

Early Evaluation of the Cray XT3 at ORNL

J. S. Vetter S. R. Alam T. H. Dunigan, Jr.
M. R. Fahey P. C. Roth P. H. Worley

Oak Ridge National Laboratory

Oak Ridge, TN, USA 37831

ABSTRACT: Oak Ridge National Laboratory recently received delivery of a Cray XT3.
The XT3 is Cray’s third-generation massively parallel processing system. The system
builds on a single processor node—the AMD Opteron—and uses a custom chip—called
SeaStar—to provide interprocessor communication. In addition, the system uses a
lightweight operating system on the compute nodes. This paper describes our initial
experiences with the system, including micro-benchmark, kernel, and application
benchmark results. In particular, we provide performance results for important
Department of Energy applications areas including climate and fusion. We demonstrate
experiments on the partially installed system, scaling applications up to 3,600 processors.

KEYWORDS: performance evaluation; Cray XT3; Red Storm; Catamount; performance
analysis; benchmarking.

1 Introduction
Computational requirements for many large-scale

simulations and ensemble studies of vital interest to the
Department of Energy (DOE) exceed what is currently
offered by any U.S. computer vendor. As illustrated in
the DOE Scales report [30] and the High End
Computing Revitalization Task Force report [17],
examples are numerous, ranging from global climate
change research to combustion to biology.

Performance of the current class of HPC
architectures is dependent on the performance of the
memory hierarchy, ranging from the processor-to-cache
latency and bandwidth to the latency and bandwidth of
the interconnect between nodes in a cluster, to the
latency and bandwidth in accesses to the file system.
With increasing chip clock rates and number of
functional units per processor, this dependency will
only increase. Single processor performance, or the
performance of a small system, is relatively simple to
determine. However, given reasonable sequential
performance, the metric of interest in evaluating the
ability of a system to achieve multi-Teraop
performance is scalability. Here, scalability includes the
performance sensitivity of variation in both problem
size and the number of processors or other

computational resources utilized by a particular
application.

ORNL has been evaluating these critical factors on
several platforms that include the Cray X1 [1], the SGI
Altix 3700 [13], and the Cray XD1 [14]. This report
describes the initial evaluation results collected on an
early version of the Cray XT3 sited at ORNL. Recent
results are also publicly available from the ORNL
evaluation web site [25]. We have been working closely
with Cray, Sandia National Laboratory, and Pittsburgh
Supercomputing Center, to install and evaluate our
XT3.

2 Cray XT3 System Overview
The XT3 is Cray’s third-generation massively

parallel processing system. It follows the successful
development and deployment of the Cray T3D and
Cray T3E [28] systems. As in these previous designs,
the system builds upon a single processor node, or
processing element (PE). The XT3 uses a commodity
microprocessor—the AMD Opteron—at its core, and
connects these processors with customized
interconnect. In the case of the XT3, Cray has designed
an ASIC (application specific integrated circuit), called
SeaStar, to manage the communication fabric.

2.1 Processing Elements
As Figure 1 shows, each PE has one Opteron

processor with its own dedicated memory and
communication resource. The XT3 has two types of

EARLY EVALUATION: This paper contains
preliminary results from our early delivery system,
which is smaller in scale than the final delivery
system and which uses early versions of the
system software.

 - 2 -

PEs: compute PEs and service PEs. The compute PEs
are optimized for application performance by running a
lightweight operating system kernel—Catamount. In
contrast, the service PEs run SuSE Linux and are
configured for I/O, login, network, or system functions.

The XT3 uses a blade approach for achieving high
processor density per system cabinet. On the XT3, a
compute blade hosts four compute PEs (or nodes), and
eight blades are contained in one chassis. Each XT3
cabinet holds three chassis, for a total of 96 processors
per cabinet. In contrast, service blades host two service
PEs and provide PCI-X connections for extensibility,
such as I/O.

The ORNL XT3 uses Opteron model 150
processors. As Figure 2 shows, this model includes an
Opteron core, integrated memory controller, three 16b
800 Mhz HyperTransport (HT) links, a L1 cache, and a
L2 cache. The Opteron core has a 2.4 Ghz clock, three
integer units, and one floating-point unit which is
capable of two floating-point operations per cycle [2].
Hence, the peak floating point rate of this processor is
4.8 GFLOPS.

The memory structure of the Opteron contains a
64KB 2-way associative L1 data cache, a 64KB 2-way
associative L1 instruction cache, and a 1MB 16-way
associative, unified L2 cache. The Opteron has 64b
integer registers, 48b virtual addresses, 40b physical
addresses, sixteen 64b integer registers, and sixteen
128b SSE/SSE2 registers. The memory controller data
width is 128b. Each PE has 2 GB of memory but only 1
GB is usable with the current kernel. The memory
DIMMs are 1 GB PC3200, Registered ECC, 18 x 512
mbit parts that support Chipkill. The peak memory
bandwidth per processor is 6.4 GBps.

Figure 1: Cray XT3 Architecture (Image courtesy of Cray).

As a 100-series processor, the 150 does not support
SMP configurations. Although it contains three HT
links, none of these links support coherent HT. The
benefits of supporting only uniprocessor configurations

are realized in the memory subsystem because the 150
can have memory access latencies in the 50-60 ns
range. In contrast, processors that support SMP
configurations can have memory latencies that are
considerably worse, due to the additional circuitry for
coordinating memory accesses and managing the
memory coherence across processors in the SMP. For
comparison, current Intel processors use a separate
chip—typically referred to as the ‘Northbridge’—for
the memory controller, which increases the latency for
each memory access, in general.

The Opteron’s processor core has a floating-point
execution unit (FPU) that handles all register operations
for x87 instructions, 3DNow! operations, all MMX
operations, and all SSE and SSE2 operations. This
FPU contains a scheduler, a register file, a stack
renaming unit, a register renaming unit, and three
parallel execution units. The first of these three
execution units is known as the adder pipe (FADD); it
contains a MMX ALU/shifter and floating-point adder.
The next execution unit is known as the multiplier
(FMUL); it provides the floating-point
multiply/divide/square root operations and also an
MMX ALU. The final unit supplies floating-point
load/store (FSTORE) operations.

Figure 2: AMD Opteron Design (Image courtesy of AMD).

2.2 Interconnect
As Figure 1 illustrates, each Opteron processor is

directly connected to the XT3 interconnect via a Cray
SeaStar chip. This SeaStar chip is a routing and
communications chip and it acts as the gateway to the
XT3’s high-bandwidth, low-latency interconnect. The
PE is connected to the SeaStar chip with a 6.4 GBps HT
path. The router in SeaStar provides six high-speed
network links to connect to six neighbors in the 3D
torus/mesh topology. Each of the six links has a peak
bandwidth of 7.6 GBps. With this design, the Cray XT3
bypasses communication bottlenecks such as the PCI
bus. The interconnect carries all message passing traffic
as well as I/O traffic to the global parallel file system.

 - 3 -

2.2.1 SeaStar
As described earlier, the SeaStar ASIC provides

communication processing and routing facility on a
single chip. Each communication chip is composed of:

• a HyperTransport link [3] --- this enables the
chips inside of a computing system and network
and communication devices to communicate with
each other over parallel links without bus
arbitration overheads.

• a PowerPC 440 processor --- the communications
and management processor cooperates with the
Opteron to synchronize and to schedule
communication tasks.

• a Direct Memory Access (DMA) engine --- the
DMA engine and the PowerPC processor work
together to off-load message preparation and
demultiplexing tasks from the Opteron processor.

• an interconnect router --- the router provides six
network links to the six neighboring processors in
the 3D torus topology. The peak bidirectional
bandwidth of each link is 7.6 GB/s with a sustained
bandwidth of around 4 GB/s.

• a service port --- this port bridges between the
separate management network and the Cray
SeaStar local bus. The service port allows the
management system to access all registers and
memory in the system and facilitates booting,
maintenance and system monitoring. Furthermore,
this interface can be used to reconfigure the router
in the event of failures.

2.3 Topology
The Cray XT3 sited at ORNL is currently a 40

cabinet system, with 3,748 compute PEs and 46 service
PEs. These PEs are connected in a 10 x 16 x 24 (X x Y
x Z) configuration with a torus in X and Z dimensions,
and a mesh in the Y dimension.

Later this year, the system will be upgraded to 56
cabinets, totaling 5,212 compute processors and 82
service processors. It will be connected as 14 x 16 x 24
using a torus in X and Z with a mesh in Y. Depending
on our experience as the full system is deployed, the Y
dimension may also be converted to a torus.

2.4 System Software
The Cray XT3 inherits several aspects of its

systems software approach from a sequence of systems
developed and deployed at Sandia National
Laboratories: ASCI Red [22], the Computational Plant
[7, 26] (also known as Cplant), and Red Storm [5]. The
XT3 uses a micro-kernel operating system on its

compute PEs, a user-space communications library, and
a hierarchical approach for scalable application start-up.

2.4.1 Operating Systems
The XT3 uses two different operating systems:

Catamount on compute PEs and Linux on service PEs.
Catamount is the latest in a sequence of micro-kernel
operating developed at Sandia and the University of
New Mexico, including SUNMOS [21], Puma [33], and
Cougar. (Cougar is the product name for the port of
Puma to the Intel ASCI Red system.) For scalability
and performance predictability, each instance of the
Catamount kernel runs one single-threaded process and
does not provide services like demand-paged virtual
memory that could cause unpredictable. Unlike the
compute PEs, service PEs (i.e., login, I/O, network, and
system PEs) run a full SuSE Linux distribution to
provide a familiar and powerful environment for
application development and for hosting system and
performance tools.

2.4.2 Communication Library
The XT3 uses the Portals [8] data movement layer

for flexible, low-overhead inter-node communication.
Portals provide connectionless, reliable, in-order
delivery of messages between processes. For high
performance and to avoid unpredictable changes in the
kernel’s memory footprint, Portals deliver data from a
sending process’ user space to the receiving process’
user space without kernel buffering. Portals support
both one-sided and two-sided communication models.
For flexibility, Portals support multiple higher-level
communication protocols, including protocols for MPI
message passing between application processes and for
transferring data to and from I/O service PEs.

2.4.3 Scalable Application Launch
Like Cplant, the XT3 uses a hierarchical approach

for scalable loading of parallel applications using the
yod utility [5, 6]. On the XT3, launching a parallel
application involves three steps:

1. yod determines the set of compute nodes allocated
to the application;

2. yod delivers information about the application such
as the user’s environment and the application
executable to the Process Control Thread (PCT) in
the Catamount kernel running in the application’s
primary compute node; and

3. the PCT in the primary compute node multicasts
the application information to the PCTs in the
application’s other compute nodes.

In the third step, a hierarchical communication structure
(i.e., a multicast tree) is used for scalability. PCTs in

 - 4 -

different branches of the tree can transmit messages in
parallel to limit the latency for distributing job launch
information.

2.5 Programming Environment
The Cray XT3 programming environment includes

compilers, communication libraries, and correctness
and performance tools [11]. The Portland Group’s C,
C++, and Fortran compilers are available. Cray-
provided compiler wrappers ease the development of
parallel applications for the XT3 by automatically
including compiler and linker switches needed to use
the XT3’s communication libraries. The primary XT3
communication libraries provide the standard MPI-2
message passing interface and Cray’s SHMEM
interface. Low level communication can be performed
using the Portals API (see Section 2.4.2). The Etnus
TotalView debugger is available for the XT3, and Cray
provides the Apprentice2 tool for performance analysis.

2.6 Math Libraries
The primary math library is the AMD Core Math

Library (ACML) version 2.5.0. It incorporates BLAS,
LAPACK and FFT routines, and is designed to provide
excellent performance on AMD platforms. This library
is available both as a 32-bit library, for compatibility
with legacy x86 applications, and as a 64-bit library that
is designed to fully exploit the large memory space and
improved performance offered by the new AMD64
architecture.

We also have installed and tested BLAS libraries
for the AMD Opteron which were developed by
Kazushige Goto [16].

3 Evaluation Overview
As a function of the Early Evaluation project at

ORNL, numerous systems have been vigorously
evaluated in the context of important DoE applications.
Recent evaluations have included the Cray X1 [12], the
SGI Altix 3700 [13], and the Cray XD1 [14].

The primary goals of these evaluations are to 1)
determine the most effective approaches for using the
each system, 2) evaluate benchmark and application
performance, both in absolute terms and in comparison
with other systems, and 3) predict scalability, both in
terms of problem size and in number of processors. We
employ a hierarchical, staged, and open approach to the
evaluation, examining low-level functionality of the
system first, and then using these results to guide and
understand the evaluation using kernels, compact
applications, and full application codes. The distinction
here is that the low-level benchmarks, for example,
message passing, and the kernel benchmarks are chosen

to model important features of a full application. This
approach is also important because a number of the
platforms contain novel architectural features that make
it difficult to predict the most efficient coding styles
and programming paradigms. Performance activities are
staged to produce relevant results throughout the
duration of the system installation. For example,
subsystem performance will need to be measured as
soon as a system arrives, and measured again following
a significant upgrade or system expansion.

3.1 Test Systems
For comparison purposes, performance data is also

presented for the following systems:
• Cray X1 at ORNL: 512 Multistreaming processors (MSP), each

capable of 12.8 GFlops/sec for 64-bit operations. Each MSP is
comprised of four single streaming processors (SSPs). The SSP
uses two clock frequencies, 800 MHz for the vector units and 400
MHz for the scalar unit. Each SSP is capable of 3.2 GFlops/sec
for 64-bit operations.

• Cray XD1 at ORNL: 144 AMD 2.2Ghz Opteron 248 processors,
configured as 72, 2 way SMPs with 4GB of memory per
processor. The processors are interconnected by Cray’s
proprietary RapidArray interconnect fabric.

• Earth Simulator: 640 8-way vector SMP nodes and a 640x640
single-stage crossbar interconnect. Each processor has 8 64-bit
floating point vector units running at 500 Mhz.

• SGI Altix at ORNL: 256 Itaninium2 processors and a NUMAlink
switch. The processors are 1.5 GHz Itanium2. The machine has an
aggregate of 2 TB of shared memory.

• HP/Compaq AlphaServer SC at Pittsburgh Supercomputing
Center (PSC): 750 ES45 4- way SMP nodes and a Quadrics
QsNet interconnect. Each node has two interconnect interfaces.
The processors are the 1GHz Alpha 21264 (EV68).

• IBM p690 cluster at ORNL: 27 32-way p690 SMP nodes and an
HPS interconnect. Each node has two HPS adapters, each with
two ports. The processors are the 1.3 GHz POWER4.

• IBM SP at the National Energy Research Supercomputer Center
(NERSC): 184 Nighthawk(NH) II 16-way SMP nodes and an SP
Switch2. Each node has two interconnect interfaces. The
processors are the 375MHz POWER3-II.

4 Microbenchmarks
The objective of microbenchmarking is to

characterize the performance of the specific
architectural components of the platform. We use both
standard benchmarks and customized benchmarks. The
standard benchmarks allow consistent and widespread
historical comparisons across platforms. The custom
benchmarks permit the unique architectural features of
the system (e.g., global address space memory) to be
tested with respect to the target applications.

Traditionally, our microbenchmarking focuses on
the arithmetic performance, memory-hierarchy
performance, task and thread performance, message-

 - 5 -

passing performance, system and I/O performance, and
parallel I/O. However, because the XT3 has a single
processor node and it uses a lightweight operating
system, we focus only on these areas:

1. Arithmetic performance, including varying
instruction mix, identifying what limits peak
computational performance.

2. Memory-hierarchy performance, including levels
of cache and shared memory.

3. Message-passing performance, including intra-
node, inter-node, and inter-OS image MPI
performance for one-way (ping-pong) messages,
message exchanges, and collective operations
(broadcast, all-to-all, reductions, barriers);
message-passing hotspots and the effect of
message passing on the memory subsystem are
studied.

Current, detailed microbenchmark data for all
existing evaluations is available at our Early Evaluation
website [25].

Table 1: STREAM Triad Performance.
Processor Triad Bandwidth

(GBps)
Cray XT3 5.1
Cray XD1 4.1
Cray X1 MSP 23.8
IBM p690 2.1
IBM POWER5 4.0
SGI Altix 3.8

4.1 Memory Performance
The memory performance of current architectures

is a primary factor for performance on scientific
applications. Table 1 illustrates the differences in
measured memory bandwidth on the triad STREAM
benchmark. The very high bandwidth of the Cray X1
MSP clearly dominates the other processors, but the
Cray XT3’s Opteron performs the best with respect to
the other microprocessor-based systems.

Table 2: Latency to Main Memory.

Platform
Measured Latency to

Main Memory (ns)
Cray XT3 / Opteron 150 / 2.4 Ghz 51.41
Cray XD1 / Opteron 248 / 2.2 Ghz 86.51
IBM p690 / POWER4 / 1.3 Ghz 90.57
Intel Xeon / 3.0 Ghz 140.57

As discussed earlier, the choice of the Opteron
model 150 was motivated by low latencies to main
memory. As Table 2 shows, our measurements revealed
that the Opteron 150 has lower latency than the Opteron
248 configured as a 2-way SMP in the XD1.
Furthermore, it has considerably less latency than either

the POWER4 or the Intel Xeon, which both support
multiprocessor configurations.

The memory hierarchy of the XT3 compute node is
obvious when measured with the CacheBench tool [24].
Figure 3 shows that the system hits a maximum of 32
GBps when accessing vectors of data in the L1 cache.
In the L2 cache, the maximum bandwidth is
approximately 9 GBps. Finally, when data is accessed
from main memory, the bandwidth drops to about 3
GBps, with the exception of the ‘C memset function’
which maintains a bandwidth of about 6 GBps.
Interestingly, we found that this ‘read’ bandwidth was
limited by the complier’s inability to optimize the
benchmark loop. Additional manual unrolling of the
loop generated results consistent with the other tests.

Figure 3: CacheBench results for XT3 compute

node.

4.2 MPI
A very important part of system performance

depends on the message passing performance. Latency
and bandwidth provided through the Message Passing
Interface (MPI) library [29] are particularly relevant
because most contemporary applications are built on
MPI.

Figure 4 and Figure 5 shows the latency and
bandwidth for the MPI PingPong benchmark,
respectively. We observe a latency of about 30
microseconds for a 4 byte message, and a bandwidth of
about 1.1 GBps for messages over 1 MB.

Figure 6 and Figure 7 show the latency and
bandwidth for the exchange benchmark, respectively, at
3,648 processors. This test separates all tasks into two
groups, and then uses the MPI_SendRecv operation to
transfer data between pairs of tasks, where the
endpoints are in separate groups. As opposed to the
PingPong operation, which transfers messages between
only two tasks, the exchange benchmark has all pairs
transferring messages at the same time. The average

 - 6 -

latency of these transfers are higher, on the order of 90
microseconds for a 4 byte message. The bandwidth is
also less than that for the PingPong test, but it reaches
an average of nearly 1 GBps for an individual transfer,
in the context of 1,824 simultaneous transfers.

Payload (bytes)

1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9

La
te

nc
y

(m
ic

ro
se

cs
)

1e+1

1e+2

1e+3

1e+4

1e+5

Figure 4: Latency of MPI PingPong.

Payload (bytes)

1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9

Ba
nd

w
id

th
 (M

Bp
s)

0.01

0.1

1

10

100

1000

10000

Figure 5: Bandwidth of MPI PingPong.

Payload (bytes)

1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9

La
te

nc
y

(m
ic

ro
se

cs
)

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

Figure 6: Latency of Pallas exchange operation.

Payload (bytes)

1e-1 1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9

Ba
nd

w
id

th
 (M

Bp
s)

0.01

0.1

1

10

100

1000

10000

Figure 7: Bandwidth of Pallas exchange operation.

The latency for an Allreduce operation across
3,648 processors, as shown in Figure 8, is, on average,
600 microseconds for a 4 byte payload. The Allreduce
operation is particularly important in large-scale
scientific applications because it can be used multiple
times on every timestep. Further, its blocking semantics
also requires that all tasks wait for its completion before
continuing, so latency for this operation is very
important to good scaling.

Payload (bytes)
1e+0 1e+1 1e+2 1e+3 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9

La
te

nc
y

(m
ic

ro
se

co
nd

s)

1e+2

1e+3

1e+4

1e+5

1e+6

Figure 8: Latency for MPI_Allreduce of across 3,648

processors.

As mentioned earlier, we are using preliminary
versions of the system software for these tests. We
expect future versions of the software to improve both
the latency and bandwidth of these MPI operations. In
fact, two other sites are reporting latencies as low as 5
microseconds on MPI PingPong operations.

4.3 Scientific Operations
We use a collection of microbenchmarks to

characterize the performance of the underlying
hardware, compilers, and software libraries. The

 - 7 -

microbenchmarks measure computational performance,
memory hierarchy performance, and inter-processor
communication. Figure 9 compares the double-
precision floating point performance of a matrix
multiply (DGEMM) on a single processor using the
vendors’ scientific libraries. The XT3 Opteron achieves
4 Gflops, about 83% of peak.

Figure 10 compares the vendor library
implementation of an LU factorization (DGETRF)
using partial pivoting with row interchanges. As
expected, the X1 does very well for large matrix ranks;
however, the XT3 and XD1 perform best for matrix
ranks less than about 150.

Libraries undergo continuous optimization by their
authors, so we constantly compare the performance of
these libraries on common routines. A comparison of
the ACML 2.5 and Goto libraries, as shown in Figure
11, on our current system shows small advantages to
the Goto libraries.

Figure 9: Performance of Matrix Multiply.

Figure 10: Performance of LU factorization.

Figure 11: Comparison of ACML and Goto libraries

on XT3.
In other testing, we compare vendor libraries with

code generated by the optimizing FORTRAN compiler.
Figure 12 shows the performance (Mflops) of Euroben
mod2b, a dense linear system test, for both optimized
FORTRAN and using the BLAS from the vendor
library. In these tests, the advantages of the vendor
libraries are clear when compared to the compiler
optimized code.

Figure 12: Performance of EuroBen mod2b.

Fast Fouier Transforms are another important kernl

operation performed by many scientific and signal
processing applications. Figure 13 compares a 1-D FFT
using the FFTW benchmark [15]. Both the XD1 and
XT3 perform well when compared to the SP3 and SP4,
but the higher floating point rate of the Altix’s Itanium
allows it to generate higher performance. Alternatively,
the vendors provide FFT libraries. Figure 14 plots 1-D
FFT performance using the vendor library (-lacml, -
lscs, -lsci or -lessl), where initialization time is not
included. Again, the X1 does very well for long vectors,
but the Opteron is competitive with other
microprocessors.

 - 8 -

Figure 13: Performance of 1-D FFTW.

Figure 14: Performance of 1-D FFT using vendor

libraries.

In general, our micro-benchmark results show the
promise of the Cray XT3 compute nodes for scientific
computing. Although the Cray X1’s high memory
bandwidth provided a clear benefit over the other
systems we considered, and the SGI Altix and IBM
Power5 systems gave better performance for several
micro-benchmarks, the XT3 showed solid performance
with these other systems, and in many cases, it
performed better at very short vector lengths. Further,
the benefits of using optimized libraries are very clear,
given our performance comparisons.

4.4 HPC Challenge
The DARPA High Productivity Computing

Systems program has recently sponsored the
development of the HPC Challenge benchmark suite to
emphasize the diverse application requirements of
DARPA and its mission partners. Details and the latest
version of the benchmark are available from the HPC
Challenge website [20]. Initial versions (0.8b) of HPCC

on our XT3 at 2,048 processors (9.8 TFLOPS) are
producing an HPL result of 7.4 TFLOPS (75%), and a
MPI Random Access result of 0.055 GUPS. Final
numbers will be posted at the HPC Challenge website
following installation of the final system.

5 Kernels
Next in our evaluation process, we focus on

moderately-sized kernels that represent either common
operations performed in scientific applications or
operations extracted from target application codes.
These kernels exercise multiple architectural features
together, and provide a venue to examine the
performance impact of a variety of coding styles and
programming models. For example, on some systems,
we have observed dramatic performance improvements
by using UPC or Co-Array FORTRAN to implement
communication operations in a critical application
kernel.

The kernel-based evaluation is driven by the choice
of the application codes. Whenever possible, standard
kernels will be used, but profile data from the
application codes will be the ultimate determinant. For
example, it may be necessary to use code fragments
extracted directly from the application code.

5.1 PSTSWM
The Parallel Spectral Transform Shallow Water

Model (PSTSWM) [34] represents an important
computational kernel in spectral global atmospheric
models. As 99% of the floating-point operations are
multiply or add, it runs well on systems optimized for
these operations. PSTSWM exhibits little reuse of
operands as it sweeps through the field arrays; thus it
exercises the memory subsystem as the problem size is
scaled and can be used to evaluate the impact of
memory contention in SMP nodes. PSTWM is also a
parallel algorithm testbed, and all array sizes and loop
bounds are determined at runtime.

On the XT3, we used PSTSWM to analyze
compiler optimizations, evaluate performance of the
memory subsystem, and compare performance with
other supercomputers. Figure 15 and Figure 16 show
comparisons of optimization options. The comparisons
are presented as computation rate versus horizontal
resolution for two vertical resolutions. The problem
sizes T5, T10, T21, T42, T85, and T170 are horizontal
resolutions. Each computational grid in this sequence is
approximately 4 times smaller than the next larger size.
Although the two Figures are for 1 and 18 vertical
levels, this aspect of the problem size does not change
the compiler option comparison. PSTSWM manages its
own heap, and all loop bounds and array sizes are

 - 9 -

defined at runtime. From the figure, we see that this
seems to limit some of the possible performance
optimizations probably because the compiler is limited
in what it can achieve.

Figure 15: Impact of compiler optimizations on

PSTSWM (1 level).

Figure 16: Impact of compiler optimizations on

PSTSWM (18 levels).

Figure 17 compares performance across all
problem sizes, showing impact of memory hierarchy.

Figure 17: Performance of PSTSWM with varying

numbers of vertical levels.

Most of the work is coupled most tightly
horizontally, so additional vertical levels spreads data
throughout memory, increasing access latency. Large
problems drop from more than one Gop to 600 MFlops
quickly as a function of number of vertical levels, but
stay at the 600 MFlop rate from then on. Smaller
problems drop more slowly, but to a lower asymptotic
rate. The one and two processor per node comparison
shows that this behavior is unaffected by both
processors exercising memory simultaneously, so using
both processors does not decrease memory performance
or, in other words, increase memory contention.

Figure 18: Performance of PSTSWM.

 - 10 -

Figure 19: Single processor performance of

PSTSWM for T85 while varying the number of
vertical levels.

Figure 18 shows a platform comparison. Note that
for these tests, FFTW was used for FFTs were used
instead of the vendor’s optimized math library FFTs.
The top chart in the figure compares single processor
performance for various horizontal resolutions and a
fixed 18 vertical levels. The X1’s superior performance
is due to the much higher processor/memory
bandwidth. Figure 19 compares single processor
performance with PSTSWM for T85 horizontal
resolution and a range of numbers of vertical levels.

5.2 SMG2000
SMG2000 [9, 31, 32] is a parallel semicoarsening

multigrid solver for the linear systems arising from
finite difference, finite volume, or finite element
discretizations of the diffusion equation on logically
rectangular grids. The code solves both 2-D and 3-D
problems with discretization stencils of up to 9-points
in 2-D and up to 27-points in 3-D. Applications where
such a solver is needed include radiation diffusion and
flow in porous media. This benchmark includes both
the setup of the linear system and the solve itself. Note
that this setup phase can often be done just once, thus
amortizing the cost of the setup phase over many
timesteps. This trait is relatively common in implicit
timestepping codes. For these experiments, we report
only the solve time. These test scale the matrix size
with the number of processors (‘weak scaling’).

As Figure 20 shows, the performance of SMG2000
shows the best performance on the Cray XD1, and,
then, the XT3. Scalability on the XT3 is good out to
3,584 processors.

0
10

20
30

40
50
60

70
80

90
100

1 10 100 1000 10000

NPROCS

S
M

G
20

00
 R

un
tim

e

XT3
XD1
SP4
SP3

Figure 20: Performance of SMG2000.

6 Applications
Because a system’s behavior when running full

applications is the most significant measure of its
performance, we have investigated the performance and
efficiency of applications relevant to the DOE Office of
Science in the areas of global climate, fusion,
chemistry, and bioinformatics. In addition to measures
of performance and scalability common to evaluations
of microprocessor-based MPP systems, the extent to
which Cray compilers and tools can effectively utilize
reconfigurable computing elements application codes
will be investigated. The extent to which localized
tuning can improve efficiency will also be investigated.

The evaluation team has worked closely with
principal investigators who are leading the Scientific
Discovery through Advanced Computing (SciDAC)
application teams to identify important applications. As
described above, initial steps in each domain was the
detailed understanding of selected kernels and critical
aspects of the system.

6.1 Parallel Ocean Program (POP)
The Parallel Ocean Program (POP) [18] is the

ocean component of CCSM [4] and is being developed
and maintained at Los Alamos National Laboratory
(LANL). The code is based on a finite-difference
formulation of the three-dimensional flow equations on
a shifted polar grid. In its high-resolution configuration,
1/10-degree horizontal resolution, the code resolves
eddies for effective heat transport and the locations of
ocean currents.

We used a benchmark configuration (called x1)
representing a relatively coarse resolution similar to
that currently used in coupled climate models. The
horizontal resolution is roughly one degree (320x384)
and uses a displaced-pole grid with the pole of the grid

 - 11 -

shifted into Greenland and enhanced resolution in the
equatorial regions. The vertical coordinate uses 40
vertical levels with a smaller grid spacing near the
surface to better resolve the surface mixed layer.
Because this configuration does not resolve eddies, it
requires the use of computationally intensive subgrid
parameterizations. This configuration is set up to be
identical to the actual production configuration of the
Community Climate System Model with the exception
that the coupling to full atmosphere, ice and land
models has been replaced by analytic surface forcing.

Figure 21: Performance of POP.

Figure 22: Performance of POP barotropic phase.

Figure 21 shows a platform comparison of POP

throughput for the x1 benchmark problem. The XT3
performance is similar to that of Cray XD1. Figure 22
shows the performance of the barotropic portion of
POP. This component is dominated by solution of 2D
implicit systems using conjugate gradient solves and is
known to scale poorly. Figure 23 shows the
performance of the baroclinic portion of POP, which is
known to scale well on many systems. The Cray XT3
did not scale as well as other systems we evaluated for
the POP barotropic portion, perhaps due to known
interconnect performance problems with the current

system. On the other hand, the XT3 showed good
scalability on the POP baroclinic portion.

Figure 23: Performance of POP baroclinic phase.

6.2 GYRO
GYRO [10] is a code for the numerical simulation

of tokamak microturbulence, solving time-dependent,
nonlinear gyrokinetic-Maxwell equations with
gyrokinetic ions and electrons capable of treating finite
electromagnetic microturbulence. GYRO uses a five-
dimensional grid and propagates the system forward in
time using a fourth-order, explicit, Eulerian algorithm.

GYRO has been ported to a variety of modern HPC
platforms including a number of commodity clusters.
Since code portability and flexibility are considered
crucial, only a single source is maintained. Ports to
new architectures often involve nothing more than the
creation of a new makefile.

Figure 24: GYRO Performance for B1-STD input.

For our evaluation, we ran GYRO for two

problems: B1-std and B3-gtc. The two problems differ
in size and computational and communication
requirements per node. The B1-std problem is smaller
but requires more work per grid point than the B3-gtc

 - 12 -

problem. GYRO tends to scale better for the B1-std
problem (Figure 24) than the B3-gtc problem (Figure
25). The B3-gtc problem can use an FFT-based
approach or a non-FFT approach.

Figure 25: GYRO performance for B3-GTC input.

Figure 26: GYRO communication fraction for B1-

STD input.

Figure 26 shows the communication fraction of the
GYRO runtime for several different platforms. The
excellent bandwidth of X1, XT3, and XD1 contribute to
their low communication fraction on this strong scaling
problem. The XT3 number is an estimate generated
from actual GYRO experiments on the XT3 combined
with timing estimates for IO activities on a smaller XT3
configured with Lustre. Figure 27 and Figure 28 show
the differences in GYRO performance when using the
different filesystems. As expected, both scaling and
overall IO fraction for GYRO is much better for Lustre
than for the scratch IO through Yod.

Figure 27: GYRO phases for B1-STD using Lustre

filesystem.

Figure 28: GYRO phases for B1-STD using scratch

filesystem.

6.3 sPPM
sPPM [23, 31, 32] solves a 3-D gas dynamics

problem on a uniform Cartesian mesh, using a
simplified version of the Piecewise Parabolic Method.
The algorithm makes use of a split scheme of X, Y, and
Z Lagrangian and remap steps, which are computed as
three separate sweeps through the mesh per timestep.
Message passing provides updates to ghost cells from
neighboring domains three times per timestep.

sPPM has been tested on numerous computer
systems, and it is easy to scale the problem (weak
scaling) to any number of processors. As we see in
Figure 29, the scaling of sPPM scales very well across
four platforms. On the XT3, scaling from 4 to 2,560
processors has 91.1% parallel efficiency. Because
sPPM sends very large messages infrequently, MPI
latency impacts performance less than bandwidth.

 - 13 -

1

10

100

1 10 100 1000 10000

NPROCS

S
P

PM
 G

ri
nd

 T
im

e
(u

s)

XT3
XD1
SP4
SP3

Figure 29: Performance of sPPM.

7 Future Performance
Expectations

Because the Cray XT3 is a new product and the
ORNL XT3 is only partially installed, we expect both
hardware and software improvements as the system
continues to be deployed. With our current version of
software, we are measuring MPI unidirectional
latencies of approximately 28 microseconds. We
expect, and several Cray XT3 installations are reporting
these same latencies on the order of 5 microseconds.
With this goal in mind, we are using locally-developed
predictive performance models to estimate the
performance improvement on important DoE
applications with this improved latency.

We predict the communication performance of two
scientific codes, GYRO and POP, using LogGP models
of communication. The LogGP parameters, L (latency),
o (overhead), g (gap per message) are G (gap per byte)
calculated using the logmpi software [19]. The MPI
traces for the two applications are generated using
parameterized simulation models of communication.
LogGP models of communication define the latencies
the communication latencies for point-to-point (Ptp),
MPI_ALLREDUCE (Allreducebinary), and
MPI_ALLTOALL (Alltoalllinear) operations for a
message size m as follows [27]:

⎡ ⎤
{ }

))1((*)
2

1(*)1()*2(*

*23,max)1(
)2)1(*3(*)1)1(log(

)1(

2

GmgPPPoLPAlltoall

mogGm
mGmoLPAllreduce

GmooLPtp

linear

binary

rs

−+−−−++=

++−+

+−++−+=
−+++=

γ

γ

Figure 30 and Figure 31 show predicted runtimes

for GYRO and POP, respectively, with 30μsec and
5μsec latencies. GYRO has a large number of
MPI_ALLTOALL and MPI_ALLREDUCE operations.

On the other hand, POP performs a large number of
small nearest-neighbor operations: point-to-point and
frequent MPI_ALLREDUCE call with 8 bytes
messages. Hence, POP is comparatively more sensitive
to communication latencies than GYRO because of
small message sizes. We predict that a significant
performance improvement will be achieved after the
XT3 MPI latencies are reduced to 5μsec, particularly
with large processor counts.

GYRO (B1-std benchmark)

0

100

200

300

400

500

600

700

800

32
 (3

0u
s)

32
 (5

us
)

64
 (3

0u
s)

64
 (5

us
)

12
8

(3
0u

s)

12
8

(5
us

)

25
6

(3
0u

s)

25
6

(5
us

)

51
2

(3
0u

s)

51
2

(5
us

)

R
un

tim
e

(s
ec

)

computation communication

Figure 30: Performance prediction for GYRO.

POP (X1 grid, 4 simulation days)

0

50

100

150

200

250

300

16
 (3

0u
s)

16
 (5

us
)

32
 (3

0u
s)

32
 (5

us
)

64
 (3

0u
s)

64
 (5

us
)

12
8

(3
0u

s)

12
8

(5
us

)

25
6

(3
0u

s)

25
6

(5
us

)

51
2

(3
0u

s)

51
2

(5
us

)

10
24

 (3
0u

s)

10
24

 (5
us

)

R
un

tim
e

(s
ec

)

computation communication

Figure 31: Performance prediction for POP.

8 Conclusions and Plans
Oak Ridge National Laboratory is in the process of

receiving and installing a 5,200 processor Cray XT3. In
this paper we describe our initial experiences with the
system, including micro-benchmark, kernel, and
application benchmark results. In particular, we provide
performance results for important Department of
Energy applications areas including climate and fusion.
We demonstrate experiments on the partially installed
system, scaling applications up to 3,600 processors. All
of the components of the system are performing well
with the exception of MPI latencies; we expect this

 - 14 -

feature to improve dramatically with new software
releases. Even given this issues, we have demonstrated
that our system works well on several important
applications at scale. We are eagerly anticipating the
expansion to the final delivery size of 5,200 processors;
we expect our application performance to improve as
we receive additional firmware and software upgrades
to the interconnect, compilers, and runtime libraries.

Acknowledgements
This research was sponsored by the Office of

Mathematical, Information, and Computational
Sciences, Office of Science, U.S. Department of Energy
under Contract No. DE-AC05-00OR22725 with UT-
Batelle, LLC. Accordingly, the U.S. Government
retains a non-exclusive, royalty-free license to publish
or reproduce the published form of this contribution, or
allow others to do so, for U.S. Government purposes.

Also, we would like to thank Jeff Beckleheimer,
John Levesque, Nathan Wichmann, and Jim
Schwarzmeier of Cray, and Don Maxwell of ORNL for
all their assistance in this endeavor.

Authors
Sadaf R. Alam is a post-doctoral research

associate in the Future Technologies group, Computer
Science and Mathematics Division (CSMD) at the Oak
Ridge National Laboratory. She has a PhD in
Informatics from the University of Edinburgh, United
Kingdom. Email: alamsr@ornl.gov.

Thomas H. Dunigan Jr. is a senior R&D staff
member in the Computer Science and Mathematics
Division of Oak Ridge National Laboratory. His
research interests include the performance
characterization and analysis of parallel computers and
their communication subsystems; and computer and
network security. Dunigan has a PhD in computer
science from the University of North Carolina at Chapel
Hill. E-mail: dunigan@ornl.gov.

Mark R. Fahey is a senior Scientific Application
Analyst in the Center for Computational Sciences
(CCS) at Oak Ridge National Laboratory. He is the
current CUG X1-Users SIG chair. Mark has a PhD in
mathematics from the University of Kentucky. E-Mail:
faheymr@ornl.gov.

Philip C. Roth is an R&D staff member in the
Computer Science and Mathematics Division of Oak
Ridge National Laboratory. His research interests
include tool automation and scalability, performance
analysis and tuning, and systems software for high-end
computing environments. Roth has a PhD in computer

science from the University of Wisconsin-Madison. E-
mail: rothpc@ornl.gov.

Jeffrey S. Vetter is a senior R&D staff member in
the Computer Science and Mathematics Division of
Oak Ridge National Laboratory, where he leads the
Future Technologies Group. His research interests
include experimental software systems and
architectures for high-end computing. Vetter has a PhD
in computer science from the Georgia Institute of
Technology. He is a member of IEEE and the ACM.
Also, Vetter is an Adjunct Professor in the College of
Computing at Georgia Tech. E-mail:
vetter@computer.org.

Patrick H. Worley is a senior R&D staff member
in the Computer Science and Mathematics Division of
Oak Ridge National Laboratory. His research interests
include parallel algorithm design and implementation
(especially as applied to atmospheric and ocean
simulation models) and the performance evaluation of
parallel applications and computer systems. Worley has
a PhD in computer science from Stanford University.
He is a member of the ACM and the Society for
Industrial and Applied Mathematics. E-mail:
worleyph@ornl.gov.

References
[1] P.A. Agarwal, R.A. Alexander et al., “Cray X1

Evaluation Status Report,” ORNL, Oak Ridge, TN,
Technical Report ORNL/TM-2004/13, 2004,
http://www.csm.ornl.gov/evaluation/PHOENIX/PDF/CR
AYEvaluationTM2004-15.pdf.

[2] AMD, “Software Optimization Guide for AMD
Athlon™ 64 and AMD Opteron™ Processors,”
Technical Manual 25112, 2004.

[3] D. Anderson, J. Trodden, and MindShare Inc.,
HyperTransport system architecture. Reading, MA:
Addison-Wesley, 2003.

[4] M.B. Blackmon, B. Boville et al., “The Community
Climate System Model,” BAMS, 82(11):2357-76, 2001.

[5] R. Brightwell, W. Camp et al., “Architectural
Specification for Massively Parallel Computers-An
Experience and Measurement-Based Approach,”
Concurrency and Computation: Practice and
Experience, 17(10):1271-316, 2005.

[6] R. Brightwell and L.A. Fisk, “Scalable Parallel
Application Launch on Cplant,” Proc. ACM/IEEE
Conference on Supercomputing (SC 2001), 2001.

[7] R. Brightwell, L.A. Fisk et al., “Massively Parallel
Computing Using Commodity Components,” Parallel
Computing, 26(2-3):243-66, 2000.

[8] R. Brightwell, R. Riesen et al., “Portals 3.0: Protocol
Building Blocks for Low Overhead Communication,”
Proc. Workshop on Communication Architecture for
Clusters (in conjunction with International Parallel &
Distributed Processing Symposium), 2002, pp. 164-73.

 - 15 -

[9] P.N. Brown, R.D. Falgout, and J.E. Jones,
“Semicoarsening multigrid on distributed memory
machines,” SIAM Journal on Scientific Computing,
21(5):1823-34, 2000.

[10] J. Candy and R. Waltz, “An Eulerian gyrokinetic-
Maxwell solver,” J. Comput. Phys., 186(545), 2003.

[11] Cray Incorporated, “Cray XT3 Programming
Environment User's Guide,” Reference Manual S-2396-
10, 2005.

[12] T.H. Dunigan, Jr., J.S. Vetter et al., “Performance
Evaluation of the Cray X1 Distributed Shared Memory
Architecture,” IEEE Micro, 25(1):30-40, 2005.

[13] T.H. Dunigan, Jr., J.S. Vetter, and P.H. Worley,
“Performance Evaluation of the SGI Altix 3700,” Proc.
International Conf. Parallel Processing (ICPP), 2005.

[14] M.R. Fahey, S.R. Alam et al., “Early Evaluation of the
Cray XD1,” Proc. Cray User Group Meeting, 2005, pp.
12.

[15] M. Frigo and S.G. Johnson, FFTW, www.fftw.org, 2005.
[16] K. Goto, High-Performance BLAS,

http://www.cs.utexas.edu/users/flame/goto/, 2005.
[17] High-End Computing Revitalization Task Force

(HECRTF), “Federal Plan for High-End Computing,”
Executive Office of the President, Office of Science and
Technology Policy, Washington, DC 2004.

[18] P.W. Jones, P.H. Worley et al., “Practical performance
portability in the Parallel Ocean Program (POP),”
Concurrency and Computation: Experience and
Practice(in press), 2004.

[19] T. Kielmann, H. Bal, and K. Verstoep, “ Fast
measurement of LogP parameters for message passing
platforms,” Lecture Notes in Computer Science (IPDPS
Workshops), 1800:1176-83, 2000.

[20] P. Luszczek and J. Dongarra, HPC Challenge
Benchmark, http://icl.cs.utk.edu/hpcc/, 2005.

[21] A.B. Maccabe, K.S. McCurley et al., “SUNMOS for the
Intel Paragon: A Brief User’s Guide,” Proc. Intel
Supercomputer Users’ Group, 1994, pp. 245-51.

[22] T.G. Mattson, D. Scott, and S.R. Wheat, “A TeraFLOP
Supercomputer in 1996: The ASCI TFLOP System,”
Proc. 10th International Parallel Processing Symposium
(IPPS 96), 1996, pp. 84-93.

[23] A.A. Mirin, R.H. Cohen et al., “Very High Resolution
Simulation of Compressible Turbulence on the IBM-SP
System,” Proc. SC99: High Performance Networking
and Computing Conf. (electronic publication), 1999.

[24] P.J. Mucci, K. London, and J. Thurman, “The
CacheBench Report,” University of Tennessee,
Knoxville, TN 1998.

[25] Oak Ridge National Laboratory, Early Evaluation
Website, http://www.csm.ornl.gov/evaluation, 2005.

[26] K. Pedretti, R. Brightwell, and J. Williams, “Cplant
Runtime System Support for Multi-Processor and
Heterogeneous Compute Notes,” Proc. IEEE
International Conference on Cluster Computing
(CLUSTER 2002), 2002, pp. 207-14.

[27] J. Pjesivac-Grbovic, T. Angskun et al., “Performance
Analysis of MPI Collective Operations,” Proc. 4th
International Workshop on Performance Modeling,
Evaluation, and Optimization of Parallel and Distributed
Systems (PMEO-PDS 05), 2005.

[28] S.L. Scott, “Synchronization and Communication in the
T3E Multiprocessor,” Proc. Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), 1996, pp. 26-36.

[29] M. Snir, S. Otto et al., Eds., MPI--the complete
reference, 2nd ed. Cambridge, MA: MIT Press, 1998.

[30] US Department of Energy Office of Science, “A
Science-Based Case for Large-Scale Simulation,” US
Department of Energy Office of Science 2003,
http://www.pnl.gov/scales.

[31] J.S. Vetter and F. Mueller, “Communication
Characteristics of Large-Scale Scientific Applications for
Contemporary Cluster Architectures,” Journal of
Parallel and Distributed Computing, 63(9):853-65,
2003.

[32] J.S. Vetter and A. Yoo, “An Empirical Performance
Evaluation of Scalable Scientific Applications,” Proc. SC
2002, 2002.

[33] S.R. Wheat, A.B. Maccabe et al., “PUMA: An Operating
System for Massively Parallel Systems,” Journal of
Scientific Programming (special issue on operating
system support for massively parallel systems), 3(4):275-
88, 1994.

[34] D.L. Williamson, J.B. Drake et al., “A Standard Test Set
for Numerical Approximations to the Shallow Water
Equations in Spherical Geometry,” Journal of
Computational Physics, 192:211-24, 1992.

