}{c} O & {}^{21}_{18}CH_{2} \cdot OH \\ O & {}^{18}CH_{3} {}^{20}C \\ & {}^{19}CH_{39}^{11} & {}^{11}_{14} & {}^{13}_{16} \\ & {}^{19}CH_{39}^{11} & {}^{13}_{14} & {}^{15}_{16} \\ & {}^{2}_{3} & {}^{3}_{4} & {}^{5}_{6} & {}^{7}_{7} \end{array}$
434		Estrone (INN)	$HO = \begin{pmatrix} 18 & CH_3 & O \\ 11 & 12 & 13 & 17 \\ 2 & 13 & 17 & 16 \\ 10 & H & 14 & 15 \\ 10 & H & 8 & H \\ 14 & 15 & 16 \\ 15 & H & 15 \\ 15 & 16 & 16 \\ 16 & 16 & 16 \\ 17 & 16 & 16 \\ 17 & 16 & 16 \\ 18 & 18 & 16 \\ 18 & 18 & 16 \\ 18 & 18 & 16 \\ 18 & 18 & 16 \\ 18 & 18 & 16 \\ 18 & 18 & 16 \\ 18 & 18 & 16$
437		Prednisolone (INN)	$HO = 18 CH_3 20 C^{-21} CH_2 OH = 0$ $HO = 18 CH_3 20 C^{-21} CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3$

(437)	(29.37)		Prednisone (INN)	$\begin{array}{c} O \\ O \\ O \\ O \\ O \\ O \\ O \\ O \\ O \\ O $
			Testosterone (INN)	$\begin{array}{c} 18CH_{3} \\ 19CH_{30} \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $
-			Estrane	$\begin{array}{c} 18CH_{3} \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 15 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$
-			Pregnane	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$

(441)	(29.39)	(C)		CAFFEINE AND ITS SALTS	
				Caffeine	$H_{3}C$
		(D)		EPHEDRINES AND THEIR SALTS	
			(1)	Ephedrine	H - H - H + H - H - H + H - H - H + H - H -
		(E)		THEOPHYLLINE AND AMINOPHYLLINE (THEOPHYLLINE-ETHYLENEDIAMINE) AND THEIR DERIVATIVES; SALTS THEREOF	
442				Theophylline	$H_{3}C$
		(G)		NICOTINE AND ITS SALTS Nicotine	CH ₃

	29.40	(A)		SUGARS, CHEMICALLY PURE, OTHER THAN SUCROSE, LACTOSE, MALTOSE, GLUCOSE AND FRUCTOSE; SUGAR ETHERS AND SUGAR ESTERS, AND THEIR SALTS, OTHER THAN PRODUCTS OF HEADING No.29.37, 29.38 or 29.39 SUGARS, CHEMICALLY PURE	
444			(1)	Galactose	$\begin{array}{ccc} CHO & CH_2OH \\ HCOH & HO & HO \\ HOCH & HO & H \\ HOCH & HOH \\ HCOH & H & OH \\ CH_2OH & H & OH \end{array}$
		(B)	(1)	SUGAR ETHERS AND ESTERS, AND THEIR SALTS Hydroxypropyl sucrose	$\begin{array}{c} CH_{2}OCH_{2}CH_{2}CH_{2}OH \\ H OH HOCH_{2}O H \\ HOH OH HOCH_{2}O H \\ HOH OH HHOCH_{2}OH \\ HOH HHOCH_{2}OH \\ HOH HHOCH_{2}OH \\ HOCH_{2}OH \\ HOCH_{$
445	29.41	(1)		ANTIBIOTICS Penicillins	$\begin{array}{c} \text{RCONH} & \overset{H}{\underset{O}{}} S & \overset{CH_3}{\underset{O}{}} CH_3 \\ & \overset{O}{\underset{COOH}{}} COOH \end{array}$
446	29.42	(1)		OTHER ORGANIC COMPOUNDS Ketenes	^R ,>C=C=0
		(2)		Copper acetoarsenite Boron trifluoride complexes with diethyl ether	$Cu(CH_{3}CO_{2})_{2} \cdot 3Cu(AsO_{2})_{2}$ $(C_{2}H_{5})_{2}O \cdot BF_{3}$

,,