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ABSTRACT

Modern communication channels, such as digital
cellular telephony, often convey human speech in a
highly encoded form. Methods that rely on human
subjects to evaluate the quality of such channels are too
costly to deploy on a large scale; thus, automated
methods are often used to model quality as perceived by
humans.  Traditional automated methods that use Signal
to Noise Ratios (SNR) to judge the quality of channels do
not model human perception well when applied to highly
encoded speech. For this reason, researchers investigate
alternative means to objectively measure the quality of
such channels. In this paper we explore the feasibility
and applicability of using automated speech recognition
technology to model human perception of the quality of
communication channels that carry highly encoded
(compressed) human speech.

INTRODUCTION
Methods to measure the relative effectiveness of coding
algorithms are necessary in order to compare competing
approaches over a range of conditions. The most
common method employs human listeners to grade
perceived speech quality by assigning an opinion score
from a subjective scale, typically consisting of five
values from excellent to unsatisfactory [KOHL97, LI98].

While producing the desired comparisons, methods that
depend on human subjects are too costly and time
consuming to deploy on a large scale.  For this reason,
we seek new metrics for automatically evaluating the
effectiveness of speech encoding algorithms. Such
metrics must be objective, economical (in both time and
money), and reflective of speech intelligibility as
perceived by human listeners. This paper reports results
from a preliminary investigation of the use of automated
speech recognition technology as a means to evaluate
coding algorithms for digital speech.

The paper is organized into seven sections. First,
we discuss related work. Second, we present our
motivation. Third, we describe our research
methodology, and discuss the speech samples we used
for the experiments. Fourth, we describe our
experimental results with respect to both an automated
speech recognizer and to human listeners. Fifth, we

discuss the correlation between the performance of the
speech recognizer and the perceptions of the human
listeners. Sixth, we identify some future research related
to our proposed evaluation method. Finally, we present
our conclusions from the current experiments.

RELATED WORK
Traditional automated systems for measuring
transmission channel quality employ signal-to-noise
ratio (SNR) or segmental SNR (SEGSNR), or a
frequency variant of SEGSNR [QUAC88]. While easy to
measure and useful to assess selected encoding schemes,
metrics based on SNR do not by themselves indicate the
potential loss in recognition of compressed digitally
encoded human voice signals. Quackenbush evaluated a
wide range of objective measures that could possibly
apply to vocoder-like systems. Most of these measures
exhibited poor correlation with human perception.

Researchers continue to search for objective
quality metrics that can be applied to vocoder-like
systems. For example, Kubichek and others report
results from investigating several such metrics proposed
to the International Telecommunications Union (ITU)
for standardization [KUBI91, KUBI92, BAYY96, LAM96, VORA95].
Other researchers investigate the possibility of
measuring the quality of speech channels by
transforming the channel input and output signals into an
internal representation of the sound that a human would
hear [BEER94, HANS97, PETE97, HAUE98]. While most
proposed objective measures compare differences in
input and output signals, Jin and Kubichek propose a
metric based on comparing a quantized version of the
output signal with a quantized version of a high-quality,
reference signal [JIN96].

MOTIVATION
Most previous work on objective measures for speech
quality seeks some easily measurable combination of
parametric differences between channel input and output
signals that can reliably predict how humans will
perceive the quality of the output signal.  In the vast
majority of cases, subjective human perception is
captured as a mean opinion score (MOS) that ranges
from 5 (excellent) to 1 (unsatisfactory) [KOHL97, LI98]. As
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discussed by Kubichek, the inherent variability of
listeners and differing interpretations of the rating scale
inhibits the reliability of MOS estimates [KUBI91]. These
difficulties might compound as the number and
granularity of scales to be scored increases. For example,
Quackenbush measures subjective human perception for
sixteen specific signal characteristics, where each
characteristic can be distinguished on a 100-point scale
[QUAC88].  This inherent variability might account for
much of the variability reported by researchers who
attempt to correlate objective measures with MOS. In
thinking about this variability, we considered alternative
approaches that might yield an objectively invariant
result.

We found a test method that uses reference
speech data and performance metrics to compare the
performance of various speech recognizers [HTK97,

GARF93]. Inverting this method, we wondered if speech
recognizers might be an effective reference against
which to measure speech quality on digital transmission
channels. We foresee a quality score that might prove
more reliable than MOS, yet still reflect differences in
intelligibility as perceived by human listeners.
Specifically, if a human subject were asked to transcribe
the words from a speech segment and that transcription
could be compared with the transcription generated by a
speech recognizer for the same segment, then the
correlation between human perception and automated
objective measures could perhaps be made with greater
reliability.  If our ideas can be confirmed, then a new
approach to objective measures for speech quality might
prove feasible. Before proceeding to test our hypothesis,
we decided to investigate how well a speech recognizer
would perform as a predictor of MOS. This paper reports
the findings of our initial investigation.

RESEARCH METHODOLOGY
Figure 1 illustrates the method used to generate speech
samples for input to a speech recognizer, and for

evaluation by human listeners. We selected nineteen
speakers from the TIMIT database, a widely accepted
database of labeled speech segments that has been used
to evaluate speech recognizers, developed by researchers
with funding from DARPA (Defense Advanced
Research Projects Agency) [GARF93]. For our experiment
we used the Code Excited Linear Prediction (CELP)
algorithm to generate encoded speech samples [CELP]. Bit
errors were generated using a Gaussian distribution.

Figure 2 depicts the general outline we used to
score the speech samples, and then to assess the
correlation between the recognizer results and human
perceptions. The figure can be considered in three
blocks: (1) automated scoring using a speech recognizer,
(2) subjective scoring by human listeners, and (3)
correlation analysis. We address each of these in turn.

Automated Scoring Using A Speech Recognizer.
For the experiments reported here, we used a speech
recognizer, HTK, readily available at NIST [HTK97]. The
recognizer was included in the HTK Toolkit [RABI93]. In
order to score the performance of the recognizer, we
used a scoring package included in the toolkit. The
scoring package generates several statistics, including
correctly recognized phonemes, insertions, deletions,
and substitutions. In this experiment, we used the
number of phonemes correctly recognized, which we
divided by the total number of phonemes in each speech
sample in order to compute the percentage of phonemes
recognized.

Subjective Scoring by Human Listeners. Since
human listeners could not be asked realistically to
identify phonemes in the speech samples, we recruited
fourteen volunteers to listen to and then subjectively
score the intelligibility of speech samples played through
a loudspeaker. We ensured that two different volunteers
listened to each sample; thus, the 98 input samples were
doubled to give 196 test samples.

Correlation Analysis. We used correlation
analysis to estimate how well the speech recognizer
scores predicted the judgment of human listeners.  We
considered separately two classes of data: data based on
speech samples from speakers one through eleven (used
to train the recognizer) and data based on the other eight
speech samples. Our results follow.

EXPERIMENTAL RESULTS
The first experiment applied a speech recognizer to the
various speech samples generated. We were struck by
the degree to which the speech recognition diminished
for CELP-encoded speech samples, especially for
speakers whose speech was used to train the recognizer.
The performance of the speech recognizer differs
significantly for the training speakers versus other
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Figure 1. Method Used to Generate Speech Samples
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speakers across all error rates. For this reason, we chose
to separate these two classes of speakers for purposes of
computing correlation with the human listeners.

The second experiment asked human listeners to
evaluate a select, but substantial, subset of the speech
samples generated. As expected, listeners judged the
quality good to excellent for the unencoded speech and
for CELP-encoded speech without errors. For CELP-
encoded speech with .1% BER, the listeners found the
speech understandable to good. As the BER reached
.5%, listeners found the speech to be understandable but
of poor listening quality.  Understanding and quality
dropped somewhat when the error rate rose to 1%. At
the 2% error rate, listeners had difficulty understanding
the speech samples. With a 5% BER listeners judged the
speech to be practically unintelligible.

RESULTS FROM CORRELATION ANALYSES
The upper graph in Figure 3 plots human listener
judgments against percent phoneme recognition from the
speech recognizer for the eleven speakers used to train
the speech recognizer. We computed the correlation at
.816 ± .064  (2 stdevs). For the other eight speakers, as
shown in the lower graph in Figure 3, we computed the
correlation at .745 ± .074 (2 stdevs). The estimates of
standard error were computed using resampling
(bootstrap) [DIAC83]. To confirm these findings, we also
computed correlation values using Spearman rank
correlation [SACHS82]. The Spearman rank correlation for
our training speakers is .789 and for the other speakers is
.775. These values are the same whether the statistic is
computed in the standard fashion as the correlation of
the ranks of the scores, or whether an adjustment for ties
in the scores is used. While the plots and correlation
coefficients demonstrate clearly the monotone
association between human and machine judgments of
quality, the plots also display the inherent variation in
the relation. Similar variation appears in other research
the compares objective quality measures with human
perception [BROO98].

FUTURE RESEARCH
Our next step is to compare the ability of commercial
speech recognizers and human listeners to transcribe
speech samples under the same conditions reported in
this paper.  While we expect human listeners to be
superior to speech recognizers in all cases, if we can
establish a relationship between the performance of
human listeners and speech recognizers, then we can
consider building and deploying a test system for
automatically scoring speech coding algorithms.  We
foresee a system that enables developers to select speech
samples from a database and to select from among a
range of speech recognizers.  The developer could also
select from a range of error models and rates, including
independent bit errors, alternating periods of good and
bad channel signals, and various packet switching
network properties.  With such a test system, developers
could explore the properties of proposed speech coding
and decoding algorithms under a range of conditions.

Beyond the use of speech recognizers for
automated scoring of network-based speech coding
algorithms, we can imagine applying techniques
emerging from image understanding research to develop
similar test systems for image and video coding schemes
used for network transmission.  Of course, image
understanding research is less well developed than
speech recognition research. Still, edge-detection
techniques and object-extraction techniques seem worth
investigating for this purpose.  The development of

Figure 2. Method of Scoring Speech Samples and
Correlating Scores
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multi-media coding and transmission algorithms could
be greatly accelerated by the ability to automatically
score performance in a manner consistent with human
perception.

CONCLUSIONS

We selected segments of speech from a widely accepted
speech data base, and sent those segments through a
speech recognizer under three conditions: (1) without
encoding, (2) with encoding and decoding using a
standard algorithm for speech compression, and (3) with
encoding, transmission across a noisy channel, and then
decoding.  Speech recognition scores were computed for
each speech segment under each condition. We then
selected a subset of the speech segments, and asked
human listeners to subjectively evaluate the
intelligibility of the speech under the same conditions
earlier input to the speech recognizer. We computed the
correlation between the intelligibility of speech as
evaluated by the automated recognizer and the human
listeners. For unencoded speech segments used to train
the recognizer, the correlation was .816 ± .064  (2
stdevs). For other unencoded speech segments, the
correlation was .745 ± .074 (2 stdevs). Spearman rank
correlation tests confirmed these numbers. These results
are sufficient to encourage us to investigate the
performance of commercial speech recognizers against
human transcriptions. If the next phase of this research
yields acceptable results, then construction of an
automated evaluation system should be straightforward.
Availability of an effective automated evaluation system
will be useful to researchers and product engineers who
are working toward advances in speech encoding
algorithms for wireless communication channels and for
Internet channels.

REFERENCES
[BAYY96] “Objective Measures for Speech Quality Assessment in Wireless

Communications”, A. Bayya and M. Vis, Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing, 1996.

[BEER94] "A Perceptual Speech-Quality Measure Based on a Psychoacoustic
Sound Representation," J.G. Beerends and J.A. Stemerdink,
Journal of the Audio Engineering Society, Vol. 42. No. 3, 1994.

[BROO98] "Getting the Message, Loud and Clear - Quantifying Call Clarity,"
S. Broom, P. Coackley, and P. Sheppard, British
Telecommunications Engineering, Vol. 17, April 1998.

[CELP91] Federal Standard 1016, Telecommunications: Analog to Digital
Conversion of Radio Voice by 4,800 Bit/Second Code Excited
Linear Prediction (CELP), General Services Administration, Office
of Information Resources Management, February 1991.

[DIAC83] "Computer-intensive Methods in Statistics", P. Diaconis and B.
Efron, Scientific American, Vol. 248, pp. 116-130, 1983.

[GARF93] DARPA TIMIT Acoustic-Phonetic Continuous Corpus CD-ROM,
John Garfolo, L.F. Lamel, William Fisher, John Fiscus, David
Pallett, Nancy Dahlgren, NISTIR 4930, February 1993.

[HANS97] “Using a Quantitative Psycho-acoustical Signal Representation for
Objective Speech Quality Measurement”, M. Hansen and B.
Kollmeier, Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, 1997.

[HAUE98] “Application of Meddis’ Hair-Cell Model to the Prediction of
Subjective Speech Quality”, M. Hauenstein, Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal
Processing, 1998.

[HTK97] The HTK Book (for HTK Version 2.1), Steve Young, Julian Odell,
Dave Ollason, Valthan Valtchev, Phil Woodland, Entropic
Cambridge Research Laboratory Ltd., Compass House, 80-82
Newmarket Road, Cambridge CB5 8DZ, England, Tel: +44(0)
1223 302651  Fax: +44(0) 1223 324560,  December 1997.

[JIN96] “Output-Based Objective Speech Quality Using Vector Quantization
Techniques”, C. Jin and R. Kubichek, Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing, 1996.

[KOHL97] “A Comparison of the New 2400 bps MELP Federal Standard
with Other Standard Coders”, M. A. Kohler, Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal
Processing, 1997.

[KUBI91] "Advances in Objective Voice Quality Assessment," R. Kubichek,
et al, IEEE Global Telecommunications Conference, 1991.

[KUBI92] "Advances in Objective Voice Quality Assessment," R. Kubichek,
et al, IEEE 42nd Vehicular Technology Conference, 1992.

[LAM96] “Objective Speech Quality Measure for Cellular Phone”, K.H. Lam,
O.C. Au, C.C. Chan, K.F. Hui, and S.F. Lau, Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal
Processing, 1996.

[LI98] “Experimental Results on the Impact of Cell Delay Variation on
Speech Quality in ATM Networks”, B. Li and X.R. Cao,
Proceedings of the IEEE International Conference on
Communications, 1998.

[PETE97] “Objective Speech Quality Assessment of Compounded Digital
Telecommunication Systems”, K. T. Petersen, J. A. Sorensen, and
S. D. Hansen, Proceedings of  the First Signal Processing Society
Workshop on Multimedia Signal Processing, 1997.

[QUAC88] Objective Measures of Speech Quality, Schuyler R. Quackenbush,
Thomas P Barnwell, Mark A. Clements, Prentice-Hall, 1988.

[RABI93] Fundamentals of Speech Recognition, Lawrence Rabiner, Biing-
Hwang Juang, Prentice-Hall, 1993.

[SACHS82] Applied Statistics: A Handbook Of Techniques, Lothar Sachs,
Springer-Verlag, 1982.

[VORA95] "Perception-based Objective Estimators of Speech Quality,"
Stephen Voran, Connie Scholl, Proceedings of the 1995 IEEE
Workshop on Speech Coding for Telecommunications, September
1995.



5

X

X

X

X

X

XX

X

X

X

X

X

X

X
X

XX

XX

X

X

X
X
X

X

XX
XX

X
XXXX
XXXX

X

X

X

XX

X

X
X

X
X

X

X
X

X

XXX

X

X

X

XX

X

X

X

X

X

X

X

XX

XX

XXX

XXX

XXXX

X

X

X

1 2 3 4 5
30

40

50

60

70

80

90

100

LISTENER SCORE - TRAINED RECOGNIZERS

%
 P

H
O

N
E

M
E

 R
E

C
O

G
N

IT
IO

N

XX

X

X

XX

XX

X

XX

X

X

X

XX

XXX

X
X

X

X

X
X

XX

X

X

X

X
X

XX

X

X

X

X X

X

XX

XX

XX

X

XX

XX

XX

X

X

X

X

X
X

X

X

X

XX

X

X

XXX
XX
X

X

XX

XX

XX

X

X

X

X

X

X

X

X

X

X

XX

X

X

XX X

XX
X

XXX

XX

X

XX

XX

X

X

X

1 2 3 4 5
30

35

40

45

50

55

60

LISTENER SCORE - UNTRAINED RECOGNIZERS

%
 P

H
O

N
E

M
E

 R
E

C
O

G
N

IT
IO

N

Figure 3. Correlation: Speech Recognizer and Human Listeners for Trained and Untrained Speakers


