The Smithsonian Associates Resident Associates Program

Water, Ice, Land and Life: The Earth from Above Part II "Where's The Missing Carbon?"

Jim Collatz, Hydrospheric and Biospheric Sciences Laboratory NASA's Goddard Space Flight Center

> Special Guest Piers Sellers, Astronaut NASA's Johnson Space Center

The Earth From Space

Piers Sellers, Ph.D Astronaut NASA's Johnson Space Center

The International Space Station

The Limb

Muir Glacier, Alaska

The Earth's Atmosphere

The Geologic Carbon Cycle (Slow ~10¹³-10¹⁴ gC/yr)

processes

The Fast Part of the Carbon Cycle (~10¹⁵-10¹⁷ gC/yr)

Evolution of Life Altered the Earth's Atmospheric and Geologic Composition

Impacts of Biology on Atmospheric Composition Over the Last 600 Million years (missing carbon during ancient times)

Note: current fossil fuel burning rate is ~6x10²⁰ mol Myr⁻¹

From: Berner, Nature, 2003

Carbon in the Earth System:

Total Carbon on Earth ~10²³ grams (a million trillion tons) 80% Carbonates (e.g. limestone), 20% Organic (e.g. fossil fuels, biomass) 0.04% in active pools (Ocean, Soil, Biomass, Atmosphere)

Carbon Cycle: Other Interesting Facts

Geologic Fluxes of Carbon are ~ 10¹³-10¹⁴ gC/yr Active pool fluxes are ~10¹⁵-10¹⁷ gC/yr

We currently burn fossil fuels at ~70 x the current burial rate.

DOME C, Antarctica Temperature Low= -129°F Precipitation= 1"/yr

Mauna Loa Sampling Station (~13,000' elevation) view to Mauna Kea, HI

Global Carbon Cycle: The Present

Annual Cycle in Atmospheric CO₂ Concentrations

Seasonal Cycles in CO₂ and Vegetation

What we know about the sinks comes from analysis of atmospheric CO_2

Measurement of Atmospheric CO₂ Concentrations

What we have learned from measuring the changes in atmospheric CO_2

- Proof that CO_2 is increasing
- •Breathing Terrestrial Biosphere
- •Ocean/Land CO₂ sinks (N versus S Hemisphere)
- Interannual variability in global sources and sinks

Why must we solve the 'mystery of the missing carbon'? Simulations of two possibilities for future source/sink behaviors

There are approximately 4000 PgC in fossil fuel reserves or nearly 2000 ppm

Possibilities for the Future:

sinks could increase in strength, CO₂ max <1400 ppm

sinks could continue at present rates, $CO_2 \max \sim 1400 \text{ ppm}$

sinks slow, $CO_2 \max \sim 1400-2500 \text{ ppm}$

sinks reverse and return previously sequestered carbon, CO₂ max >2500 ppm sinks reverse plus release of old carbon from soil and ocean CO₂ max >3000ppm

Atmosphere

Land Use N. Hemisphere land use practices and natural

Possible Causes

regrowth +2

-Regrowth of harvested forests -Fire suppression -Decreased deforestation -Aforestation/Woody encroachment

Carbon Budget

CO2 and Nitrogen fertilization

Fossil Fuels Climate Change

Absorbed Produced

+7

1982-1999

Deforestation and Regrowth

Satellite Observations of Deforestation in Bolivia

Fires and The Global Carbon Cycle

Satellite Observations of Fires

MODIS, Montana '00

Annual burned fraction(%) of the gridcells, averaged 1997-2001.

LandSat, South Africa '00

Examples of Potential New Satellite Missions/Observation That Could Bring Us Closer to Understanding:

- Where The Missing Carbon Is Going,
- •What Processes Are Responsible For It and,
- •What May Happen To It In The Future.

Planned future satellite mission to answer the question: Where is the Missing Carbon?

> Orbiting Carbon Observatory (OCO) Launch scheduled in 2008

The Principle

The Coverage

Possible future satellite missions to answer the question: Where is the Missing Carbon? LIDAR measurements of atmospheric CO₂

New Results: Fires play a major role in year to year variability in atmospheric CO₂

New Results: Atmospheric CO₂ growth rate increased Substantially in 2002 and 2003. *Why?*

- -Fires in Siberia in 2003
- -Fires in Indonesia and South America in 2002 -Temperate Northern Hemisphere Droughts in 2003

