
XT Parallel IO

Mark Fahey
faheymr@ornl.gov

March 29, 2007

2

Outline

• Jaguar Lustre overview
− System architecture
− Lustre Terminology
− Commands
− Limitations

• Brief Endian-ness discussion

• Parallel I/O at scale
− Basic parallel I/O methods
− Problem with typical methods
− A solution
− Benchmarks

• Research

3

Jaguar Lustre overview

• System architecture

• Lustre Terminology

• Commands

• Limitations

4

Jaguar XT3/4 Architecture
• Compute partition has

− 11,508 AMD dual-core
processors

− 46 TB of memory

• Lustre filesystems
− Serviced by 80 I/O

nodes
− /lustre/scr144

• 144 OSTs
• Peak is 72 GB/s
• Practical ~48 GB/s
• Early results

− Read 45 GB/s
− Write 25 GB/s

− /lustre/scr72[a,b]
• 72 OSTs each
• Default scratch

5

Lustre terminology

• The concept of object storage is basic to Lustre
− Objects can be thought of as inodes and are used to

store file data. Lustre inodes simply contain references
to the object storage target (OST) that stores the file
data

− Access to these objects occurs through object storage
servers (OSSs), which provide the file I/O service

− The OSTs perform the block allocation for data objects,
which results in distributed and scalable allocation

6

Lustre terminology (cont.)

• The namespace is managed by metadata services that
manage the Lustre inodes
− The services perform file lookups, file creation, file and

directory attribute manipulation
− Such inodes can be directories, symbolic links, or

special devices
− The associated data and metadata is stored on the

metadata servers

7

Lustre terminology (cont.)

• MDS - metadata server
− The Server node

• MDT - metadata target
− This is the software interface to the backend volume
− Controls filesystem metadata (inodes) and locking mechanism

• The backend volume is an ext3 file system
• LUNs are formatted with 4096 byte blocks

• OSS - object storage server
− The server node
− Support multiple OSTs

• OST - object storage target
− This is the software interface to the backend volume

• The backend volume is an ext3 file system
• LUNs are formatted with 4096 byte blocks
• The multi-block allocator (MBA) (Linux 2.6) is used for performance
• LUN size is limited to 2 TB

8

XT3/4 Lustre Architecture

• XT compute
clients run
Catamount
microkernel and
use liblustre

• Portals networking
over XT SeaStar
interconnect

• Full Linux on
service and I/O
nodes

9

Lustre commands

• lfs - Lustre utility that can be used to create a file with a specific
striping pattern, displays file striping patterns, and find file locations
− Suboptions: setstripe, getstripe, find, help

• Examples
− set stripe width (count) to 1 on <dir>

• lfs setstripe <dir> 0 -1 1
− find stripe width on <filename> with minimal output

• lfs find --quiet <filename>
− find stripe width on <filename> with default output

• lfs getstripe <filename>
− Set stripe size (per striped OST) to 2MB on <dir>

• lfs setstripe <dir> 2097152 -1 1
− Get online help

• lfs help <suboption>

10

Lustre limits

• The maximum file size is 320 TB (on any lustre)
− Maximum number of stripes per file is 160

• 2 TB x 160 = 320 TB (2 TB is max LUN size)
• Limits on Jaguar

− scr72a and scr72b don’t overlap
− scr72[a,b] overlaps half of scr144

144 TB72/lustre/scr72[a,b]

288 TB144/lustre/scr144

CapacityMax Stripe countLimits

11

Endian-ness

• Little-endian
− x86 machines (Intel, AMD), DEC Alpha

• XT3/4

• Big endian
− X1[E], IBM PPC (including BG/L), MIPS, Sparc

• Many compilers provide bi-endianness support for Fortran
binary files (Intel, PGI, etc)
− But is there a price to pay?

12

Endian-ness

• One can use the PGI -byteswapio option to swap the endian-ness
for Fortran I/O
− You can use this on a subroutine by subroutine basis

• Creating a 4GB file (512 8MB writes) with one process, sequential
unformatted (on XT3)
− Default: ~18 MB/S
− byteswapio: ~9.4 MB/s

• User called endian swap
− Can get ~15 MB/s
− ** But control words will be different endian-ness than the data

• Very similar results using direct unformatted (simulating sequential
I/O)

13

Endian-ness discussion

• So there is a cost (50%) when doing Fortran unformatted
I/O with one process
− Can this cost be amortized away in parallel?
− With 100 or more processes, the cost is reduced to

~23% hit
• 96 processes in SN mode writing 16 MB each

− default 7.1 GB/s
− byteswapio 5.4 GB/s

• 192 processes in VN mode writing 16 MB each
− default 11.7 GB/s
− byteswapio 9.2 GB/s

• This may matter if the I/O cost in your code is significant

14

Parallel I/O at scale

• Basic parallel I/O methods
− Problem with typical methods
− A solution

• Benchmarks
− Striping
− Buffer sizes
− Subsetting

15

Parallel I/O in general

• Two common methods:
− All data is reduced to 1 process which does I/O
− All tasks do I/O

• A file read/written by each task
− Independent files

• All tasks read/write a part of one file
− shared file

• With both methods, typically one uses
− Fortran or C I/O with MPI

• Records/seeks for shared file
− MPI I/O
− Parallel HDF5 or netCDF

• won’t be talking about these today

16

The Problem

• These methods are fine until you scale-up
− Proof forthcoming

• Without user-intervention you will not get practical peak
I/O bandwidth

• For example
− Single writer/reader reduction

• Even with maximum striping on file, effective bandwidth
is limited by the 1 compute node (200 MB/s)

− All processes read/write at the same time
• Slow opens (all hit the MDS at the same time)
• Overwhelm OSTs and/or IO service nodes
• Possibly inconvenient to users

17

Striking a Balance

Filesystem
Limits

Application
Needs

18

Subset of readers/writers

• The Plan:
− Combine the best of our first two I/O methods
− Choose a subset of nodes to do I/O
− Send output to or Receive input from 1 node in your

subset

• The Benefits
− I/O Buffering
− High Bandwidth, Low FS Stress

• The Costs
− I/O Nodes must sacrifice memory for buffer
− Requires Code Changes

19

Subset of readers/writers (cont.)

• Assumes job runs on thousands of nodes

• Assumes job needs to do large I/O

• From data partitioning, identify groups of nodes such that:
− each node belongs to a single group
− data in each group is contiguous on disk
− there are approximately the same number of groups as OSTs

• Pick one node from each group to be the ionode

• Use MPI to transfer data within a group to its ionode

• Each IO node reads/write shared disk file

20

Example code

create an MPI communicator that include only ionodes;

listofionodes is an array of the ranks of writers/readers

call MPI_COMM_GROUP(MPI_COMM_WORLD, &

 WORLD_GROUP,ierr)

call MPI_GROUP_INCL(WORLD_GROUP,nionodes, &

 listofionodes,IO_GROUP,ierr)

call MPI_COMM_CREATE(MPI_COMM_WORLD,IO_GROUP, &

 MPI_COMM_IO,ierr)

21

Example code (cont.)

open
 call MPI_FILE_OPEN(MPI_COMM_IO, trim(filename), &

 filemode, finfo, mpifh, ierr)

read/write
 call MPI_FILE_WRITE_AT(mpifh, offset, iobuf, &

 bufsize, MPI_REAL8, status, ierr)

 OR

 call MPI_FILE_SET_VIEW(mpifh, disp, MPI_REAL8, &

 MPI_REAL8, "native", MPI_INFO_NULL, ierr)

 call MPI_FILE_WRITE_ALL(mpifh, bigA, size(bigA), &

 MPI_REAL8, status, ierr)

 close

 call MPI_FILE_CLOSE(mpifh, ierr)

22

Benchmarks

• Topics discussed
− Lustre striping
− Buffer sizes
− Subsetting

23

Caveats

• OS level not consistent for all tests
− Striping tests done with 1.5.25
− Some with 1.5.29 and others with 1.5.31

• Some results from XT3 and some from XT4

• Some runs done in dedicated mode

• And others done during regular production usage
− For these, we report the “max” time over many trials -

sort of a practical peak

24

Striping

• Lustre has the flexibility to specify how a file is striped
across OSTs
− Default set when file system is made
− User can specify with lfs setstripe [dir | file] ...

• Striping across multiple OSTs is useful when an
application writes large, contiguous chunks of data
− OSTs run in parallel, increasing I/O performance

• If the application isn’t writing large data, striping will hurt
− Don't stripe for small files

25

Benchmark Results: 1 I/O Node - Stripes

• Single IO node, 10 megabyte buffer, 20 megabyte stripe size:
bandwidth of IO write to disk

 Number of stripes

 1 10 50 100 150 160

 150MB/s 134MB/s 135MB/s 139MB/s 149MB/s 148MB/s

• Using a single IO node:
− number of stripes doesn't matter
− stripe size doesn't matter (timings not shown)

26

XT3 Striping, lustre 1.5.25, 96 OSTs

27

Striping discussion

• From the data, we see
− Don’t use multiples of 32
− Don’t use max

• Not sure if this applies to lustre config on XT4?

28

Buffer sizes

29

Benchmark Results: 1 I/O Node - Buffer Size

• Single node, single stripe:
bandwidth of IO write to disk
for different buffer sizes
− Buffer size is the size of

contiguous memory on one
IO node written to disk with
one write

• Buffer size should be at least
10 megabytes

30

50 Writers, Varying Stripe Count, Size and Buffer
Size

31

150 Stripes, Varying Writers, Buffer, and Stripe
Sizes

32

Scaling clients

• Will now show benchmark data of scaling the number of
IO clients, with
− Custom MPI/Fortran code
− IOR

33

Parallel Fortran I/O

•10 MB file
per process

•stripewidth
of 1

•XT3
•1.5.29

•pgi/6.1.4

•96 OSTs

34

Parallel Fortran I/O (cont.)

• This plot tells us ….
− Sweet spot around 512-1024 writers
− At full size

• 2 GB/s writes, 3 GB/s reads
− Reads faster than writes >= 1024 writers

* Data taken in non-dedicated mode

35

XT4, 1.5.31, pgi/6.2.5, 144 OSTs

Total IO of
16 GB, but
using fewer
IO nodes
better by
10x for
writes and
20x for
reads

36

XT4, 1.5.31, pgi/6.2.5, 144 OSTs

Total IO of
32 GB, but
using fewer
IO nodes
better by 5x
for writes
and 8x for
reads

37

XT4, 1.5.31, pgi/6.2.5, 144 OSTs

Total IO of
16 GB, but
using fewer
IO nodes
better by
10x for
writes and
reads

38

XT4, 1.5.31, pgi/6.2.5, 144 OSTs

Total IO of
32 GB, but
using fewer
IO nodes
better by 5x
for writes
and 8x for
reads

39

XT4, 1.5.31, 144 OSTs

Aggregate IO of 16GB

40

XT4, 1.5.31, 144 OSTs

Aggregate IO of 64GB

41

IOR scaling results

• These plots tell us ….
− Larger IO buffers are better
− Using fewer IO nodes at large scale is better

• Optimal # of IO nodes is dependent on IO buffer size,
data suggests
− 2-8 x (# of OSTs) for 16GB aggregate file IO
− 4-8 x (# of OSTs) for 64GB aggregate file IO

42

Writer/Reader Subsetting

• On ORNL’s XT3 and XT4, sufficient evidence to conclude that too
many readers/writers degrades IO bandwidth
− Since the optimal number of IO nodes looks to be somewhere

around 1024, we believe that using a subset of clients for IO is
beneficial

• Goal: use subset of MPI processes to do IO
− Shown to be more effective in previous slides
− Aggregates IO too
− Can’t MPI IO does this automatically with hints?

• Still investigating on XT

• Note: I have seen one plot (in a lustre tutorial class) of data from
Sandia’s Red Storm that shows almost no degradation from 2K
clients out to 10K clients (40GB/s)
− Unable to repeat this

43

Sample Partitioning: POP

• data is 3d - X, Y, Z

• X and Y dimensions are partitioned in blocks

• sample 4 node partition:
− Each of the 4 colored blocks represents one node’s part of the data
− Each of the two lighter colored blocks represent 1 I/O Node
− I/O Groups should be arranged so their data is contiguous on disk

Data from nodes 1 & 3
alternate on disk. This
will perform slowly and

can’t adjust to more
processors.

Data from node 1 is
contiguous, followed
by data from node 2,

which is also
contiguous.

1 2

3 4

44

Sample Partitioning: POP

• Given a nearly square partitioning, the number of nodes simultaneously
performing IO is approximately the square root of the total number of
compute nodes.
− 2500 compute nodes - 50 IO nodes
− 10000 compute nodes - 100IO nodes
− 25600 compute nodes - 160 IO nodes

• Many partitions allow a reasonable assignment of ionodes

For Example:

• An array of 8 byte reals (300, 400, 40) on each of 10000 nodes
− 4.8 million elements on each node
− 48 billion elements total
− 384 gigabytes data
− 50 - 100 seconds to read or write at 4 - 8 gbyte/sec
− 100 IO nodes

45

A Subset of Writers Benchmark

1
2 3

4
5

6 7
8

10
16

20
32

64
90

128

6
4

1
2
8

2
5
6

1
0
2
4

2
0
4
8

4
0
9
6

0.000E+00

1.000E+09

2.000E+09

3.000E+09

4.000E+09

5.000E+09

6.000E+09

7.000E+09

8.000E+09

GB/sec

Number of Writers
Number of Cores

Using MPI I/O

7GB/s means 157
GB can be written
in 22 sec

46

Benchmark Results: Things to Know

• Uses write_at rather than file partitioning

• Only write data...sorry
− Read data was largely similar

• Initial benchmarking showed MPI transfers to be
marginal, so they were excluded in later benchmarking

• Real Application Data in the works, Come to CUG

47

Subsetting Example 2

• Jan test on XT3 with 1.5.29 (non-dedicated test), 96 OSTs

• Custom code (used earlier for scaling plot)
− 1 file per proc (stripe width 1); 8640 processes (cores)
− Will have it use a subset of the procs as ionodes

• Can aggregate data or serially send data to ionodes

• Test1: 5 MB writes/reads (smaller buffer)
− With 8640 writers

• Writes: 1.4 GB/s; Reads: 2.0 GB/s (max of 2 runs)
− With 960 writers, aggregating data on writers

• Writes: 10.1 GB/s; Reads: 10.3 GB/s (max of 2 runs)
• Test2: 10 MB writes/reads (same buffer)

− With 8640 writers
• Writes: 2.3 GB/s; Reads: 3.1 GB/s (max of 2 runs)

− With 960 writers, aggregating data on writers
• Writes: 7.2 GB/s; Reads: 9.0 GB/s (max of 2 runs)

48

Subsetting Example 3

• XT4, 1.5.31, 144 OSTs, pgi/6.2.5

• Only Test (so far): 8 MB writes/reads
− With 9216 writers
• Writes: 619 MB/s (not as good as XT3)

− With 1024 writers, serially sending data to writers
• Writes: 10.4 GB/s

49

Take Home Notes

• Do Large I/O Operations in Parallel with MPI-IO

• Create a natural partitioning of nodes so that data will go to disk in a way that
makes sense

• Stripe as close to the maximum OSTs as possible given your partitioning

• Use buffers of at least 1MB, 10MB if you can afford it
− On XT, try IOBUF - I/O buffering layer

• It works and requires no code changes
− Can buffer stdout too

• Loaded by default, “man iobuf” for more information
− Typically can improve upon default settings

• Make your I/O flexible so that you can tune to the problem and machine
− One hard-coded solution will meet your needs some of the time, but not

all of the time
− Use a subset of IO nodes (make this tunable) when running large-scale

• According to recent tests, 4-8 x the number of OSTs
− MPI I/O hints would be a portable solution (need to verify it works on XT)

50

Take Home Notes (cont.)

• On parallel HDF5 and parallel-netCDF
− General consensus at Cray Technical Workshop is that they

perform very poorly, lustre or not.
• I know this is not what you want to hear

− People are working on it

• Everyone opening a file at the same time at scale is sure to be slow,
offset if possible

• Performance will be variable
− Lustre filesystem is a shared resource

51

Other

• Be aware of distribution of files across OSTs
− If you do one file per process, make sure this

distribution is equal across OSTs
• lustre gets the distribution even or very close,
• But if run with 8 procs, and then 16, and then ….

− Sometimes you will not get even distribution across the
OSTs

• Even if you “replace” each file during a checkpoint, they
will end up in the same OST

− For small scale (< #ofOSTS), if one OST is used
twice, it flatlines your scaling

− Sometimes easiest to remove all files and then
recreate them

52

Current Research

•

53

Parallel IO Instrumentation

• Default Parallel IO over XT3/4
− ROMIO implementation over libsysio
− Include Cray optimizations but proprietary code base
− Hard for code dissection and performance analysis

• Creating a different parallel IO stack over XT3/4:
− ROMIO over UFS

• UFS-based ROMIO is applicable because Lustre is Posix
compliant

− Initial performance testing with IOR
− Performance profiling with collective IO

54

ROMIO over UFS

• Performance with ROMIO over UFS
− Write can be up 80% more efficient
− Read is comparable, within 1%

-- Weikuan Yu at ORNL

UFS vs SYSIO Read from 64OSTs

0

2000

4000

6000

8000

10000

12000

8 24 40 56 72 88 10
4
12
0
13
6
15
2
16
8
18
4
20
0
21
6
23
2
24
8

No. of Processes

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Im
p

ro
v

e
m

e
n

t

ufs sysio %

UFS vs SYSIO Write to 64 Stripes

0

2000

4000

6000

8000

10000

12000

8
24 40 56 72 88

10
4
12
0
13
6
15
2
16
8
18
4
20
0
21
6
23
2
24
8

No. Of Processes

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

0

0.5

1

1.5

2

Im
p

ro
v

e
m

e
n

t

UFS SYSIO %

55

Parallel IO Timing Profiling

• Why is collective IO slow?
− Significant time spent in collective communication, and growing
− What this tells us:

• Communication is a scalability limiter inside collective IO
• Do not forget hints to avoid collective communication if your output from large,

contiguous, and non-overlapping regions

1.48

1.30

1.16

.36

.29

.23

Comm/IO Ratio

8096.612019.064

4371.185696.8632

2469.782872.8416

Flash IO Checkpoint file (millisec) – PNetCDF version

89522.7132034.9564

45290.9013204.9332

22880.905210.8716

IOR (millisec)

File IOCollective CommNprocs

Timing Breakdown of Collective IO on XT
 --Weikuan Yu at ORNL

56

What’s Expected Soon?

• Upcoming Results
− Attend CUG 2007 for Parallel IO stack efficiency over XT3/4

• HDF5
• Parallel NetCDF
• MPI-IO
• Fortran and Unix IO

− With working examples on what tunables (hints) to use and how
to use them over XT3/4 for these stacks.

• Upcoming optimizations
− Exploit Lustre file joining, prototyped over Linux-based platforms
− Explore overlapped communication and IO
− Explore more scalable collective communication for IO

57

Documentation/help

• See Cray Docs at http://docs.cray.com
− XT Programming Environment User’s Guide

• IOBUF and other buffering techniques
− Lustre reference manual
− Also see these man pages

• Strided I/O functions: readx, writex, ireadx, iwritex

• See http://info.nccs.gov/resources/jaguar
− http://info.nccs.gov/resources/jaguar/iotips

• Much of this will be on the jaguar iotips page soon!
• Contact your liaison or help@nccs.gov if you need help

optimizing your IO

58

Acknowledgements

• XT architecture picture from “Cray and Lustre” talk by
Carroll and Radovanovic at CUG06.

• Lustre architecture picture from “Lustre tutorial” given by
R. Slick at CUG06.

• Lots of material taken from “Efficient I/O on the Cray XT”
talk by J. Larkin at Cray Technical Workshop, Feb 07.

• The “Current Research” material provided by Weikuan
Yu.

