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Jaguar Lustre overview

• System architecture

• Lustre Terminology

• Commands

• Limitations



4

Jaguar XT3/4 Architecture
• Compute partition has

− 11,508 AMD dual-core
processors

− 46 TB of memory

• Lustre filesystems
− Serviced by 80 I/O

nodes
− /lustre/scr144

• 144 OSTs
• Peak is 72 GB/s
• Practical ~48 GB/s
• Early results

− Read 45 GB/s
− Write 25 GB/s

− /lustre/scr72[a,b]
• 72 OSTs each
• Default scratch
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Lustre terminology

• The concept of object storage is basic to Lustre
− Objects can be thought of as inodes and are used to

store file data. Lustre inodes simply contain references
to the object storage target (OST) that stores the file
data

− Access to these objects occurs through object storage
servers (OSSs), which provide the file I/O service

− The OSTs perform the block allocation for data objects,
which results in distributed and scalable allocation
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Lustre terminology (cont.)

• The namespace is managed by metadata services that
manage the Lustre inodes
− The services perform file lookups, file creation, file and

directory attribute manipulation
− Such inodes can be directories, symbolic links, or

special devices
− The associated data and metadata is stored on the

metadata servers
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Lustre terminology (cont.)

• MDS - metadata server
− The Server node

• MDT - metadata target
− This is the software interface to the backend volume
− Controls filesystem metadata (inodes) and locking mechanism

• The backend volume is an ext3 file system
•  LUNs are formatted with 4096 byte blocks

• OSS - object storage server
− The server node
− Support multiple OSTs

• OST - object storage target
− This is the software interface to the backend volume

• The backend volume is an ext3 file system
• LUNs are formatted with 4096 byte blocks
• The multi-block allocator (MBA) (Linux 2.6) is used for performance
• LUN size is limited to 2 TB
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XT3/4 Lustre Architecture

• XT compute
clients run
Catamount
microkernel and
use liblustre

• Portals networking
over XT SeaStar
interconnect

• Full Linux on
service and I/O
nodes



9

Lustre commands

• lfs - Lustre utility that can be used to create a file with a specific
striping pattern, displays file striping patterns, and find file locations
− Suboptions: setstripe, getstripe, find, help

• Examples
− set stripe width (count) to 1 on <dir>

• lfs setstripe <dir> 0 -1 1
− find stripe width on <filename> with minimal output

• lfs find --quiet <filename>
− find stripe width on <filename> with default output

• lfs getstripe <filename>
− Set stripe size (per striped OST) to 2MB on <dir>

• lfs setstripe <dir> 2097152 -1 1
− Get online help

• lfs help <suboption>
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Lustre limits

• The maximum file size is 320 TB (on any lustre)
− Maximum number of stripes per file is 160

• 2 TB x  160 = 320 TB  (2 TB is max LUN size)
• Limits on Jaguar

− scr72a and scr72b don’t overlap
− scr72[a,b] overlaps half of scr144

144 TB72/lustre/scr72[a,b]

288 TB144/lustre/scr144

CapacityMax Stripe countLimits



11

Endian-ness

• Little-endian
− x86 machines (Intel, AMD), DEC Alpha

• XT3/4

• Big endian
− X1[E], IBM PPC (including BG/L), MIPS, Sparc

• Many compilers provide bi-endianness support for Fortran
binary files (Intel, PGI, etc)
− But is there a price to pay?
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Endian-ness

• One can use the PGI -byteswapio option to swap the endian-ness
for Fortran I/O
− You can use this on a subroutine by subroutine basis

• Creating a 4GB file (512 8MB writes) with one process, sequential
unformatted (on XT3)
− Default: ~18 MB/S
− byteswapio: ~9.4 MB/s

• User called endian swap
− Can get ~15 MB/s
− ** But control words will be different endian-ness than the data

• Very similar results using direct unformatted (simulating sequential
I/O)
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Endian-ness discussion

• So there is a cost (50%) when doing Fortran unformatted
I/O with one process
− Can this cost be amortized away in parallel?
− With 100 or more processes, the cost is reduced to

~23% hit
• 96 processes in SN mode writing 16 MB each

− default 7.1 GB/s
− byteswapio 5.4 GB/s

• 192 processes in VN mode writing 16 MB each
− default 11.7 GB/s
− byteswapio 9.2 GB/s

• This may matter if the I/O cost in your code is significant
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Parallel I/O at scale

• Basic parallel I/O methods
− Problem with typical methods
− A solution

• Benchmarks
− Striping
− Buffer sizes
− Subsetting
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Parallel I/O in general

• Two common methods:
− All data is reduced to 1 process which does I/O
− All tasks do I/O

• A file read/written by each task
− Independent files

• All tasks read/write a part of one file
− shared file

• With both methods, typically one uses
− Fortran or C I/O with MPI

• Records/seeks for shared file
− MPI I/O
− Parallel HDF5 or netCDF

• won’t be talking about these today
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The Problem

• These methods are fine until you scale-up
− Proof forthcoming

• Without user-intervention you will not get practical peak
I/O bandwidth

• For example
− Single writer/reader reduction

• Even with maximum striping on file, effective bandwidth
is limited by the 1 compute node (200 MB/s)

− All processes read/write at the same time
• Slow opens (all hit the MDS at the same time)
• Overwhelm OSTs and/or IO service nodes
• Possibly inconvenient to users
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Striking a Balance

Filesystem
Limits

Application
Needs
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Subset of readers/writers

• The Plan:
− Combine the best of our first two I/O methods
− Choose a subset of nodes to do I/O
− Send output to or Receive input from 1 node in your

subset

• The Benefits
− I/O Buffering
− High Bandwidth, Low FS Stress

• The Costs
− I/O Nodes must sacrifice memory for buffer
− Requires Code Changes
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Subset of readers/writers (cont.)

• Assumes job runs on thousands of nodes

• Assumes job needs to do large I/O

• From data partitioning, identify groups of nodes such that:
− each node belongs to a single group
− data in each group is contiguous on disk
− there are approximately the same number of groups as OSTs

• Pick one node from each group to be the ionode

• Use MPI to transfer data within a group to its ionode

• Each IO node reads/write shared disk file
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Example code

create an MPI communicator that include only ionodes;

listofionodes is an array of the ranks of writers/readers

call MPI_COMM_GROUP(MPI_COMM_WORLD, &

   WORLD_GROUP,ierr)

call MPI_GROUP_INCL(WORLD_GROUP,nionodes, &

  listofionodes,IO_GROUP,ierr)

call MPI_COMM_CREATE(MPI_COMM_WORLD,IO_GROUP, &

  MPI_COMM_IO,ierr)
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Example code (cont.)

open
  call MPI_FILE_OPEN(MPI_COMM_IO, trim(filename), &

       filemode, finfo, mpifh, ierr)

read/write
  call MPI_FILE_WRITE_AT(mpifh, offset, iobuf, &

        bufsize, MPI_REAL8, status, ierr)

      OR

  call MPI_FILE_SET_VIEW(mpifh, disp, MPI_REAL8, &

        MPI_REAL8, "native", MPI_INFO_NULL, ierr)

  call MPI_FILE_WRITE_ALL(mpifh, bigA, size(bigA), &

        MPI_REAL8, status, ierr)

 close

  call MPI_FILE_CLOSE(mpifh, ierr)
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Benchmarks

• Topics discussed
− Lustre striping
− Buffer sizes
− Subsetting
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Caveats

• OS level not consistent for all tests
− Striping tests done with 1.5.25
− Some with 1.5.29 and others with 1.5.31

• Some results from XT3 and some from XT4

• Some runs done in dedicated mode

• And others done during regular production usage
− For these, we report the “max” time over many trials -

sort of a practical peak
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Striping

• Lustre has the flexibility to specify how a file is striped
across OSTs
− Default set when file system is made
− User can specify with lfs setstripe [dir | file] ...

• Striping across multiple OSTs is useful when an
application writes large, contiguous chunks of data
− OSTs run in parallel, increasing I/O performance

• If the application isn’t writing large data, striping will hurt
− Don't stripe for small files
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Benchmark Results: 1 I/O Node - Stripes

• Single IO node, 10 megabyte buffer, 20 megabyte stripe size:
bandwidth of IO write to disk

                                  Number of stripes

    1      10       50       100      150      160

 150MB/s  134MB/s  135MB/s  139MB/s  149MB/s  148MB/s

• Using a single IO node:
− number of stripes doesn't matter
− stripe size doesn't matter (timings not shown)



26

XT3 Striping, lustre 1.5.25, 96 OSTs
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Striping discussion

• From the data, we see
− Don’t use multiples of 32
− Don’t use max

• Not sure if this applies to lustre config on XT4?
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Buffer sizes
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Benchmark Results: 1 I/O Node - Buffer Size

• Single node, single stripe:
bandwidth of IO write to disk
for different buffer sizes
− Buffer size is the size of

contiguous memory on one
IO node written to disk with
one write

• Buffer size should be at least
10 megabytes
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50 Writers, Varying Stripe Count, Size and Buffer
Size
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150 Stripes, Varying Writers, Buffer, and Stripe
Sizes
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Scaling clients

• Will now show benchmark data of scaling the number of
IO clients, with
− Custom MPI/Fortran code
− IOR
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Parallel Fortran I/O

•10 MB  file
per process

•stripewidth
of 1

•XT3
•1.5.29

•pgi/6.1.4

•96 OSTs
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Parallel Fortran I/O (cont.)

• This plot tells us ….
− Sweet spot around 512-1024 writers
− At full size

• 2 GB/s writes, 3 GB/s reads
− Reads faster than writes >= 1024 writers

* Data taken in non-dedicated mode
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XT4, 1.5.31, pgi/6.2.5, 144 OSTs

Total IO of
16 GB, but
using fewer
IO nodes
better by
10x for
writes and
20x for
reads
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XT4, 1.5.31, pgi/6.2.5, 144 OSTs

Total IO of
32 GB, but
using fewer
IO nodes
better by 5x
for writes
and 8x for
reads
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XT4, 1.5.31, pgi/6.2.5, 144 OSTs

Total IO of
16 GB, but
using fewer
IO nodes
better by
10x for
writes and
reads
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XT4, 1.5.31, pgi/6.2.5, 144 OSTs

Total IO of
32 GB, but
using fewer
IO nodes
better by 5x
for writes
and 8x for
reads
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XT4, 1.5.31, 144 OSTs

Aggregate IO of 16GB
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XT4, 1.5.31, 144 OSTs

Aggregate IO of 64GB
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IOR scaling results

• These plots tell us ….
− Larger IO buffers are better
− Using fewer IO nodes at large scale is better

• Optimal # of IO nodes is dependent on IO buffer size,
data suggests
− 2-8 x (# of OSTs) for 16GB aggregate file IO
− 4-8 x (# of OSTs) for 64GB aggregate file IO
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Writer/Reader Subsetting

• On ORNL’s XT3 and XT4, sufficient evidence to conclude that too
many readers/writers degrades IO bandwidth
− Since the optimal number of IO nodes looks to be somewhere

around 1024, we believe that using a subset of clients for IO is
beneficial

• Goal: use subset of MPI processes to do IO
− Shown to be more effective in previous slides
− Aggregates IO too
− Can’t MPI IO does this automatically with hints?

• Still investigating on XT

• Note: I have seen one plot (in a lustre tutorial class) of data from
Sandia’s Red Storm that shows almost no degradation from 2K
clients out to 10K clients (40GB/s)
− Unable to repeat this
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Sample Partitioning: POP

• data is 3d - X, Y, Z

• X and Y dimensions are partitioned in blocks

• sample 4 node partition:
− Each of the 4 colored blocks represents one node’s part of the data
− Each of the two lighter colored blocks represent 1 I/O Node
− I/O Groups should be arranged so their data is contiguous on disk

Data from nodes 1 & 3
alternate on disk.  This
will perform slowly and

can’t adjust to more
processors.

Data from node 1 is
contiguous, followed
by data from node 2,

which is also
contiguous.

1 2

3 4
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Sample Partitioning: POP

• Given a nearly square partitioning, the number of nodes   simultaneously
performing IO is approximately the square root of the total number of
compute nodes.
− 2500 compute nodes - 50 IO nodes
− 10000 compute nodes - 100IO nodes
− 25600 compute nodes - 160 IO nodes

• Many partitions allow a reasonable assignment of ionodes

For Example:

• An array of 8 byte reals (300, 400, 40) on each of 10000 nodes
− 4.8 million elements on each node
− 48 billion elements total
− 384 gigabytes data
− 50 - 100 seconds to read or write at 4 - 8 gbyte/sec
− 100 IO nodes
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A Subset of Writers Benchmark
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Benchmark Results: Things to Know

• Uses write_at rather than file partitioning

• Only write data...sorry
− Read data was largely similar

• Initial benchmarking showed MPI transfers to be
marginal, so they were excluded in later benchmarking

• Real Application Data in the works, Come to CUG
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Subsetting Example 2

• Jan test on XT3 with 1.5.29 (non-dedicated test), 96 OSTs

• Custom code (used earlier for scaling plot)
− 1 file per proc (stripe width 1); 8640 processes (cores)
− Will have it use a subset of the procs as ionodes

• Can aggregate data or serially send data to ionodes

• Test1: 5 MB writes/reads (smaller buffer)
− With 8640 writers

• Writes: 1.4 GB/s;  Reads: 2.0 GB/s (max of 2 runs)
− With 960 writers, aggregating data on writers

• Writes: 10.1 GB/s;  Reads: 10.3 GB/s (max of 2 runs)
• Test2: 10 MB writes/reads (same buffer)

− With 8640 writers
• Writes: 2.3 GB/s;  Reads: 3.1 GB/s (max of 2 runs)

− With 960 writers, aggregating data on writers
• Writes: 7.2 GB/s;  Reads: 9.0 GB/s (max of 2 runs)
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Subsetting Example 3

• XT4, 1.5.31, 144 OSTs, pgi/6.2.5

• Only Test (so far): 8 MB writes/reads
− With 9216 writers
• Writes: 619 MB/s  (not as good as XT3)

− With 1024 writers, serially sending data to writers
• Writes: 10.4 GB/s
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Take Home Notes

• Do Large I/O Operations in Parallel with MPI-IO

• Create a natural partitioning of nodes so that data will go to disk in a way that
makes sense

• Stripe as close to the maximum OSTs as possible given your partitioning

• Use buffers of at least 1MB, 10MB if you can afford it
− On XT, try IOBUF - I/O buffering layer

• It works and requires no code changes
− Can buffer stdout too

• Loaded by default, “man iobuf” for more information
− Typically can improve upon default settings

• Make your I/O flexible so that you can tune to the problem and machine
− One hard-coded solution will meet your needs some of the time, but not

all of the time
− Use a subset of IO nodes (make this tunable) when running large-scale

• According to recent tests, 4-8 x the number of OSTs
− MPI I/O hints would be a portable solution (need to verify it works on XT)
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Take Home Notes (cont.)

• On parallel HDF5 and parallel-netCDF
− General consensus at Cray Technical Workshop is that they

perform very poorly, lustre or not.
• I know this is not what you want to hear

− People are working on it

• Everyone opening a file at the same time at scale is sure to be slow,
offset if possible

• Performance will be variable
− Lustre filesystem is a shared resource
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Other

• Be aware of distribution of files across OSTs
− If you do one file per process, make sure this

distribution is equal across OSTs
• lustre gets the distribution even or very close,
• But if run with 8 procs, and then 16, and then ….

− Sometimes you will not get even distribution across the
OSTs

• Even if you “replace” each file during a checkpoint, they
will end up in the same OST

− For small scale (< #ofOSTS), if one OST is used
twice, it flatlines your scaling

− Sometimes easiest to remove all files and then
recreate them
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Current Research

•
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Parallel IO Instrumentation

• Default Parallel IO over XT3/4
− ROMIO implementation over libsysio
− Include Cray optimizations but proprietary code base
− Hard for code dissection and performance analysis

• Creating a different parallel IO stack over XT3/4:
− ROMIO over UFS

• UFS-based ROMIO is applicable because Lustre is Posix
compliant

− Initial performance testing with IOR
− Performance profiling with collective IO
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ROMIO over UFS

• Performance with ROMIO over UFS
− Write can be up 80% more efficient
− Read is comparable, within 1%

-- Weikuan Yu at ORNL

UFS vs SYSIO Read from 64OSTs
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Parallel IO Timing Profiling

• Why is collective IO slow?
− Significant time spent in collective communication, and growing
− What this tells us:

• Communication is a scalability limiter inside collective IO
• Do not forget hints to avoid collective communication if your output from large,

contiguous, and non-overlapping regions
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Timing Breakdown of Collective IO on XT
                           --Weikuan Yu at ORNL
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What’s Expected Soon?

• Upcoming Results
− Attend CUG 2007 for Parallel IO stack efficiency over XT3/4

• HDF5
• Parallel NetCDF
• MPI-IO
• Fortran and Unix IO

− With working examples on what tunables (hints) to use and how
to use them over XT3/4 for these stacks.

• Upcoming optimizations
− Exploit Lustre file joining, prototyped over Linux-based platforms
− Explore overlapped communication and IO
− Explore more scalable collective communication for IO
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Documentation/help

• See Cray Docs at http://docs.cray.com
− XT Programming Environment User’s Guide

• IOBUF and other buffering techniques
− Lustre reference manual
− Also see these man pages

• Strided I/O functions: readx, writex, ireadx, iwritex

• See http://info.nccs.gov/resources/jaguar
− http://info.nccs.gov/resources/jaguar/iotips

• Much of this will be on the jaguar iotips page soon!
• Contact your liaison or help@nccs.gov if you need help

optimizing your IO
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