
Testing SIP
Using XML Protocol Templates

M. Ranganathan
Olivier Deruelle

Doug Montgomery
Advanced Networking Technologies Division,

National Institute of Standards and Technology,
Gaithersburg, MD 20899, USA.

http://www-x.antd.nist.gov/index.html

Introducing SIP

Peer-to-peer Signaling Protocol used for IP
Telephony, Conferencing and Instant
Messaging
Introduced in 1999

9 revisions and 2 RFCs since then!

Widely deployed - Microsoft RTC Server,
IM Client, Cisco gateways etc.

Introducing SIP

Text based
unlike H.323

“Stateless”
Protocol state encoded in message

Extensible
Many extensions exist.

Can run over unreliable or reliable transports
Out of order / dropped signaling messages.

Simple SIP Call Flow

INVITE

100 Trying

180 Ringing
200 OK
ACK

OK

UASUAC

UAS – User Agent
Server

UAC – User Agent
Client

There can be intermediate
Signaling nodes (Proxy Servers
that keep call state).

RTP Media Stream

BYE

Protocol Complications

Protocol is robust and extensible:
SIP keeps enough state in the Messages to deal with
all these complications.
Correct implementation is tricky.

Signaling may have to go through multiple hops.
Proxy servers may go down without warning.
Peers may go down without warning.
Sessions can move without prior planning.
Network can fail without warning.

SIP Testing

Load Testing
Generate 100’s of simultaneous sessions.

Call Flow Testing
Unit testing the SIP Protocol Implementation
by generation of scenarios.
Primary mode of testing during SIP
interoperability test events.

Generating SIP Test Cases

Exhaustive testing generates too many test
cases.
End-to-end testing is feasible

protocol state and causality is encoded in the
Messages/Call Flows.

Understanding implementation
complexities results in good test cases.

SIP Application Structure

Application

Network (Raw Bytes)

Parser Encoder

ReqReq Res

SIP Stack

Tr
an

sa
ct

io
n

Tr
an

sa
ct

io
n

Tr
an

sa
ct

io
n

Req Res

Dialog Dialog
Messages

Events

Messages

Events

Messages

Events

Constructing Test Cases For SIP

Layer the Test Cases like
Applications/Stacks are layered

Message Layer, Transaction Layer and Dialog
Layer tests
This prunes the number of tests and makes
the tests more meaningful.

SIP Messages

Protocol encodes all the state it needs in the
message.

HTTP/Mail – like headers and a Request Line or a
Status Line.
SIP Components use Messages to Identify protocol
abstractions.

Protocol State is encoded in
Request URI, From, To, Via, CSeq, CallId, Max-
Forwards

Stateless components built directly on Message
Layer.

Message Layer

Handle Incoming Requests/Responses
Read Raw messages from Network.
Output Parsed Messages to Transaction layer.

Dispatch outgoing messages
Input Parsed Messages from Transaction
Layer.
Encode Parsed Messages and send out on
Network.

Message Layer

Grammar is context sensitive and defined using
ABNF

Grammar has changed between RFCs
Grammar is compositional (mail, URL, HTTP)
Parser generators have trouble with RFC
grammar

usually hand coded parsers are used
Some tools are available – antlr

Headers are Text (Body can be Binary)

Transaction Layer

SIP Applications are transaction oriented
and usually interact directly with a
transaction layer.
Primary duties of the Transaction Layer

Request Response matching
Retransmission handling for unreliable media.
Timeout handling

Transaction Layer: Common Bugs

Implementations do not implement the
Transaction State Machine correctly
Implementations have difficulty keeping
backward compatibility

In RFC 3261 the branch ID of the topmost
“Via” header identifies the Transaction
RFC 2543 used a hash over From, To, Request
URI and Via headers

Transaction Layer Testing
Testing the State Machine

Simulate lost messages
Drop Requests/Responses

Simulate timing variations
Delay Responses
Generate out of order responses Simulate stray messages

CANCEL messages for Server Transactions that do not
exist.

Late CANCELS
Late ACKs
Duplicate ACKs
Out of Sequence messages.

Transaction Layer Testing
Transaction matching / identification

Via Header branch parameter variations
RFC 3261 relies on this for matching

Variations in From / To, Request URI and
CSeq Sequence Number and CSeq Method

RFC 2543 relies on this for matching.

Dialog Layer

Dialog is a peer-to-peer association between
communicating SIP endpoints

Dialogs established by Dialog creating Transactions.
Not all transactions create Dialogs.
A Transaction may belong to exactly one Dialog.

SIP messages carry enough state to identify the
Dialog directly from the message

Dialog Layer

Manages Dialog Creation/Teardown
Dialogs created by transaction completion

Manages Route Sets
Test agent must test for expected Route / Record-
Route headers in requests

Manages Sequence Numbers
Test agent must test for sequence number assignment

Manages the Request URI

Dialog Layer: Common Bugs

Dialogs are identified by portions of a
message:

CallID, From, To tags in RFC 3261
CallID, From, To addresses RFC2543
Stacks try to keep backward compatibility
Bugs are frequently caused by tag
management problems.

Testing the Dialog Layer

Requests/Responses within and outside
Dialog
Requests/Response for Spurious Dialogs

Variation in From/To Headers and Tags
Generate Requests for Dialogs that do not
exist.

CSeq Header Sequence number variations
Out of sequence message arrivals

Call Flow Testing Approach

Test the causal sequence of messages
required to establish and release SIP Calls
SIP Protocol Template – an XML pattern
for a SIP Call Flow.
XML Pattern input to a customizable user
agent which can run the Call Flow
(Responder)

Motivation

XML is hierarchical
– good way to represent SIP protocol

abstractions
Interoperability testing with control

Typically components are tested in call flow
scenarios
Typically operating in an un-controlled
environment
Reproducing complex scenarios is difficult

XML representation of SIP

Define a set of XML tags to represent the
required headers in a SIP message
Define XML tags to express call flow state
machine
Input to Event Engine that can run the call
flow
Generate variations of the call flow by
modifying the XML script

Test Scripting Architecture

Call Flow Testing Protocol Template

Event Engine

NIST-SIP Stack

Service Function

Service Script – a callout to
a service function at transition
points in the call flow.

Service Container
XML Engine + Java/Jython
interpreter

Network

XML Tags Mirror Protocol
Structure

Test Script

Pattern matching, timer events and transitions used for
triggering transitions in test script.
Test script is represented by a set of Transactions that
may be nested within a dialog.
The entire transaction state machine is exposed and
defined using XML.

Timing can be varied and controlled errors can be created.
Service code can be called when messages arrive,
transactions are started, transactions complete, dialogs
are created or dialogs complete.

Why Do It?

Simple, clear expression of test scenarios
Protocol maps to XML script one to one

Can generate multiple scenarios based on
small variations for the same call flow.
Can simulate common end-point (User
Agent) behavior.
Can generate controlled error
conditions/timing variations.

Test Log File Collection

Log file is a diagnostic tool to help debug
protocol problems.
Stack generates log files using XML format.

Distributed traces are collated at test proxy

Trace viewer pairs arcs by Transactions

Proxy Trace viewer (Java Applet)

Responder UALocal Trace

Local Trace
RMI

Visualizing the Trace

Java Applet
collects and
visualizes
distributed call
flow trace files.
Augmented with
XML script state
information.
Enables
debugging call
flows & test
scripts.

Related work

TTCN testing of SIP
Procedural test cases
Not explicitly tailored to SIP

Using our approach
Simplifies logical design
XML tools can be used for test case design.

http://www-x.antd.nist.gov/proj/iptel

Extensions and Future Work

Standardize XML representation of the SIP
protocol
Off line protocol verification

Generation of Call flows based on message logs
Verification of traces based on message logs

Customizable test scripts
Extensions to service creation.

Integration with other distributed scripting
technologies
JXTA, SOAP

	Testing SIP Using XML Protocol Templates
	Introducing SIP
	Introducing SIP
	Simple SIP Call Flow
	Protocol Complications
	SIP Testing
	Generating SIP Test Cases
	SIP Application Structure
	Constructing Test Cases For SIP
	SIP Messages
	Message Layer
	Message Layer
	Transaction Layer
	Transaction Layer: Common Bugs
	Transaction Layer Testing
	Transaction Layer Testing
	Dialog Layer
	Dialog Layer
	Dialog Layer: Common Bugs
	Testing the Dialog Layer
	Call Flow Testing Approach
	Motivation
	XML representation of SIP
	Test Scripting Architecture
	XML Tags Mirror Protocol Structure
	Test Script
	Why Do It?
	Test Log File Collection
	Visualizing the Trace
	Related work
	Extensions and Future Work

