The Multicenter Evaluation of *In Vitro* Cytotoxicity (MEIC)

Summary

September 2000

National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)

TABLE OF CONTENTS

List	of Appendicesii
Prefa	iceiv
1.0	Introduction1
2.0	Test Chemicals
3.0	In Vitro Test Assays
4.0	Assay Endpoints
5.0	Comparative Data
6.0	Statistical Analyses
7.0	Results
8.0	MEIC Conclusions and Recommendations
9.0	Evaluation-Guided Development of In Vitro Tests (EDIT)
10.0	Recommended Integration of MEIC/EDIT into the EPA High Production Volume (HPV) Program
11.0	MEIC Evaluation Guidelines Checklist
12.0	MEIC Related Publications (in chronological order)15

LIST OF APPENDICES

I.	First Fifty Reference Chemicals I-1
II.	Descriptions of the Essential Traits of 67 <i>in vitro</i> Methods (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part IV. ATLA 26:131-183)
III.	Oral LD50 Doses for Rat and Mouse and Mean Oral Lethal Doses for Humans (Source: E. Walum. 1998. Acute Oral Toxicity. EHP 106:497-503)
	 Toxicity Categories (Sources: 1. U.S. EPA, Office of Pesticide Programs. Label Review Manual. Chapter 8: Precautionary Labeling. 2. National Ag Safety Database. Toxicity of Pesticides. http://www.cdc.gov/niosh/nasd/docs2/as18700.html. 3. 40 CFR 156.10(h) – Labeling Requirements for Pesticides and Devices. Warnings and Precautionary Statements).
IV.	Oral Acute Single Lethal Doses in Humans (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616)IV-1
V.	Clinically Measured Acute Lethal Serum Concentrations in Humans (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)V-1
VI.	Post-Mortem Acute Lethal Concentrations in Humans (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)
VII.	Human Kinetic Data (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)
VIII.	Peaks from Approximate 50% Lethal Concentration (LC50) Curves (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)VIII-1
IX.	Human Acute, Single-Dose Toxicity Data (Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26: 571-616)IX-1
X.	Plot of Acute Lethal Dosage in Humans Against Values Calculated by a PLS Model Based on Rat Oral LD50 and Mouse Oral LD50 (Source: Ekwall et al. 1999. MEIC Evaluation of Acute Systemic Toxicity. Part VIII)X-1

XI.	Plot of Peak Lethal Blood Concentrations in Man Against IC-50
	Values Calculated by a PLS Model Based on Peak Lethal Blood
	Concentrations in Man, All 50 Chemicals, and "Blood-Brain Barrier
	Compensated Results" From Assays 1, 5, 9 and 16. (Source: Ekwall et al.
	1999. MEIC Evaluation of Acute Systemic Toxicity. Part VIII)XI-1
XII.	Priority Areas for Development and Evaluation of New In Vitro Tests
	on Systemic Toxicity. (Source: Ekwall et al. 1999. EDIT: A new
	international multicentre programme to develop and evaluate batteries
	of <i>in vitro</i> tests for acute chronic systemic toxicity. ATLA 27:339-349)XII-1
XIII.	Proposed Testing Scheme for the Classification and Labelling of
	Chemicals According to Their Potential Acute Toxicities. (Source:
	Ekwall et al. 1999. EDIT: A new international multicentre programme
	to develop and evaluate batteries of <i>in vitro</i> tests for acute chronic
	systemic toxicity. ATLA 27:339-349)

1.0 Introduction

The Multicenter Evaluation of In Vitro Cytotoxicity (MEIC) program was organized by the Scandinavian Society for Cell Toxicology in 1989. MEIC was started with two goals. The first was to investigate the relevance of results from *in vitro* tests for predicting the acute toxic action of chemicals in humans. The second was to establish batteries of existing *in vitro* toxicity tests as replacements for acute toxicity tests on animals (LD50). Achievement of the second goal, the practical and ethical one, was considered to be entirely dependent on a successful outcome of the first, scientific goal. At the same time, it was recognized that a demonstrated high relevance of in vitro toxicity tests for human acute toxicity did not mean that all problems of replacement of animal tests would be solved. MEIC was a voluntary effort involving 96 international laboratories that evaluated the relevance and reliability of in vitro cytotoxicity tests originally developed as alternatives to or supplements for animal tests for acute systemic toxicity, chronic systemic toxicity, organ toxicity, skin irritancy, or other forms of general toxicity. In establishing the framework for this program, a minimum of methodological directives was provided in order to maximize protocol diversity among the participating laboratories. The collection of test method data was completed in 1996. The multiple publications originating from these studies are provided in chronological order in Section 12. All in vitro toxicity test results collected during MEIC are available on the Cytotoxicology Laboratory, Uppsala (CTLU) website (www.ctlu.se) as a searchable database.

2.0 Test Chemicals

Fifty reference chemicals were selected for testing (**Appendix 1**). Selection was based on the availability of reasonably accurate human data on acute toxicity. Due to the anticipated five-year duration of MEIC, it was recognized that multiple samples (lots) of each chemical would be needed. However, it was decided that the chemicals would not be provided by a central supplier, but rather that each laboratory would purchase each chemical at the highest purity obtainable with the proviso that storage duration would be kept to a minimum. The decision to not have a central supplier was based on the rationale that most reference chemicals are drugs, which presents fewer impurity problems. It is also based on the recognition that the results would be evaluated against human poisonings, which involve chemicals of different origin and purity.

3.0 In Vitro Test Assays

By the end of the project in 1996, 39 laboratories had tested the first 30 reference chemicals in 82 *in vitro* assays, while the last 20 chemicals were tested in 67 *in vitro* assays (**Appendix 2**). Slight variants of four of the assays were also used to test some chemicals. The primary 82 assays included:

- Twenty human cell line assays utilizing Chang liver, HeLa, Hep 2, Hep G2, HFL1, HL-60, McCoy, NB-1, SQ-5, and WI-1003 cells;
- Seven human primary culture assays utilizing hepatocytes, keratinocytes, and polymorphonuclear leukocytes;
- Nineteen animal cell line assays utilizing 3T3, 3T3-L1, Balb 3T3, BP8, ELD, Hepa-1c1c7, HTC, L2, LLC-PK1, LS-292, MDBK, PC12h, and V79 cells;
- Eighteen animal primary culture assays utilizing bovine spermatozoa, chicken neurons, mouse erythrocytes, rat hepatocytes, and rat muscle cells; and
- Eighteen ecotoxicological tests utilizing bacteria (*Bacillus subtilis*, *Escherichia coli* B, *Photobacterium phosphoreum*, *Vibrio fisheri*), rotifer (*Brachionus calyciflorus*), crustacea (*Artemia salina, Daphnia magna, Streptocephalus proscideus*), plant (*Alium cepa* root, tobacco plant pollen tubes), and fish (trout hepatocytes, trout R1 fibroblast-like cells).

4.0 Assay Endpoints

The analyses conducted by the MEIC management team were based on *in vitro* toxicity data presented as IC50 values (i.e., the dose estimated to reduce the endpoint in question by 50%) (**Appendix 2**).

These values were generated by the participating laboratories and were not independently verified; original data were not presented in the MEIC publications. Thirty-eight of these assays were based on viability, 29 on growth, and the remaining assays involved more specific endpoints, such as locomotion, contractility, motility, velocity, bioluminescence, and immobilization. The endpoints assessed were based on exposure durations ranging from five minutes to six weeks, and included:

- Cell viability as measured by the metabolism of 3-(4,5-dimethyl-2-thiazolyl)-2,5diphenyl-2*H* tetrazolium bromide (MTT), neutral red uptake (NRU), lactate dehydrogenase (LDH) release, cell morphology, adenosine triphosphate (ATP) content or leakage, trypan blue exclusion, viable cell count, tritiated-proline uptake, 86Rb leakage, creatine kinase activity, and glucose consumption;
- Cell growth as measured by protein content, macromolecule content, cell number, pH change, and optical density;
- Colony formation as measured by plating efficiency;
- An organotypic cellular endpoint (i.e., contractility of rat skeletel muscle cells);
- Motility and velocity for bovine sperm;
- Bioluminescence; and
- Mortality in lower eukaryotic organisms.

5.0 Comparative Data

The types of comparative data used to evaluate the predictive accuracy of the *in vitro* IC50 toxicity data for human acute toxicity included:

- Oral rat and mouse LD50 values obtained from Registry of Toxic Effects of Chemical Substances (RTECS) (Appendix 3, which contains rat and mouse LD50 data and average human lethal dose data for the 50 MEIC chemicals, ranked in three consecutive tables according to potency for rat, then mouse, and finally human. It also contains an U.S. Environmental Protection Agency (EPA) classification scheme for the acute toxicity of chemicals in humans.);
- Acute oral lethal doses in humans obtained from nine reference handbooks (Appendix 4);
- Clinically measured acute lethal serum concentrations in humans obtained from ten reference handbooks (**Appendix 5**);
- Acute lethal blood concentrations in humans measured post-mortem obtained from one forensic handbook and six forensic tabulations (**Appendix 6**);
- Human pharmacokinetics following single doses, including absorption, peak time, distribution/elimination curves, plasma half-life, distribution volume, distribution to organs (notably brain), and blood protein binding (Appendix 7);
- Peaks from curves of an ~50% lethal blood/serum concentration over time after ingestion (LC50 curves derived from human acute poisoning case reports) (Appendix 8);

• Qualitative human acute toxicity data, including lethal symptoms, main causes of death, average time to death, target organs, presence of histopathological injury in target organs, presence of toxic metabolites, and known or hypothetical mechanisms for the lethal injury (**Appendix 9**).

Early in the MEIC project, the *in vitro* cytotoxicity results were compared with average lethal blood concentrations (LCs) from acute human poisoning. However, these LCs were of limited value because they were averages of data with a wide variation due to different time between exposure and sampling (clinical) or death (forensic medicine). Therefore, a project was started to collect published and unpublished (from poison information centers and medico-legal institutes) case reports from human poisonings for the 50 MEIC reference chemicals that had lethal or sublethal blood concentrations with known time between ingestion and sampling/death. The aim was to compile enough case reports to be able to construct time-related lethal concentration curves to be compared with the IC50 values for different incubation times in vitro. The results from the project were presented and analyzed in a series of 50 MEIC monographs. All monographs with sufficient case reports contain five tables presenting blood concentrations and two figures presenting LC curves. Three tables present (i) clinically measured, time-related sublethal blood concentrations, (ii) clinically measured, time-related lethal blood concentrations, and (iii) post-mortem, time-related blood concentrations. In these tables, blood concentration and the time interval between exposure and sampling for these concentrations are listed, as well as other important information on the cases. One table contains case reports with blood concentrations without a known time after ingestion and one table presents average blood concentrations calculated from the values presented in the other tables. The two figures presented in each of the monographs are scatter plots of sublethal and lethal blood concentrations. Based on these plots, concentration curves over time were drawn for the highest no lethal concentrations (NLC100); the lowest lethal concentrations (LC0); and the median curve between NLC100 and LC0, which is called the approximate LC50 even though it is not equivalent to a 50% mortality.

6.0 Statistical Analyses

The statistical analyses conducted by the MEIC management team involved:

- Principal components analysis (PCA);
- Analysis of Variance (ANOVA) and pairwise comparison of means using Tukey's method;
- Linear regression and ANOVA linear contrast analysis; and
- Multivariable partial least square (PLS) modeling with latent variables.

7.0 **Results (based on IC50 response)**

The MEIC management team, based on their analyses of the *in vitro* IC50 data, obtained the following results:

- The 1st PCA component described 80% of the variance of all the cytotoxicity data.
- Tukey's ANOVA indicated a similar sensitivity (~80%) for the assays.
- The toxicity of many chemicals increased with exposure time, making it necessary to perform a test at several exposure times to fully characterize the cytotoxicity.
- In general, human cytotoxicity was predicted well by animal cytotoxicity.
- Prediction of human cytotoxicity by ecotoxicological tests was only fairly good.
- One organotypic endpoint (muscle cell contractility) gave different results to those obtained with viability/growth assays.

- Sixteen comparisons of similar test systems involving different cell types and exposure times revealed similar toxicities, regardless of cell type.
- Nine of ten comparisons of test systems with identical cell types and exposure times revealed similar toxicities, regardless of the viability or growth endpoint measurement used.
- Nine comparisons of similar test systems employing different primary cultures and cell lines indicated that they shared similar toxicities.
- A high correlation between an intracellular protein denaturation test and average human cell line toxicity test suggested that denaturation may be a frequently occurring mechanism in basal cytotoxicity.

The following results were based on comparisons between in vitro data and in vivo data:

- Simple human cell tests were shown to be relevant for human acute lethal action for as many as 43 of the 50 MEIC reference chemicals (86%). The exceptions were atropine, digoxin, malathion, nicotine, cyanide, paracetamol, and paraquat -- all specific receptormediated toxicants.
 - A battery of three of these human cell line tests (nos. 1, 9, 5/16) was found to be highly predictive ($R^2 = 0.77$) of the peak human lethal blood concentrations (LC50) of chemicals. The prediction increased markedly ($R^2 = 0.83$) when a simple algorithm based on the knowledge of passage across the blood-brain barrier was used to adapt *in vitro* to *in vivo* concentrations (**Appendix 7**). The battery involved four endpoints and two exposure times (protein content/24 hours; ATP content/24 hours; inhibition of elongation of cells/24 hours; pH change/7 days). Prediction was better than the prediction between calculated oral LD50 doses in rats and mice and acute lethal dose in humans is presented graphically in **Appendix 10**, while the correlation between IC50

values and peak lethal blood concentrations in humans is presented graphically in **Appendix 11**.

- In the *in vitro* -- *in vivo* MEIC evaluation of chemicals that do easily not cross the bloodbrain barrier, the 24 hour cytotoxic concentrations for rapidly acting chemicals correlated well with the human lethal peak blood concentrations, while the corresponding cytotoxicity for the slow-acting chemicals did not correlate as well with the peak concentrations. The prediction of human toxicity by the tests of slow-acting chemicals was much improved when 48-hour cytotoxic concentrations were compared with 48-hour human lethal blood concentrations. Thus, an *in vitro* test providing a discrimination between a rapid and a slow cytotoxic action would increase the predictive power of a cell test battery on acute toxicity.
- The findings from both the *in vitro-in vitro* comparisons and the *in vitro-in vivo* comparisons strongly supported the basal cytotoxicity concept.

8.0 MEIC Conclusions and Recommendations

Based on the analyses conducted, the MEIC management team made the following conclusions:

• The MEIC 1, 9, 5/16 test battery can be used directly as a surrogate for a LD50 test. However, since the battery predicts lethal blood concentrations, not lethal dosages, it is not a direct counterpart of the animal LD50 test. Thus, the 1, 9, 5/16 battery must be supplemented with data on gut absorption as well as the distribution volumes (Vd) of chemicals. Vd essentially depends on whether chemicals penetrate cells or not, and the degree of accumulation in the cell for chemicals that enter cells. Binding to proteins, lipids, bone and intracellular matrix will also influence Vd. Probably, a simple test of accumulation in cells over time would provide adequate Vd data. There is sufficient *knowledge of kinetics and Vd to enable an evaluation of results from such an assay for most of the 50 MEIC chemicals.

- An ongoing evaluation is being conducted to address the issue of predicting human oral lethal doses rather than human lethal blood concentrations. One MEIC manuscript in preparation will focus on the importance of the kinetic determinants of target organs for basal cytotoxicity. A second MEIC manuscript will describe how human lethal doses may be predicted by cellular tests on basal cytotoxicity (the 1, 9, 5/16 battery) and kinetic data.
- If human lethal doses are shown to be well predicted by the 1, 9, 5/16 battery, when combined with absorption and distribution data, a new but simple *in vitro* test to predict distribution volumes must be developed. An effective *in vitro* test on absorption is stated to already exist. Development of new *in vitro* methods is not addressed by MEIC, which only evaluated existing methods.
- In MEIC, only two of the 50 reference chemicals (ethylene glycol and methanol) were biotransformed to more toxic metabolites, contributing to the acute lethal action. The occurrence of toxic metabolites for the two chemicals did not affect the prediction of human lethal peak concentrations by human cell line inhibitory concentrations, but seemed to interfere with the correlation between *in vitro* delayed effects and the prediction of later lethal effects of the chemicals. These results confirm the proposed usefulness of an *in vitro* test that could measure the formation and release of a toxic metabolite by metabolically competent cells within the time frame of acute toxicity. One design of such a test would be to use human hepatocytes in co-cultures with a target cell line. Since so few metabolically active chemicals were tested in MEIC, future studies will need to include additional metabolically activated chemicals.

9.0 Evaluation-Guided Development of *In Vitro* Tests (EDIT)

In recognition that additional *in vitro* tests were needed to enhance the accuracy of the proposed *in vitro* battery for predicting human acute toxicity, a second voluntary multicenter program was initiated by the CTLU. The CTLU has designed a blueprint for an extended battery and has invited all interested laboratories to develop the "missing" tests of this battery within the

framework of the EDIT program (**Appendix 12** and **13**). The EDIT research program is published on the Internet (www.ctlu.se). The aim of EDIT is to provide a full replacement of the animal acute toxicity tests. The most urgently needed developments are assays on the accumulation of chemicals in cells (test of Vd), passage across the intestinal and blood-brain barriers, and biotransformation to more toxic metabolites. CTLU will provide interested laboratories with human reference data and will evaluate results as single components of complex models. The Internet version of the general EDIT research program contains additional, regularly updated information on the project. Purported advantages of the project are as follows. First, the evaluation-guided test development in EDIT is rational since tests are designed according to obvious needs and as elementary tests of single events integrated into whole models, which is the potential strength of the *in vitro* assays will lead to a rapid evaluation of the potential value of each assay.

10.0 Recommended Integration of MEIC/EDIT into the EPA High Production Volume (HPV) Program

Dr. Ekwall, the principle scientist for the MEIC program, has provided several suggestions for using MEIC results and the forthcoming EDIT results to reduce animal testing in the HPV program. These suggestions include the following:

- 1. Formal validation by ECVAM/ICCVAM of the existing 3 test MEIC battery. If considered validated, use of the battery to test every chemical in the HPV program would provide inexpensive and useful supplementary data.
- 2. Evaluate some of the HPV chemicals in a battery of *in vitro* toxicity and toxicokinetic tests on acute toxicity (EDIT and similar models) as follows:
 - Engage poison information experts to select a set of HPV chemicals with sound human acute toxicity data, including time-related lethal blood concentrations.

- Give priority to standard testing of the same chemicals in the HPV program.
- Testing of the same chemicals in the newly developed *in vitro* systems (EDIT, etc.), including modeling of acute toxicity by the new assays.
- Comparison of HPV standard animal data and the *in vitro* data with the human data for the selected set of chemicals.

If the new *in vitro* models can be shown to predict human acute toxicity better than the HPV animal tests, *in vitro* batteries may totally replace the animal acute toxicity tests in further HPV testing.

11.0 MEIC Evaluation Guidelines Checklist

A complete and formal assessment of the validation status of MEIC in regard to the ICCVAM evaluation guidelines would require the following to be reviewed and evaluated:

1.0 Introduction and Rationale of each Test Method
1.1 Scientific basis for each test method
1.1.1 Purpose of each proposed method, including the mechanistic basis
1.1.2 Similarities and differences of modes and mechanisms of action in each test system as compared to the species of interest (e.g., humans for human health-related toxicity testing).
1.2. Intended uses of each proposed test method.
1.2.1 Intended regulatory use(s) and rationale.
1.2.2 Substitute, replace, or complement existing test methods.
1.2.3 Fits into the overall strategy of hazard or safety assessment. If a component of a tiered assessment process, indicate the weight that will be applied relative to other measures.
1.2.4 Intended range of materials amenable to test and/or limits according to chemical class or physico-chemical factors.
2.0 Proposed Each Test Method Protocol(s)
2.1 Detailed protocol for each test method, duration of exposure, know limits of use, and

ICCVAM Evaluation Guidelines

nature of the response assessed, including:
2.1.1 Materials, equipment, and supplies needed
2.1.2 Suggested positive or negative controls.
2.1.3 Detailed procedures for conducting the test
2.1.4 Dose-selection procedures, including the need for any dose range-finding studies or acute toxicity data prior to conducting the test, if applicable;
2.1.5 Endpoint(s) measured
2.1.6 Duration of exposure
2.1.7 Known limits of use
2.1.8 Nature of the response assessed
2.1.9 Appropriate vehicle, positive and negative controls and the basis for their selection
2.1.10 Acceptable range of vehicle, positive and negative control responses
2.1.11 Nature of the data to be collected and the methods used for data collection
2.1.12 Type of media in which data are stored
2.1.13 Measures of variability
2.1.14 Statistical or non-statistical method(s) used to analyze the resulting data (including methods to analyze for a dose response relationship). The method(s) employed should be justified and described
2.1.15 Decision criteria or the prediction model used to classify a test chemical (e.g., positive, negative, or equivocal), as appropriate
2.1.16 Information that will be included in the test report
2.2 Basis for each test system
2.3 Confidential information
2.4 Basis for the decision criteria established for each test
2.5 Basis for the number of replicate and repeat experiments; provide the rationale if studies are not replicated or repeated
2.6 Basis for any modifications to each proposed protocol that were made based on results from validation studies
3.0 Characterization of Materials Tested
3.1 Rationale for the chemicals/products selected for evaluation. Include information on suitability of chemicals selected for testing, indicating any chemicals that were found to be unsuitable
3.2 Rationale for the number of chemicals that were tested
3.3 The chemicals/products evaluated, including:
3.3.1. Chemical or product name; if a mixture, describe all components.
3.3.2 CAS number(s)

	3.3.3 Chemical or product class
	3.3.4 Physical/chemical characteristics
	3.3.5 Stability of the test material in the test medium
	3.3.6 Concentration tested.
	3.3.7 Purity; presence and identity of contaminants.
	3.3.8 Supplier/source of compound.
	3.4 If mixtures were tested, constituents and relative concentrations should be provided whenever possible
	3.5 Describe coding used (if any) during validation studies.
4.0	Reference Data Used for Performance Assessment
	4.1 Clear description of the protocol for the reference test method. If a specific guideline has been followed, it should also be provided. Any deviation should be indicated, including the rationale for the deviation.
	4.2. Provide reference data used to assess the performance of the proposed test method.
	4.3 Availability of original datasheets for the reference data
	4.4 Quality of the reference test data, including the extent of GLP compliance and any use of coded chemicals.
	4.5 Availability and use of relevant toxicity information from the species of interest.
5.0	Test Method Data and Results
	5.1 Complete, detailed protocol used to generate each set of data for each proposed test method. Any deviations should be indicated, including the rationale for the deviation. Any protocol modifications made during the development process and their impact should be clearly stated for each data set.
	5.2 Provide all data obtained using each proposed test method. This should include copies of original data from individual animals and/or individual samples, as well as derived data. The laboratory's summary judgement as to the outcome of each test should be indicated. The submission should also include data (and explanations) from unsuccessful, as well as successful, experiments.
	5.3 Statistical approach used to evaluate the data from each proposed test method
<u> </u>	5.4 Provide a summary, in graphic or tabular form, of the results.
	5.5 For each set of data, indicate whether coded chemicals were tested, experiments were conducted blind, and the extent to which experiments followed GLP procedures.
	5.6 Indicate the lot-to-lot consistency of the test materials, the time frame of the various studies, and the laboratory in which the study or studies were done. A coded designation for each laboratory is acceptable.
	5.7 Any data not submitted should be available for external audit, if requested
6.0	Test Method Performance Assessment
	6.1 Describe performance characteristics (e.g., accuracy, sensitivity, specificity, positive and negative predictivity, and false positive and negative rates) of each proposed test

method separately and in combination compared with the reference test method currently accepted by regulatory agencies for the endpoint of interest. Explain how discordant results from each proposed test were considered when calculating performance values. 6.2 Results that are discordant with results from the reference method. 6.3 Performance characteristics of each proposed test method compared to data or recognized toxicity from the species of interest (e.g., humans for human health-related toxicity testing), where such data or toxicity classification is available. In instances where the proposed test method was discordant from the reference test method, describe the frequency of correct predictions of each test method compared to recognized toxicity information from the species of interest. 6.4 Strengths and limitations of the method, including those applicable to specific chemical classes or physical/chemical properties 6.5 Salient issues of data interpretation, including why specific parameters were selected for inclusion 7.0 Test Method Reliability (Repeatability/Reproducibility) 7.1 Rationale for the chemicals selected to evaluate intra- and inter-laboratory reproducibility for each test method, and the extent to which they represent the range of possible test outcomes. 7.2 Analyses and conclusions reached regarding inter- and intra-laboratory repeatability and reproducibility for each test method 7.3 Summarize historical positive and negative control data for each test method, including number of trials, measures of central tendency and variability. 8.0 Test Method Data Quality 8.1 Extent of adherence to GLPs 8.2. Results of any data quality audits 8.3 Impact of deviations from GLPs or any non-compliance detected in data quality audits 9.0 Other Scientific Reports and Reviews 9.1 All data from other published or unpublished studies conducted using the proposed test method should be included. 9.2 Comment on and compare the conclusions published in independent peer-reviewed reports or other independent scientific reviews of the test method. The conclusions of such scientific reports and/or reviews should be compared to the conclusions reached in this submission. Any other ongoing evaluations of the method should be mentioned. **10.0** Animal Welfare Considerations (Refinement, Reduction, and Replacement) 10.1 Describe how the proposed test methods will refine (reduce pain or distress), reduce, and/or replace animal use compared to the current methods used. **11.0 Other Considerations** 11.1 Aspects of test method transferability. Include an explanation of how this compares

to the transferability of the reference test method.
11.1.1 Facilities and major fixed equipment needed to conduct the test.
11.1.2 Required level of training and expertise needed for personnel to conduct the test.
11.1.3 General availability of other necessary equipment and supplies.
11.2 Cost involved in conducting each test. Discuss how this compares to the cost of the reference test method.
11.3 Indicate the amount of time needed to conduct each test and discuss how this compares with the reference test method.
12.0 Supporting Materials
12.1 Provide copies of all relevant publications, including those containing data from the proposed test method or the reference test method.
12.2 Include all available non-transformed original data for both each proposed test method and the reference test method.
12.3 Summarize and provide the results of any peer reviews conducted to date, and summarize any other ongoing or planned reviews.
12.4 Availability of laboratory notebooks or other records for an independent audit. Unpublished data should be supported by laboratory notebooks.

12.0 MEIC Related Publications (in chronological order)

Bernson, V., Bondesson, I., Ekwall, B., Stenberg, K., and Walum, E. (1987) A multicentre evaluation study of in vitro cytotoxicity. ATLA, 14, 144-145.

Bondesson, I., Ekwall, B., Stenberg, K., Romert, L. and Walum, E. (1988) Instruction for participants in the multicentre evaluation study of in vitro cytotoxicity (MEIC). ATLA, 15, 191-193.

Bondesson, I., Ekwall, B., Hellberg, S., Romert, L., Stenberg, K., and Walum, E. (1989) MEIC - A new international multicenter project to evaluate the relevance to human toxicity of in vitro cytotoxicity tests. Cell Biol. Toxicol., 5, 331-347. Ekwall, B. (1989) Expected effects of the MEIC-study. In Report from The MEIC In Vitro Toxicology Meeting, Stockholm 9/3 1989, (Eds. T. Jansson and L.Romert), pp 6-8, Swedish National Board for Technical Development.

Ekwall, B., Gómez-Lechón, M.J., Hellberg, S., Bondsson, I., Castell, J.V., Jover, R., Högberg, J., Ponsoda, X., Stenberg, K., and Walum, E. (1990) Preliminary results from the Scandinavian multicentre evaluation of in vitro cytotoxicity (MEIC). Toxicol. In Vitro, 4, 688-691.

Hellberg, S., Bondesson, I., Ekwall, B., Gómez-Lechón, M.J., Jover, R., Högberg, J., Ponsoda; X., Romert, L., Stenberg, K., and Walum, E. (1990) Multivariate validation of cell toxicity data: The first ten MEIC chemicals. ATLA, 17, 237-238.

Hellberg, S., Eriksson, L., Jonsson, J., Lindgren, F., Sjöström, M., Wold, S., Ekwall, B.,
Gómez-Lechón, J.M., Clothier, R., Accomando, N.J., Gimes, G., Barile, F.A., Nordin,
M., Tyson, C.A., Dierickx, P., Shrivastava, R.S., Tingsleff-Skaanild, M., Garza-Ocanas,
L., and Fiskesjö, G. (1990) Analogy models for prediction of human toxicity. ATLA,
18, 103-116.

Shrivastava, R., Delomenie, C., Chevalier, A., John, G., Ekwall, B., Walum, E., and Massingham, R. (1992) Comparison of in vivo acute lethal potency and in vitro cytotoxicity of 48 chemicals. Cell Biol. Toxicol., 8(2), 157-170.

Ekwall, B., Abdulla, E., Barile, F., Bondesson, I., Clemedson, C., Clothier, R., Curren, R., Dierickx, P., Fiskesjö, G., Garza-Ocanas, L., Gómez-Lechón, M.J., Gülden, M., Imai, K., Janus, J., Kristen, U., Kunimoto, M., Kärenlampi, S., Lavrijsen, K., Lewan, L.,Malmsten, A., Miura, T., Nakamura, M., Ohno, T., Ono, H., Persoone, G., Rouget, R., Romert, L., Sandberg, M., Sawyer, T., Seibert, H., Shrivastava, R., Stammati, A., Tanaka, N., Walum, E., Wang, X & Zucco, F. (1992) Acute lethal toxicity in man predicted by cytotoxicity in 55 cellular assays and by oral LD50 tests in rodents for the first 30 MEIC chemicals, In Proc. of JSAAE (Japanese Society for Alternatives to Animal Experiments) 6th annual meeting in Tokyo, Dec 17-18, 1992, (Ed. S. Sato), pp 114-115, Tokyo.

Ekwall, B., Abdulla, E., Barile, F., Chesne, C., Clothier, Cottin, M., Curren, R., Daniel-Szolgay, E., Dierickx, P., Ferro, M., Fiskesjö, G., Garza-Ocanas, L., Gómez-Lechón, M.J., Gülden, M. Isomaa, B., Kahru, A., Kemp, R.B., Kerszman, G., Kristen, U., Kunimoto, M., Kärenlampi, S., Lavrijsen, K., Lewan, L., Ohno, T., Persoone, G., Pettersson, R., Rouget, R., Romert, L., Sawyer, T., Seibert, H., Shrivastava, R., Sjöström, M., Tanaka, N., Zucco, F., Walum, E., & Clemedson, C. (1994) A comparative cytotoxicity analysis of the results from tests of the first 30 MEIC reference chemicals in 68 different in vitro toxicity systems, pp 117-118 in Alternatives Research - Proceedings of the 8th Annual Meeting of the Japanese Society for Alternatives to Animal Experiments, Nov. 28-29, 1994, Tokyo.

Ekwall, B. (1995) The basal cytotoxicity concept, pp 721-725. In Proceedings of the World Congress on Alternatives and Animal Use in the Life Sciences: Education, Research, Testing. Alternative Methods in Toxicology and the Life Sciences, Vol 11. Mary Ann Liebert, New York, 1995.

Balls, M, Blaauboer, BJ, Fentem, JH, Bruner, L, Combes, RD, Ekwall, B, Fielder, RJ, Guillouzo, A, Lewis, RW, Lovell, DP, Reinhardt, CA, Repetto, G, Sladowski, D, Spielmann, H & Zucco, F (1995) Practical aspects of the validation of toxicity test procedures - The report and recommendations of ECVAM Workshop 5. ATLA 23, 129-147.

Walum, E, Nilsson, M, Clemedson, C & Ekwall, B. (1995) The MEIC program and its implications for the prediction of acute human systemic toxicity, pp 275-282 In Proceedings of the World Congress on Alternatives and Animal Use in the Life Sciences: Education, Research, Testing. Alternative Methods in Toxicology and the Life Sciences, Vol 11. Mary Ann Liebert, New York, 1995.

Clemedson, C, McFarlane-Abdulla, E., Andersson, M., Barile, F.A., Calleja, M.C.,
Chesné, C., Clothier, R., Cottin, M., Curren, R., Daniel-Szolgay, E., Dierickx, P., Ferro,
M., Fiskesjö, G., Garza-Ocanas, L., Gómez-Lechón, M.J., Gülden, M., Isomaa, B., Janus,
J., Judge, P., Kahru, A., Kemp, R.B., Kerszman, G., Kristen, U., Kunimoto, M.,
Kärenlampi, S., Lavrijsen, K., Lewan L., Lilius, H., Ohno, T., Persoone, G.,Roguet, R.,
Romert, L., Sawyer, T., Seibert, H., Shrivastava, R., Stammati, A., Tanaka, N., Torres
Alanis, O., Voss, J-U., Wakuri, S., Walum, E., Wang, X., Zucco, F. and Ekwall, B.
(1996) MEIC evaluation of acute systemic toxicity. Part I. Methodology of 68 in vitro
toxicity assays used to test the first 30 reference chemicals. ATLA, 24, Suppl. 1, 1996, 249-272.

Clemedson, C, McFarlane-Abdulla, E., Andersson, M., Barile, F.A., Calleja, M.C.,
Chesné, C., Clothier, R., Cottin, M., Curren, R., Dierickx, P., Ferro, M., Fiskesjö, G.,
Garza-Ocanas, L., Gómez-Lechón, M.J., Gülden, M., Isomaa, B., Janus, J., Judge, P.,
Kahru, A., Kemp, R.B., Kerszman, G., Kristen, U., Kunimoto, M., Kärenlampi, S.,
Lavrijsen, K., Lewan L., Lilius, H., Malmsten, A., Ohno, T., Persoone, G., Pettersson, R.,
Roguet, R., Romert, L., Sandberg, M., Sawyer, T., Seibert, H., Shrivastava, R., Sjöström,
M., Stammati, A., Tanaka, N., Torres Alanis, O., Voss, J-U., Wakuri, S., Walum, E.,
Wang, X., Zucco, F. and Ekwall, B. (1996) MEIC evaluation of acute systemic toxicity.
Part II. In vitro results from 68 toxicity assays used to test the first 30 reference chemicals and a comparative cytotoxicity analysis. ATLA, 24, Suppl. 1, 1996, 273-311.

Ekwall, B, Clemedson, C, Crafoord, B, Ekwall, Ba, Hallander, S, Sjöström, M & Walum, E (1997) Correlation between in vivo and in vitro acute toxicity tests; Results of the MEIC project, pp. 82-83 in Development of Ecotoxicity and Toxicity Testing of Chemicals - Proceeding of the 2nd Network Meeting, TemaNord 1997:524, Nordic Council of Ministers, Copenhagen, 1997.

Clemedson, C., Barile, F.A., Ekwall, B., Gómez-Lechón, M.J., Hall, T., Imai, K., Kahru, A., Logemann, P., Monaco, F., Ohno, T., Segner, H., Sjöström, M., Valentino, M., Walum, E., Wang, X. and Ekwall, B. (1998). MEIC evaluation of acute systemic toxicity:

Part III. In vitro results from 16 additional methods used to test the first 30 reference chemicals and a comparative cytotoxicity analysis. ATLA 26, Suppl. 1, 91-129.

Clemedson, C., Aoki, Y., Andersson, M., Barile, F.A., Bassi, A.M., Calleja, M.C., Castano, A., Clothier, R.H., Dierickx, P., Ekwall, Ba., Ferro, M., Fiskesjö, G., Garza-Ocanas, L.Gómez-Lechón, M.J., Gülden, M., Hall, T., Imai, K., Isomaa, B., Kahru, A., Kerszman, G., Kjellstrand, P., Kristen, U., Kunimoto, M., Kärenlampi, S., Lewan, L., Lilius, H., Loukianov, A., Monaco, F., Ohno, T., Persoone, G., Romert, L., Sawyer, T.W., Shrivastava, R., Segner, H., Seibert, H., Sjöström, M., Stammati, A., Tanaka, N., Thuvander, A., Torres-Alanis, O., Valentino, M., Wakuri, S., Walum, E., Wieslander, A., Wang, X., Zucco, F. and Ekwall, B. (1998). MEIC evaluation of acute systemic toxicity. Part IV. In vitro results from 67 toxicity assays used to test reference chemicals 31-50 and a comparative cytotoxicity analysis. ATLA 26, Suppl. 1, 131-183.

Ekwall, B., Clemedson, C., Crafoord, B., Ekwall, Ba., Hallander, S., Walum E.and Bondesson, I. (1998) MEIC Evaluation of Acute Systemic Toxicity. Part V. Rodent and Human Toxicity Data for the 50 Reference Chemicals. ATLA 26, Suppl. 2, 569-615.

Ekwall, B., Barile., F.A., Castano, A., Clemedson, C., Clothier, R.H., Dierickx, P.,
Ekwall, Ba., Ferro, M., Fiskesjö, G., Garza-Ocanas, L., Gómez-Lechón, M-J., Gülden,
M., Hall, T., Isomaa, B., Kahru, A, Kerszman, G., Kristen, U., Kunimoto, M.,
Kärenlampi, S., Lewan, L, Loukianov, A., Ohno, T., Persoone, G., Romert, L.,. Sawyer,
T.W., Segner, H., Shrivastava, R., Stammati, A., Tanaka, N., Valentino, M., Walum, E.
and Zucco, F. (1998) MEIC Evaluation of Acute Systemic Toxicity. Part VI. Prediction
of human toxicity by rodent LD50 values and results from 61 in vitro tests. ATLA 26,
Suppl. 2, 617-658.

Walum, E. (1998) Acute oral toxicity. Environ. Health Persp. 106, Suppl. 2, 497-503.

Ekwall, B., Clemedson, C., Ekwall, Ba., Ring, P. and Romert, L. (1999) EDIT: A New International Multicentre Programme to Develop and Evaluate Batteries of *In Vitro* Tests for Acute and Chronic Systemic Toxicity. ATLA 27, 339-349.

Clemedson, C. and Ekwall, B. (1999) Overview of the Final MEIC Results: I. The *In Vitro-In Vitro* Evaluation. Toxicology In Vitro, 13, 1-7.

Ekwall, B. (1999) Overview of the Final MEIC Results: II. The *In Vitro/In Vivo* Evaluation, Including the Selection of a Practical Battery of Cell Tests for Prediction of Acute Lethal Blood Concentrations in Humans. Toxicology In Vitro, 13, 665-673.

Clemedson, C., Barile, F.A., Chesné, C., Cottin, M., Curren, R., Ekwall, B., Ferro, M., Gomez-Lechon, M.J., Imai, K., Janus, J., Kemp, R.B., Kerszman, G., Kjellstrand, P., Lavrijsen, K., Logemann, P., McFarlane-Abdulla, E., Roguet, R., Segner, H., Seibert, H., Thuvander, A., Walum, E. and Ekwall, Bj. (1999) MEIC Evaluation of Acute Systemic Toxicity: Part VII. Prediction of Human Toxicity by Results From Testing of the First 30 Reference Chemicals With 27 Further *In Vitro* Assays. ATLA, 28 (Suppl. 1), 161-200.

First Fifty Reference Chemicals

Acetaminophen Aspirin Ferrous sulfate Diazepam Amitriptyline Digoxin Ethylene glycol Methyl alcohol Ethyl alcohol Isopropyl alcohol 1,1,1-Trichloroethane Phenol Sodium chloride Sodium fluoride Malathion 2,4-Dichlorophenoxyacetic acid **Xylene** Nicotine Potassium cyanide Lithium sulfate Theophylline Dextropropoxyphene HCl **Propranolol HCl** Phenobarbital Paraquat

Arsenic trioxide Cupric sulfate Mercuric chloride Thioridazine HCl Thallium sulfate Warfarin Lindane Chloroform Carbon tetrachloride Isoniazid Dichloromethane **Barium** nitrate Hexachlorophene Pentachlorophenol Varapamil HCl Chloroquine phosphate **Orphenadrine HCl Ouinidine** sulfate Diphenylhydantoin Chloramphenicol Sodium oxalate Amphetamine sulfate Caffeine Atropine sulfate Potassium chloride

Method	hod							
No.	Old No."	Cell type/ test system	Tissue of origin	Species	Endpoint	Incub- ation time	Testing laboratory ^b	Refer- ence
Hum	ian ce	Human cell lines						
!	II:1	Hep G2	Hepatoma	Human	Protein content/Lowry	24 hours	Dierickx	ယ
2	III:2	Hep G2	Hepatoma	Human	Protein content/	24 hours	Hall, Cambridge & James	c,
.ω	11:2	Hep G2	Hepatoma	Human	MTT	24 hours	Gómez-Lechón, Jover,	3, 12
57 <u>1</u> 4	II:4 II:3	WI-1003/Hep G2 ^d Chang liver cells	Lung/Hepatoma Liver	Human Human	Morphology Morphology	24 hours 24 hours	Garza-Ocañas & Torres-Alanis Garza-Ocañas & Torres-Alanis	ယယ
6	II:5	HeLa	Cervical carcinoma	Human	Morphology	24 hours	Ekwall & Malmsten	ω
7.	II:6	Hep 2	Epithelial carcinoma	Human	Protein content/	24 hours	Stammati, Zucco, Zanetti &	ω
8.	II:7	Hep 2	Epithelial carcinoma	Human	LDH release	24 hours	Stammati, Zucco, Zanetti &	ω
9.	II:8	HL-60	Promyelocytic	Human	ATP content	24 hours	Tanaka, Wakuri, Izumi,	ω
10.	III:10	HFL1	Fetal lung cells	Human	MTT	24 hours	Barile & Sookhoo [°]	5, 13
11.	III:11A SQ-5	SQ-5	Lung squamous	Human	LDH content ^f	48 hours	Ohno, Wang, Sasaki & Hirano	3, 14
12.	III:12	SQ-5	Lung squamous	Human	Killing index ^g	48 hours	Ohno, Wang, Sasaki & Hirano	3, 14
13.	II:10	NB-1	carcinoma Neuroblastoma	Human	Protein content/	48 hours	Kunimoto, Miura, Aoki &	ω
14.	II:11	McCoy	Epithelial cells from	Human	Morphology/Trypan	72 hours	Kunimoto Shrivastava & Chevalier	ယ
15.	II:13	WI-1003/Hep G2 ^d	Lung/Hepatoma	Human	Morphology/pH changes	168 hours	168 hours Garza-Ocañas & Torres-Alanis	ω

Source: Clemedson et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part IV. ATLA 26:131-183

Table I: Descriptions of the essential traits of 67 in vitro methods

protocol 112 ^m	pro							
3 TTOX	Kärenlampi & Malmivuori 3 INVITTOX	72 hours	Protein content/ Coomassie blue staining	Mouse	Hepatoma	Hepa-1c1c7 (Sub- clone of Hepa-1)	II:34	30.
ట	Shrivastava & Chevalier	72 hours	Morphology/Trypan blue exclusion ^h	Bovine**	Kidney	MDBK	II:33	29.
ω	Miura, Aoki &	48 hours	Protein content	Rat	Pheochromocytoma	PC12h	II:32	28.
ယ	Romert, Jansson & Jenssen	48 hours	Constar countar	Mouse	Ascites sarcoma	BP8	II:31	27.
σ	Hall, Cambridge & James	24 hours	Protein content/ Sulphorhodomine R	Pig	Kidney	III:40 LLC-PK1	III:40	26.
3, 12	onsoda	24 hours	MTT	Mouse	Fibroblasts	3T3	II:30	25.
3 3, 16	Ferro, Bassi & Canepa ^k Barile, Borges, Arjun & Honbingen	24 hours 24 hours	Macromolecular content [³ H]-proline uptake	Rat Rat	Hepatoma Lung epithelial cells	HTC L2	II:23 II:25	23. 24.
ట	10 minutes Lewan & Andersson	10 minute	ATP leakage	Mouse	Subline of Ehrlich	EL/D	11:20	22.1
ω	10 minutes Lewan & Andersson	10 minute	ATP leakage	Mouse	Subline of Ehrlich	ELD	II:19	21.
						ll lines	Animal cell lines	Ani
CT ,	Valentino, Monaco, Pierugostini, Amati & Governn	3 hours	Locomotion stimulated by chemotactic peptide	Human	Blood	Polymorphonuclear leukocytes'	III:22	20.
CT	Valentino, Monaco, Pieragostini, Amati & Governa	3 hours	Viable cell count fluorescein diacetate/ Fthidium bromid	Human	Blood	III:21 Polymorphonuclear leukocytes'	III:21	19.
						Human primary cultures	nan pr	Hu
3 3 3, 15	Garza-Ocańas & Torres-Alanis Ekwall & Malmsten Dierickx	168 hours 168 hours 6 weeks	Morphology/pH changes pH changes (phenol red) Protein content/Lowry	Human Human Human	Liver Cervical carcinoma Epithelial cells from embryonic lung	Chang liver HeLa MRC-5 (finite cell line)	II:12 II:14 II:15	16. 17. 18.

Sept. 2000 Appendix 2

Method	ď							ĺ
No. N	Old No.	Cell type/ test system	Tissue of origin	Species	Endpoint	Incub- ation time	Testing laboratory ^b	Refer- ence
31. II	II:35	3T3-L1 (Sub-	Embryonal	Swiss	Protein content/Kenacid	72 hours	Clothier	ω
32. II	II:36	Balb 3T3 A31-1-1	Whole embryo	mouse Balb/c mouse	blue staining Colony formation	168 hours	Tanaka, Wakuri, Izumi, Sasaki & Ono	ω
Anima	l pri	Animal primary cultures						
33.		Muscle cells	Skeletal muscle	Rat	Spontaneous contractility	1 hour	Gülden, Seibert & Voss	3, INVITTOX
34. II 35. II 36. II	II:45A II:46A II:50	II:45A Neurons II:46A Neurons II:50 Hepatocytes ⁿ	Embryonal forebrain Embryonal forebrain Liver	Chicken Chicken Male rat	Neutral red uptake MTT MTT	20 hours 21 hours 24 hours	Sawyer & Weiss Sawyer & Weiss Gómez-Lechón Jover	protocol 93 ^m 3 3 3 19
.								
37. H	II:51	Hepatocytes"	Liver	Male rat	Morphology/Trypan blue	24 hours	Shrivastava & Chevalier	ω
38. II:	II:52	Erythrocytes	Peripheral blood of 9-week males	Balb/c	ATP content	24 hours	Tanaka, Wakuri, Izumi,	ω
39.		Muscle cells	Skeletal muscle	Rat	Intracellular creatine kinase activity	24 hours	Gülden, Seibert & Voss	3, INVITTOX
40.		Muscle cells	Skeletal muscle	Rat	Glucose consumption	24 hours	Gülden, Seibert & Voss	protocol 93" 3,
41.		Muscle cells	Skeletal muscle	Rat	Spontaneous contractility 24 hours		Gülden, Seibert & Voss	INVITTOX protocol 93 ^m 3,
								INVITTOX

Sept. 2000 Appendix 2

Table I: continued

Eco	toxicol	Ecotoxicological tests						
42.	II:44	Hepatocytes	Liver	Rainbow trout	⁸⁶ Rb leakage	3 hours	Lilius, Holmström & Isomaa	ယ
43.	III:66	R1 (fibroblast-like Liver	Liver	Rainbow	Neutral red uptake	24 hours	Segner	σ
44.	III:67	olast-like	Liver	Rainbow	Crystal	24 hours	Segner	5
45.	III:68	cell line)	Liver	Rainbow trout	violet stanling Protein content/Crystal violet staining	144 hours	Segner	CT
46.		RTG-2 (fibroblast- like cell line)		Rainbow trout	Protein content/Kenacid blue	48 hours	Castano, Cantarino & Castillo	17, 18
47.		RTG-2 (fibroblast- like cell line)		Rainbow trout	al red uptake	48 hours	Castano, Cantarino & Castillo	17, 19
48.		RTG-2 (fibroblast- like cell line)		Rainbow	ATP content	48 hours	Castano, Cantarino & Castillo	17, 20
49.	II:56	Photobacterium phosphoreum		Bacteria	Bioluminescence, inhibition Microtox TM	5 minutes	Persoone, Calleja & Geladi	ယ
50.	III:70A	III:70A Photobacterium phosphoreum		Bacteria		5 minutes	Kahru & Borchardt	5, 21
51.	II:58	Escherichia coli B		Bacteria	Growth, minimal inhibitory concentration ^o	18 hours	Kerszman	
52.		Halobacterium halobium		Archea	Growth, minimal inhibitory concentration [°]	120 hours	Kerszman	22, 23
53.	II:60	Daphnia magna	Neonates (< 24 hours old)	Cladocera, crustacea		24 hours	Lilius, Holmström & Isomaa	ట
54.	II:61	Daphnia magna	Neonates (< 24 hours old)	Cladocera, crustacea	Immobilisation	24 hours	Persoone, Calleja & Geladi	ω
55.	11:62	Brachionus calyciflorus (fresh- water ratifar)	Larvae	Rotifer (Aschel-	Larval mortility (modified Rotokit F)	24 hours	Persoone, Calleja & Geladi	చ

Method	lod							
No.	Old No."	Cell type/ test system	Tissue of origin	Species	Endpoint	Incub- ation time	Testing laboratom.b	Refer-
	11.63					******	INDUCATORY	ence
<u>ар</u>	11:63	Artemia salina (brine shrimp)	Instar I-III larvae	Anostraca,	Anostraca, Larval mortility	24 hours	Persoone Calleia &	ی ا
57. I	ll:64	Streptocephalus	Instar I_III larma	crustacea	(modified Artoxkit M)		Geladi	C.
		proscideus (Fairy shrimp)		crustacea	Larval mortility (modified Streptoxkit F)	24 hours	Persoone, Calleja & Geladi	ట
58. I	II:65	Pollen tubes	Tobacco plant anthers	Nicotiana sylvestris	Photometric tube growth	18 hours	Kristen, van Aken, Joos,	3, 24
59. I	II:66	Allium cepa	Root		blue staining		mappier & ouruper	25
		(onion)			measurement	72 hours	Fiskesjö & Levan	ω
Cell-free systems	.ee sy	stems						
60. 61.		Ovalbumin Ovalbumin			Protein denaturation Protein denaturation	2 hours 5 hours	Loukianov Loukianov	See M&M
Metho	ds us	ed to test refere	Methods used to test reference chemicals 31–50 only	only				ALTO IAL DOC
62.		Hep 2	Epithelial carcinoma Human	lan	Neutral red uptake	24 hours	Imai	
63.	_	Hep 2	Epithelial carcinoma Human					3, 26–28
64.	-	Perinheral	of larynx		ake/	24 + 96 hours	Imai	3, 26-28
i		mononuclear lymphocytes ^q	4 eripheral biood	Human (*	nidine ation	Ś	Thuvander, Gadhasson & Netzel	29
Ċ	►	r eripheral mononuclear lymphocytes ^q	Peripheral blood	Human [³	[³ H]-Thymidine	72 hours	Thuvander, Gadhasson & Netzel	29

Table I: continued

Sept. 2000 Appendix 2

	67.		66.	
	L_2		L-929	
	Lung epithelial cells		Fibroblasts	
	Rat		Mouse	
(Haemocytometer)	Cell number		Neutral red uptake	
	72 hours		72 hours	
Bourne	Barile, Hopkinson &	Martinson & Wieslander	Kjellstrand, Järkelid,	
	16		30	

LDH = lactate dehydrogenase

^aOld numbers can be used to search for the raw data of reference chemicals 1–30 presented in Parts II and III. Roman numerals indicate Part II or Part III. ^bIn many cases, these also developed the tests. 'For MEIC reference chemicals 31–50, testers were Gómez-Lechón, Ponsoda, Jover, Nunez & Royo. ^dWI-1003 cells were used for chemicals 1–10 and Hep G2 were used for chemicals 31–50. 'For MEIC reference chemicals 31–50, testers were Gómez-Lechón, Ponsoda, Jover, Nunez & Royo. ^dWI-1003 cells were used for chemicals 1–10 and Hep G2 were used for chemicals 11–50. 'For MEIC reference chemicals 31–50, testers were Barile, Alexander & Sookhoo. ⁱThe number of surviving cells (LDH content) was calculated as LDH content in the cell layer of cultures exposed for 48 hours, divided by the LDH content in untreated controls after incubation for 48 hours. IC50 is the concentration reducing the surviving cells to 50% of untreated control cultures. "Killing index was calculated as LDH release into the medium after exposure for 48 hours, divided by LDH content in cells precultured for 24 hours. Killing index (KI1) was the concentration causing the release of LDH equivalent to the cellular LDH at the beginning of chemical treatment (LDH content in the cell dayer of the 24-hour-precultured cells). ^hIC50 (CT50) is the lowest concentration inducing either morphometric changes in 50% of cells or 50% cell death. For hepatocytes also including 50–100% increased LDH release compared to control werther of the telese compared to content in the cell dayer of the patocytes also including 50–100% increased LDH release compared to content inducing index including 50–100% increased LDH release compared to content inducing index including 50–100% increased LDH release compared to content in the cell dayer of the patocytes also including 50–100% increased LDH release compared to content inducing index including 50–100% increased LDH release compared to content inducing index includies including 50–100% increased LDH release compared to 22 is the same as method 21 except that a different incubation medium is used. *For MEIC reference chemicals 31-50, testers were Ferro, Bassi & Penco. 'For MEIC reference chemicals 31-50, testers were Barile, Hopkinson & Bourne. "INVITTOX, Russell & Burch House, 96-98 North Sherwood Street, Nottingham NG1 4EE, UK. "Hepatocytes were isolated by two-step collagenase perfusion. "Minimal inhibitory concentration, i.e. the values. 'Polymorphonuclear leukocytes were isolated by density gradient centrifugation of venous blood from normal healthy non-smokers. 'Method 22 is the same as method 21 except that a different incubation medium is used. For MEIC reference chemicals 31–50, testers were Ferro, Bassi & chemicals 31–50, testers were Kristen, Kappler & Strube. ⁹Human peripheral mononuclear cells were obtained from buffy coats from healthy female lowest concentration of chemicals preventing bacterial growth at 37°C for 18 or 120 hours. Thus, values are not IC50 values. PFor MEIC reference blood donors younger than 40 years of age

Oral LD50 Doses for Rat and Mouse and Mean Oral Lethal Doses for Humans	
---	--

Chemical	Chemical	Rat LD50		Mouse LD50		Ave. Human Dose	
Number	[mg/kg	umol/kg	mg/kg	umol/kg	mg/kg	umol/kg
28	Mercuric chloride	1	4	6	22	25.7	94.7
31	Warfarin	2	5	3	10	107.1	347.4
18	Potassium cyanide	5	77	9	131	2.9	43.9
26	Arsenic trioxide	15	74	31	159	4.1	20.9
30	Thallium sulfate	16	32	24	47	14.0	27.7
39	Pentachlorophenol	27	101	28	105	28.6	107.3
6	Digoxin	28	36	18	23	0.1	0.17
17	Nicotine	50	308	3	21	0.7	4.4
13	Sodium fluoride	52	1238	57	1357	92.8	2210.9
47	Amphetamine sulfate	55	149	24	65	20.0	54.3
38	Hexachlorophene	56	138	67	165	214.3	526.6
32	Lindane	76	261	44	151	242.9	835.1
21	Propoxyphene HCL	84	223	255	678	24.6	65.4
25	Paraquat	100	537	120	644	40.0	214.7
40	Varapamil HCL	108	220	163	331	122.3	249.1
23	Penobarbital	162	697	137	590	111.4	479.7
48	Caffeine	192	989	127	654	135.7	698.8
2	Acetylsalicylic acid	200	1110	232	1287	385.7	2140.5
20	Theophylline	244	1354	235	1304	157.1	872.1
42	Orphenadrine HCL	255	834	100	327	50.0	163.4
43	Quinidine sulfate	258	610	286	676	79.2	187.4
14	Malathion	290	878	190	575	742.8	2248.4
11	Phenol	317	3369	270	2869	157.2	1670.0
3	Ferrous sulfate	319	2100	680	4477	392.1	2581.0
5	Amitriptyline	320	1154	140	505	37.1	133.8
4	Diazepam	352	1236	45	159	71.4	250.8
37	Barium nitrate	355	1358	266	1016	37.1	142.1
15	2,4-Dichlorophenoxy-acetic acid	375	1697	347	1570	385.8	1745.3
22	Propamolol HCL	466	1575	320	1082	71.5	241.7
27	Cupric sulfate	469	1880	502	2012	290.6	1163.6
19	Lithium sulfate	492	4478	1190	10,828	1065.5	9691.8
49	Altropine sulfate	585	864	456	674	1.7	2.5
41	Chloroquine phosphate	623	1208	500	969	84.3	163.4
33	Chloroform	908	7605	36	302	999.8	8375.2
29	Thioridazine HCL	995	2445	385	946	68.6	1684
35	Isoniazid	1250	9117	133	970	171.5	1250.4
36	Dichloromethane	1601	18,846	873	10,280	1386.2	16,321.7
44	Diphenylhydantoin	1635	6480	150	595	300.0	1189.1
34	Carbon tetrachloride	2350	15,280	8264	53,726	1314.4	8545.4
1	Paracetamol	2404	15,899	338	2235	271.4	1795.2
45	Chloramphenicol	2500	7735	1500	4641	285.7	884.0
50	Potassium chloride	2598	34,853	1499	20,107	285.5	3830.0
12	Sodium chloride	3002	51,370	4003	68,493	2287.3	39,138.9
16	Xylene	4299	40,490	2119	19,953	899.8	8474.6
7	Ethylene glycol	4698	75,684	5498	88,567	1570.9	25,304.8
8	Methanol	5619	175,327	7289	227,414	1569.0	48,954.2

9	Ethanol	7057	153,145	3448	74,837	4712.2	102,262.2		
46	Sodium oxalate	11160	83,284	5095	38,019	357.1	2665.3		
10	1,1,1-Trichloroethane	11196	83,927	7989	59,884	5707.6	42,785.8		
Source: E	. Walum. 1998. Acute								

Oral LD50 Doses for Rat and Mouse and Mean Oral Lethal Doses for Humans

NICEATM MEIC Program Overview

Sept. 2000 Appendix 3

Chemical	emical Chemical Rat			LD50 Mouse		Ave. Human Dose	
Number		mg/kg	umol/kg	mg/kg	umol/kg	mg/kg	umol/kg
31	Warfarin	2	5	3	10	107.1	347.4
17	Nicotine	50	308	3	21	0.7	4.4
28	Mercuric chloride	1	4	6	22	25.7	94.7
18	Potassium cyanide	5	77	9	131	2.9	43.9
6	Digoxin	28	36	18	23	0.1	0.2
30	Thallium sulfate	16	32	24	47	14.0	27.7
47	Amphetamine sulfate	55	149	24	65	20.0	54.3
39	Pentachlorophenol	27	101	28	105	28.6	107.3
26	Arsenic trioxide	15	74	31	159	4.1	20.9
33	Chloroform	908	7605	36	302	999.8	8375.2
32	Lindane	76	261	44	151	242.9	835.1
4	Diazepam	352	1236	45	159	71.4	250.8
13	Sodium fluoride	52	1238	57	1357	92.8	2210.9
38	Hexachlorophene	56	138	67	165	214.3	526.6
42	Orphenadrine HCL	255	834	100	327	50.00	163.4
25	Paraquat	100	537	120	644	40.00	214.7
48	Caffeine	192	989	120	654	135.7	698.8
35	Isoniazid	1250	9117	133	970	171.5	1250.4
23	Penobarbital	162	697	133	590	171.5	479.7
5							
	Amitriptyline	320	1154	140	505 595	37.1	133.8
44	Diphenylhydantoin	1635	6480	150		300.0	1189.1
40	Varapamil HCL	108	220	163	331	122.3	249.1
14	Malathion	290	878	190	575	742.8	2248.4
2	Acetylsalicylic acid	200	1110	232	1287	385.7	2140.5
20	Theophylline	244	1354	235	1304	157.1	872.1
21	Propoxyphene HCL	84	223	255	678	24.6	65.4
37	Barium nitrate	355	1358	266	1016	37.1	142.1
11	Phenol	317	3369	270	2869	157.2	1670.0
43	Quinidine sulfate	258	610	286	676	79.2	187.4
22	Propamolol HCL	466	1575	320	1082	71.5	241.7
1	Paracetamol	2404	15,899	338	2235	271.4	1795.2
15	2,4-Dichlorophenoxy-acetic	375	1697	347	1570	385.8	1745.3
29	Thioridazine HCL	995	2445	385	946	68.6	168.5
49	Altropine sulfate	585	864	456	674	1.7	2.5
41	Chloroquine phosphate	623	1208	500	969	84.3	163.4
27	Cupric sulfate	469	1880	502	2012	290.6	1163.6
3	Ferrous sulfate	319	2100	680	4477	392.1	2581.0
36	Dichloromethane	1601	18,846	873	10,280	1386.2	16,321.
19	Lithium sulfate	492	4478	1190	10,828	1065.5	9691.8
50	Potassium chloride	2598	34,853	1499	20,107	285.5	3830.0
45	Chloramphenicol	2500	7735	1500	4641	285.7	884.0
16	Xylene	4299	40,490	2119	19,953	899.8	8474.6
9	Ethanol	7057	153,145	3448	74,837	4712.2	102,262
12	Sodium chloride	3002	51,370	4003	68,493	2287.3	39,138.
46	Sodium oxalate	11160	83,284	5095	38,019	357.1	2665.3
7	Ethylene glycol	4698	75,684	5498	88,567	1570.9	25,304.
8	Methanol	5619	175,327	7289	227,414	1569.0	48,954.
10	1,1,1-Trichloroethane	11196	83,927	7989	59,884	5707.6	42,785.
	Carbon tetrachloride	2350	15,280	8264	53,726	1314.4	8545.4

NICEATM MEIC Program Overview

Sept. 2000 Appendix 3

Chemical	Chemical	Rat LD50		Mouse LD50		Ave. Human Dose	
Number		mg/kg	umol/kg	mg/kg	umol/kg	mg/kg	umol/kg
6	Digoxin	28	36	18	23	0.1	0.2
17	Nicotine	50	308	3	21	0.7	4.4
49	Altropine sulfate	585	864	456	674	1.7	2.5
18	Potassium cyanide	5	77	9	131	2.9	43.9
26	Arsenic trioxide	15	74	31	159	4.1	20.9
30	Thallium sulfate	16	32	24	47	14.0	27.7
47	Amphetamine sulfate	55	149	24	65	20.0	54.3
21	Propoxyphene HCL	84	223	255	678	24.6	65.4
28	Mercuric chloride	1	4	6	22	25.7	94.7
39	Pentachlorophenol	27	101	28	105	28.6	107.3
5	Amitriptyline	320	1154	140	505	37.1	133.8
37	Barium nitrate	355	1358	266	1016	37.1	142.1
25	Paraquat	100	537	120	644	40.0	214.7
42	Orphenadrine HCL	255	834	100	327	50.0	163.4
29	Thioridazine HCL	995	2445	385	946	68.6	168.5
4	Diazepam	352	1236	45	159	71.4	250.8
22	Propamolol HCL	466	1575	320	1082	71.5	241.7
43	Quinidine sulfate	258	610	286	676	79.2	187.4
41	Chloroquine phosphate	623	1208	500	969	84.3	163.4
13	Sodium fluoride	52	1238	57	1357	92.8	2210.9
31	Warfarin	2	5	3	10	107.1	347.4
23	Penobarbital	162	697	137	590	111.4	479.7
40	Varapamil HCL	102	220	163	331	122.3	249.1
40	Caffeine	192	989	103	654	135.7	698.8
20	Theophylline	244	1354	235	1304	157.1	872.1
11	Phenol	317	3369	233	2869	157.1	1670.0
35	Isoniazid	1250	9117	133	970	171.5	1250.4
38	Hexachlorophene	56	138	67	165	214.3	526.6
32	Lindane	76	261	44	151	214.3	835.1
<u> </u>	Paracetamol	2404	15,899	338	2235	242.9	1795.2
50	Potassium chloride	2598	34,853	1499	2235	271.4	3830.0
45	Chloramphenicol	2598	7735	1499	4641	285.5	884.0
27		469					
	Cupric sulfate		1880 6480	502 150	2012	290.6	1163.6
44	Diphenylhydantoin Sodium oxalate	1635 11160			595	300.0 357.1	1189.1
46 2	Acetylsalicylic acid	200	83,284 1110	5095 232	38,019 1287	385.7	2665.3 2140.5
 15		375	1697	347	1287	385.8	
3	2,4-Dichlorophenoxy-acetic Ferrous sulfate	319	2100	680	4477	392.1	1745.3 2581.0
14	Malathion	290 4299	878	190	575	742.8 899.8	2248.4
16	Xylene Chloroform		40,490	2119	19,953		8474.6
33 19	Chloroform	908 492	7605	36	302	999.8 1065 5	8375.2
	Lithium sulfate		4478	1190	10,828	1065.5	9691.8
34	Carbon tetrachloride	2350	15,280	8264	53,726	1314.4	8545.4
36	Dichloromethane	1601	18,846	873	10,280	1386.2	16,321.
8	Methanol	5619	175,327	7289	227,414	1569.0	48,954.
7	Ethylene glycol	4698	75,684	5498	88,567	1570.9	25,304.
12	Sodium chloride	3002	51,370	4003	68,493	2287.3	39,138.
9	Ethanol	7057	153,145	3448	74,837	4712.2	102,262
10	1,1,1-Trichloroethane . Walum. 1998. Acute	11196 oral toxicity	83,927	7989 5: 497-503	59,884	5707.6	42,785.

Oral LD50 Doses for Rat	and Mouse and M	Mean Oral Lethal	Doses for Humans
-------------------------	-----------------	------------------	------------------

NICEATM MEIC Program Overview

Toxicity Categories

Category	Signal Word	Oral LD ₅₀ (mg/kg)	Dermal LD ₅₀ (mg/kg)	Inhalation LD ₅₀ (mg/L) ²	Oral Lethal Dose	Eye Irritatio
I - Highly Toxic	DANGER, POISON (skull & crossbones), WARNING	0 to 50	0 to 200	0 to 0.05	A few drops to a teaspoonful	Corrosive (irreversible destruction of oci tissue) or corneal involvement or irritation persistii for more than 21
II - Moderately Toxic	CAUTION	>50 to 500	>200 to 2,000	> 0.05 to 0.5	Over a teaspoonful to one ounce	Corneal involven or irritation clear in 8-21 days
III - Slightly Toxic	CAUTION	>500 to 5,000	>2,000 to 20,000	>0.5 to 2	Over one ounce to one pint	Corneal involven or irritation clear in 7 days or less
IV - Relatively Non-toxic	none	>5,000	>20,000	> 2	Over one pint to one pound	Moderate irritatic 72 hours (modera erythema)

1 EPA/OPP does not currently use the inhalation toxicity values in 40 CFR 150.10(h). Instead, OPP uses values are from a 2/1/94 Health entitiled "Interim Policy for Particle Size and Limit Concentration Issues in Inhalation Toxicity Studies".

² Four hour exposure.

Sources:

(1) U.S. EPA, Office of Pesticide Programs. Label Review Manual. Chapter 8: Precautionary Labeling. http://www.epa.gov/oppfead1/

(2) National Ag Safety Database. Toxicity of Pesticides. http://www.cdc.gov/niosh/nasd/docs2/as18700.html.

(3) 40 CFR 156.10(h) – Labeling Requirements for Pesticides and Devices. Warnings and precautionary statements.

							υ	Dose values (g)	ues (g)					
						Ref	Reference numbers	numbe	2					
No. Ch	Chemical	LD/ MLD	10	=	12	13	14	15	16	17	18	19	- Other references	Mean doses
. Pa	Paracetamol	Đ	19											
2. Ac	Acetylsalicylic acid	ED MLD	33.6	17.5	30 210	17.5	22.5	2°10	17.5			10		19 15
3A F.2	t in term (II)	MLD	35	17.5			20	E.						27
	sulnhate	Ę	16.8	17.5	•	1	6	15.7	11.5	7.7	23.2			14
3B. Iro	fron (11) sulphate				2.1	1.5	1.5				4.28			2.3
Dia	Diazepam	ĿD												5 38
5. Am hy	Amitriptyline hydrochloride		сл		>2.1	N	N	- 22	1.75			ຄ		2.6
6. Dig	Digoxin	LD				0.005		0.015	0.0075					
7. Eth	Ethylene glycol			111	0.001 100					111	111			0.0011
Met	Methanol	ED	111	70	123		67	150	111	110		111		110
Eth	Rthanol	MLD	23.8	23.8	2						17.5	59		310
		MLD	100	707	017			455	455					330
10. Isop	Isopropanol	MLD	132	188	196		196	188	157	188		196	98 (9, 59)	196 180
11. 1,1,	1,1,1-Trichloroethane	Ð											09 (60) 600 (64)	5
12. Phenol	nol	MLD	90	×42	>6.7							-	193 (00) , 802 (61)	24
	Sodium chlorido	MLD	4.8	1.0	2	11.5	-				8.8	30		8 R 1 I

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616.

26. 27. 28. 29. 30.	21. 22. 24. 25.	16. 17. 18. 19. 20A. 20B.	14. 15.
Arsenic trioxide Copper (II) sulphate Mercury (II) chloride Thioridazine hydrochloride Thallium sulphate	Theophylline Dextropropoxyphene hydrochloride Propranolol hydrochloride Phenobarbital Phenobarbital	2,4-Dichloro- phenoxyacetic acid Xylene Nicotine Potassium cyanide Lithium Lithium	Sodium fluoride Malathion
		MLD MLD MLD MLD MLD MLD MLD MLD	MLD LD
0.21 4.8	4.5 1.1	28 ^d 5.6 120 0.060 0.25	7.5 60
0.23 2.1 0.5 0.85	8	0.045 0.20	4.6
0.12 1 1	0.5 >1 1.5	6.5 245 0.14	1.2
	0.75 E9.6	0.040 0.045	57
	œ		8 57
0.25 15 2.5 0.5	1.28 E5.1 7.5	24.1 19.4 0.060 0.005 0.20 9.4 ^r	7.5 1 17.5
0.33 0.2 15 3.5 >3	4 0.78 ^h 7.5 3.1	53 0.045	7.5
0.2 15 1	11 * 0.65 6 1.5	28 12.9 0.05 0.20	7.5 60
1 10	0.64 1.2 5	0.05 0.25	4.5
0.1 15 0.5	7 5 1.5 0.075	21.5 0.045 0.2	
0.3 ^k 3.5 (59) ^c	11 (63) 5.2 (9, 59) ^c	5.6 (9)°	70 (62) 25 (9, 59) ^c
0.29 0.18 9.3 1.5 0.5 0.68 0.68	11 5.4 0.71 5 7.8 7.8 7.8 2.5 0.18	27° 53° 0.05 0.21 0.20 9.4 58	6.2 52 25

IV-3	

		·				Refe	prence	Reference numbers	s Iso (8)					
No.	Chemical	LD/ MLD	10	=	12	13	14	15	16	17	18	19	Other references	Mean doses
31.	Warfarin	LD							7.5 ⁱ	7.5				7.5
32.	Lindane		15) 1			8.75		28				17
33	Chloroform	LD			3.5			44			96			<u>ي</u> ع
34 4	Carbon tetrachloride	LD MLD	44	14.8	14.8			39 Re.		14.8		22		0 10
5		MLD	12		6.4			3.2	6.4		2	6.4		. 0. 0
20,	ISOTIALIA	MLD	38	æ		80		8	٥	12.0	14	10		8 1
36.	Dichloromethane	MED			33.2				146°		9	110°		9 09 1
37.	Barium nitrate			2	2					3.9°	24	•		2.6
38.	Hexachlorophene				თ					17.5	21	, –		,
39	Pentachlorophenol		2		•					2		2.20	2 (62)	2 2 3
40	Verapamil hydrochloride		ť	ယ	-				> 8.6 ^ſ	3.8 ^r				<u></u> α α ⊢
41.	Chloroquine nhosnhate	M LD	2.5			7.2	8		5.6		6.4		0.0 (0)5	
42.	Orphenadrine	55	2.8	2.8	5.5ª	2.8			2.8	•			(8) 9.7	3.3
43.	Quinidine sulphate		4			11.5			∨ 66 ∞8	oç ⊢	11.5 2			5 10

Table II: continued

Anie PO Con Geo Two NOm NOm NOm NOm	4 9. 50.	48.	46.	45 44
^a high variability as well as tolerance makes it difficult to establish human LD. ^b POISINDEX [*] , Information Systems (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA). ^c Low LD. ^d Extrapolated from animal dosage. ^d Geometric mean value, when the quotient between original values (range) is larger than ten. ^d Two lethal poisonings. ^e One survivor and one dead. ^h One death. ^h One death.	Atropine sulphate Potassium chloride	Amphetamine sulphate Caffeine	Sodium oxalate	Diphenylhydantoin Chloramphenicol
toleranc n System dosage en the qu 1. 1.				MLD MLD
e makes 18 (ed. B wotient be	E0.10 ^k	7.5 E6.5		E7.5 20
it diffic H. Run etween o n 13 da	:	0.1	30	9.1
ult to estu nack & D priginal u	E0.1 ^k	0.1 15	15	E21
ablish hu).G. Spoe)alues (ra	E0.2 ^k	7.5		
man Ll rke), Mi nge) is		7.5		
). cromedes larger th	0.10	0.15 10		
t (Denvo an ten.	0.2 E45	0.12 12	0	8.5
г, CO, L	0.050 18 ^h		23	20
ISA).	0.1 ^k 16.2	10	15 14 ^d	
	0.075	0.25 10	57	22
	24 (65)		5 (64)	10 (62), 28 (9) ^c
	0.12* 0.12 28 18	0.14 9.9 9.1	0.95 0.95	21 6.8 20 19

								Co	ncentru	Concentrations (mg/l)	mg/l)			
		2					Re	eferenc	References numbers	ıbers			Other	Mean con-
No.	Chemical	MLC	10	=	12	13	14	15	16	17	18	19	reter- ences	centration (mg/ml)
1.	Paracetamol	LC	300 °	300		300ª						400		330
9	Salicylic acid	MLC	1300 ^b	160"	300-		300°					600		250
		MLC		1000	₄ 006	800 ⁵	1000							930
ယ	Iron		10°	10°	רט			תי	8 10			8		7 8 7 6
4.	Diazepam	LC			•			1				20		20
л	Amitrintuling	MLC	15	7 20						20		5		18
9	The second s	MLC		c						2.5 ^d		10		2.5
6.	Digoxin	MIC	0 015						0 003	0.027	6 0 0 3	0.01		0.018
7.	Ethylene glycol		4370						0.000	4370	0.000	2000		3600
9 8	Methanol	50	1750	1000				500		1600	1800	800		1400
9	Ethanol	56	5000	5000	5000		4000	5000	5000	100	3700	4500		4600
10.	Isopropanol		3400	2000	0000			1500	2000			3000		2800 1800
.Ħ	1,1,1-Trichloro-	5											180 (26)*	E180
12.	Phenol		42						50					46 ^r

Table III: Clinically measured acute lethal serum concentrations in humans

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616.

26. 27.	22 23. 24.	20. 21.	17. 19.	
Arsenic Copper	Dextropropoxy- phene Propranolol Phenobarbital Paraquat	Lithium Theophylline	acetic acid MLC Xylene MLC Nicotine LC Cyanide LC MLC	sodium chloride Fluoride Malathion
MLC MLC	MLC MLC			MLC MLC
	6 16 115 2		9 4 5 0	
	3.3 4.7 80	24 183	10	10800
3.9 ^d	2			ىت
		24		
	4			10800
		6 <u>9</u>	3 10	
	2 3.3 ¹ 120	64 135	E50	14.2
	1.8 ^d 3° 117	77°	3 000	14 ^{d.}
4 .5	110 0.1	150		
6 2%	200	5	רט	ω
			43 (66) 11 ^{h,i} 5	4.4 (26)°
2.5 5.5	8 6.4 1.9 3.9 136 100 2 ^f 0.17	15 24	° 5 10 5 11 47 10	11000 8.6 nr E4.4 E0.35

		1					Re	References numbers	es num	bers			Other	Mean con-
Zo.	Chemical	MLC/	10	=	12	13	14	15	16	17	18	19		centration (mg/ml)
28	Mercury	LC			2					0.65°		2	14.3 (67) ^{d.#}	2.6 ^h
29.	Thioridazine	LC	0.22		>0.1					7.1 ^d		20		0.22 14
30.	Thallium	LC	5							1.5 ^{d.h}				1.5 ⁺
		MLC	0.3											d ic
31.	Warfarin	HC C									107 ^d		110 (26) ^{d.g}	E110 ^p
32.	Lindane								0.5	0.92°				E0.92
33	Chloroform								0	1659		200 ⁹		400
34.	Carbon	LC MLC								20 ^{d.g}		1 20		14.5 ¹
35.	tetrachioride Isoniazid			10						1.0 77°				E77 10
36.	Dichloromethane	50										300'		300 Dr
37.	Barium									5			97 (26) ^d	E97 5.6
38.	Hexachlorophene		35.6°							52°				44 nr
39.	Pentachlorophenol	EC C	;							74°				74 40

Table III: continued

00.	50	49.	48.	47.	46.		45	44.	4 3.	42.	41.	40.
i otassiuili	Potassium	Atropine	Caffeine	Amphetamine	Oxalate		Chloramphenicol	Diphenylhydantoin	Quinidine	Orphenadrine	Chloroquine	Verapamil
MLC	MLC	LC	LC		MLC	MLC	MLC	LC	EC C	MLC		MLC
293	307		150				60	95	z .	Ĵ,	104	
							50		16.8 ^d	6		
								Ĩ	5			3
		190				75 ^t					8	
								Ľ	þ			
						68 ^t					9	4.1
313	064d	135" 0.13 ^{d.} #			20*	68 ^t	1000	86	14.6 ^d	3.6°	22 ^d	4 ^{d.g}
205	350		160 ^{d.g}	4								
			150	2	20			80	40		4	
					20 (26)°							
<u>د</u> ه د.	3°⊐	14 E0.	15	ω	22	70	5	9	No	e 4.8	, <u></u>	3.7 nr

presented LC value in calculations based on LC values. "Based on one case only." Geometrical mean value from a range of values with a quotient larger than ten. 'TOMES' Information Services (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA). 'Also 69mg/l as judged from high survived concentrations in reference 16. *May include acute chronic dosage. 'Peak concentration. "S/D: 90/170 = 130 mg/l (17). "Acute dosage. "In blood. "Represents acute on chronic dosage: no reports on single-dose lethal poisonings. "Plane 4 anaesthesia. 'Value probably originating from forensic medicine data. "Reported value of 90mg/l, which seems too high. 'Grey baby syndrome.

E = estimated/extrapolated; LC = mean lethal serum concentration; MLC = minimal lethal serum concentration; S/D = high survived and lethal concentrations from case reports, with a resulting mean value; nr = not reported.

		LC/				Re	Reference numbers	Reference numbers		1
	Chemical	MLC	17	20	21	22	23		24	24 25
	Paracetamol	LC	248		250	280ª				160
2	Salicylic acid	EC C	661	160 500	160 500	732	150		250	250 700
ω	Iron	LC MLC	9.0 ^h	35			450		450	450
4 .	Diazepam	LC	18		I	r I				
5	Amitriptyline		3.7	20 6.32"	0.55 ^d	50 5.58°	1.5		1.75	1.75 2
6.	Digoxin		0.025	0.015	0.0103°					0.015
	Ethylene glycol		2400	3000	2400		0.005		0.005	0.005
. 8	Methanol		1900	200	1900					1
9	Ethanol		5500	3500	4000°					900 5000
10.	Isopropanol	MLC	1500	0000	1000	4000				
11.	1, 1, 1-Trichloroethane	LC	126		80°					316*
12.	Phenol	50	49	90	61					90
13.										

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616.

Table IV: Post-mortem acute lethal concentrations in humans

•

6 <u>7</u> 8 <u>9</u> 6	5 4 3 2 1	16. 19.	15 _.
Arsenic Copper Mercury Thioridazine Thallium	Theophylline Dextropropoxyphene Propranolol Phenobarbital Paraquat	2,4-Dichlorophenoxy- acetic acid Xylene Nicotine Cyanide Lithium sulphate	Fluoride Malathion
MLC MLC MLC MLC MLC MLC MLC MLC MLC	MLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	MLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	
3.3 3.6 4.2 4.0	150 4.7 14 97 1.2 ^{a.h}	464 43 29 24.7 31.9°	15 281
12 12.5ª 4.24ª 0.5	150 4.1° 10 80 35	10.9 16° 3.7 34	2
N 55 55	1.2 1.2	13.4 ^{^b} 25 5 13.9	ω
2.36 [*] 0.58 7	7.7* 16 210	669 17.7" 7.6"	
10	80 7 ⁵⁰		
11.5	50 1.5 7	13.6	
0.6	150 7 125 2	10.9 3.7 35	2
3.3 (27) ^s 2.4 (27) ^d			
л 266402л 2598 7 359647472	150 7.9 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11	570 9.9 9.9 14	5.5 nr 280 nr

						Con	Concentrations (mg/l)	ns (mg/l)			
						Ref	Reference numbers	umbers		Other	Mean con-
No.	Chemical	MLC	17	20	21	22	23	24	25	reter-	(mg/ml)
<u> </u>	Warfarin	LC			/ 15		/ 10	/	-	100 (28)	> 10
32	Lindane		o onek		~10		\ 10	\ 10			0 02
ä	Chloroform		0.02 64	390	30°	29			390		97°
34	Carbon tetrachloride	LC	274 ^h		260				150		230
5	Isoniazid		117 ^h		150°		100	100			130 100
36	Dichloromethane	LC	364	280	395 ^h	496			280		360 nr
37.	Barium		1 Q ^{c,1}							< 20 ^{e,l,m}	nr 1.9
38.	Hexachlorophene		35	35					35		nr
39.	Pentachlorophenol		107	46	99 46				45		100 46
40.	Verapamil		11	6.4	ť			2.5	თ ;		7.8 2.5
41.	Chloroquine	LC LC	30.5	17.2ª	310	11.2ª	4- 57	ಬ	ట		14 3.5
42.	Orphenadrine		20.6	6	، <u>م</u> د	16.7	7	3	6		12 4.9
ŝ	Quinidine	EC C	45°	40	35.	40	5.		40		44 23
44.	Diphenylhydantoin		54 ^{°.n}	100	70 94		50	50	100		68 83

"Geo gestu 305r "Ano	50.	49.	48.	47.	46.	45.
^a Geometrical mean value from a wide range, with a quotient larger than 10. ^b A few (two or three) cases. ^c LC50. ^d LC10. ^c One case only. ^f In gestion. ^c Acute on chronic dosage? ^h 1-22 days: 15-0. Img/l. '2 hours to 8 days: 22-0.8mg/l. ^J 4-15 days. ^b Died after 7 days. ^l A few hours after suicidal ingestion of barium sulphide, which is not a pure barium poisoning. Barium poisoning with a peak plasma concentration of 305mg/l has been survived (9). ^m POISINDEX [®] Information Systems (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA) ⁿ Another case had 43mg/l (27). ^m Values of 0.6mg/l and 0.5mg/l in two other references (29 and 68). ^p Vitreous humour concentrations.	Potassium	Atropine	Caffeine	Amphetamine	Oxalate	Chloramphenicol
from a w c dosage? ium_sulp d (9), "Pe d (27), "Va		LC			LC	LC MLC
ide range ^h 1-22 day hide, whi OISINDE dues of 0.	553 ^{h.p}	0.2°	183	8.6	489	
, with a q ys: 15–0.1 ch is not X [®] Inforn Smg/l anc		0.2	100	-	10	
uotient la mg/l. '2 h a pure b nation Sy 1 0.5mg/l !		0.2	115	0.6	10	
rger than ours to 8 a nrium poi stems (ed. in two oth			69	1.9ª		
10. ^b A few lays: 22–0., soning. Bc B.H. Rum er referenc		00	80	0 75		> 25
(two or th 8mg/l. ^j 4- urium poi tack & D.(es (29 and				0 75	K.	> 25
ree) cases. ^c 15 days. ^k Di soning with G. Spoerke), I 68). ^p Vitree		0.2	ŝ,	- 0		
LC50. ^d LC10. ^c One ed after 7 days. ^l A J a peak plasma co Micromedex (Dent vus humour concen					45 (64)°	105 (26)°
C10. One case only. In- days. A few hours after blasma concentration of dex (Denver, CO, USA). ur concentrations.	E550 ^p nr	0.2	120	0.8 0.8	41	100 > 25

LC = mean lethal serum concentration; MLC = minimal lethal serum concentration; nr = none reported; E = extrapolated/estimated.

No.	Chemical	Absorption in the gut ^b	Time to peak (ingestion)	Kinetics	Ŧ₩ŗ	Vd Mg	Passage of blood-brain barrier	Accumulation in vital organs	Blood protein binding	Refer- ences ^d
1 A	Paracetamol Acatulealizatic acid	Good	0.5-> 4 hours*	First-order" Zern-order	> 12 hours* 0 27 hours	0.9	Free? Restricted	Liver, ^t kidney ^f None	20-50%*	7
2B.	Acetyisancyne acio Salicylic acid	hood	12-24 hours*	Zero-order	27 hours*	0.17	Restricted	None	< 80%	30
ယ	Iron (11) sulphate	Good*'	2-4 hours*	Biphasic	nr	Ę	Restricted	Blood, liver	100%	16, 30
<u>.</u>	Diazepam	Complete	1-3 hours	Biphasic	96 hours*	1.1	Free	CNS, liver,' kidney*	200	
ت	Amitriptyline hydrochloride	Good	20 hours*	Biphasic	8 and 27 hours*	15	Free	Liver,' kidney, lung, heart, CNS ^k	95%	
6	Digoxin	Moderate	2-5 hours*	Biphasic	48 hours*	6	Restricted	Heart, kidney, liver ^{(,m}	29%	
7	Ethylene glycol	Complete	1-4 hours	First-order?	8.4 hours*	0.65	Free	Liver, kidney	None	•
, 20	Methanol	Good	0.5-1.5 hours	Zero-order	27 hours*	0.65	Free	Kidney, liver'	None	-
9	Ethanol	Good	0.5-> 3 hours*	Zero-order	4 hours*	0.6	Free	None	None	
10	Isopropanol	Complete	1 hour	First-order	5.4 hours*	0.6	Free	None	3	31
11.	1,1,1-Trichloroethane Complete	Complete	1 hour?	Triphasic	0.7, 6 and 53 hours	×1*	Free	CNS ^k	30-70%	32, 33
12	Phenol	Complete	E0.5 hours*	Biphasic?	2.8 hours	nr	Free	CNS	30-70%?	34, 35
13	Sodium chloride	Complete	5 hours*	Zero-order	nr	0.64	Restricted	None	None	2
14.	Sodium fluoride	Complete	> 1 hours*	Biphasic	5.5 hours	0.6	Restricted	None (bone only)	None	36
15	Malathion	Good	1-5 hours*	Multiphasic] II]	nr°	Free	Kidney, liver, [†] CNS ^m	٦r°	37-39
16.	2,4-Dichlorophenoxy- acetic acid	Complete	7-24 hours*	First-order	58 hours* ^p	0.2*	Restricted	Liver, kidney	High	
17.	Xylene	Good	1.5 hours	Biphasic	1 and 25 hours	킨	Free	Lipid-rich organs"	High	15
18.	Nicotine	Complete	> 0.5 hours?	Biphasic	10 minutes and 2.2 hours	2	Free	CNS, liver,' kidney'*	High	
19	Potassium cyanide	Complete	< 1 hour*	Biphasic	1 and 6-66	1	Free	Erythrocytes ^k	5%	15
20	Lithium sulphate	Complete	nr	Biphasic	3-12 and 8-65 hours*	0.9	Restricted	Liver, kidney ^k	None	16

Table V: Human kinetic data^a

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616.

TheophyllineComplete2-8 hours*Biphasic*17 minutes and 6 hours*DestropropoxypheneComplete'1-2 hoursBiphasic*6 hours*PropranololComplete'1-2 hoursBiphasic?3.9 and 15 hours*PropranololComplete'nrBiphasic?3.9 and 16 hours*PropranololModerate*< 4 hours*Biphasic?100 hours*ParaquatGood1 hourBiphasic5 and 84 hours*Copper (II) sulphatePoornrBiphasic2 and 20 hours andMercury (II) chlorideModerate'nrBiphasic2 and 24-60Thoridazine hydrochlorideGood'2-4 hoursBiphasic2 and 24-60Thallium sulphateGood3-9 hoursBiphasic2 hours andMarfarin LindaneGood3-9 hoursFirst-order11 hours andMarianGood1 hourFirst-order1.6 hours*DichloroformComplete1 hourFirst-order1.6 hours*Dichloromethane Barium nitrateGood1.5-3 hours*First-order?1.1 and 5 hours*BiphasicGood2 hours*1.1 and 51.0 days*1.1 and 5BiphasicGood1.5-3 hours*First-order?1.0 days*Carbon tetrachloride Barium nitrateGood2 hours*1.1 and 5BiphasicGood2 hours*1.1 and 51.0 days*Biphasic1.0 days*1.1 and 51.0 days*1.0 days*Biphasic1.1 and 5	Restricted? Liver ^{f.k}	Restricted	1	5	23 minutes and 5 hours	Biphasic	2 hours	Good ¹	Verapamil hydrochloride	40.
TheophyllineComplete2-8 hours*Biphasic*17 minutes and0.5DextropropoxypheneCompletel1-2 hoursBiphasic*6 hours*6 hours*PropranololCompletel1-2 hoursBiphasic?3.9 and 15 hours*16PropranololCompletel1-2 hoursBiphasic?3.9 and 164.3PhenoharbitalCompletelnrFirst-order100 hours*0.6ParaquatGood1 hourBiphasic1-2 and 300.2?Arsenic trioxideGoodnrBiphasic2.3 hours*2.3Copper (II) sulphatePoornrBiphasic2.3 hours*2.3Mercury (II) chlorideModeratelnrBiphasic2.3 hours and2ThoiridazineGood2-4 hoursBiphasic2.6 days*>1MarfarinGood3-9 hoursMultiphasic26 hours*1.6VarfarinGood3-9 hoursFirst-order?1.5 hours and2Carbon tetrachlorideGood1.5-3 hours*Biphasic*11 and 43 hours*11*Carbon tetrachlorideGood1.5-3 hours*First-order?1.5 and 43 hours*0.6DichloromethaneGood1.5-3 hours*Biphasic?3.6, 34 and 50.6Biphasic3.6, 34 and22.63.6, 34 and0.6Biphasic1.5-3 hours*First-order?1.6, 34 and0.6Biphasic3.6, 34 and50.63.6, 34 and0.6Bipha	ed Liver, kidney ed Liver, ^r kidney	8. e	 Restricted 	nr 0.35*	24 nours 13 hours to 16 days	First-order First-order	3-6 hours? 4 hours	Good	Hexachlorophene Pentachlorophenol	39 39
TheophyllineComplete2-8 hours*Biphasic*17 minutes and0.5DextropropoxypheneComplete'1-2 hoursBiphasic*5 and 15 hours*16PropranololComplete'1-2 hoursBiphasic?3.9 and 164.3hydrochlorideCompletenrFirst-order100 hours*0.6PhenobarbitalCompletenrBiphasic?1-2 and 300.2?PhenobarbitalGood1 hourBiphasic5 and 84 hours*1.4*Arsenic trioxideGood1 hourBiphasic2 and 300.2?Copper (II) sulphatePoornrBiphasic2 and 300.2?Mercury (II) chlorideGood'2-4 hoursBiphasic2 and 24-50> 1ThioridazineGood'2-4 hoursMultiphasic2 fours*1.6hydrochlorideGood'2-4 hoursBiphasic*1 and 24-50> 1MarfarinGood'2-4 hoursBiphasic*10 hours*1.6LindaneGood'3-9 hoursBiphasic*1 hours and2Carbon tetrachlorideGood3-9 hours*10 days?*2.6Carbon tetrachlorideGood1 hourFirst-order?1.5 hours*1.6NultiphasicGood1.5-3 hours*First-order?1.1 and 43 hours*0.6Carbon tetrachlorideComplete1.5-3 hours*Biphasic*1.1 and 450.6Nultiphasic2.60.61.5-3 hours*1.1 and 50.6 <td></td> <td>tec</td> <td>Restricted</td> <td>Pr</td> <td>3.6, 34 and 1033 days*"</td> <td>Triphasic Biphasic?*</td> <td>> 2 hours*</td> <td>Good</td> <td>Barium nitrate</td> <td>37.</td>		tec	Restricted	Pr	3.6, 34 and 1033 days*"	Triphasic Biphasic?*	> 2 hours*	Good	Barium nitrate	37.
TheophyllineComplete2-8 hours*Biphasic*17 minutes and0.5DextropropoxypheneComplete'1-2 hoursBiphasic*5 and 15 hours*16PropranololComplete'1-2 hoursBiphasic*5 and 15 hours*16PropranololComplete'1-2 hoursBiphasic*3.9 and 164.3PropranololCompletenrFirst-order100 hours*0.6PrenobarbitalCompletenrFirst-order100 hours*0.6ParaquatGood1 hourBiphasic5 and 84 hours*1.4*Arsenic trioxideGood1 hourBiphasic2 and 300.2?Copper (II) sulphatePoornrBiphasic2 hours and2Mercury (II) choirdeGood*2-4 hoursBiphasic2 hours and2ThioridazineGood*2-4 hoursBiphasic*48 and 96>1MultiphaseGood*2-4 hoursBiphasic*48 and 964.6ChloroformGood*3-9 hoursFirst-order?1.0 days?*0.11*LindaneComplete1 hourFirst-order?1.5 hours andnriLindaneGood*3-9 hours*2.62.96 hours*0.11*Carbon tetrachlorideGood*1.5-3 hours*11 and 43 hours*0.6Carbon tetrachlorideGood*1.5-3 hours*11 and 43 hours*0.6	None		Free	0 63	An minutes	First andar?	0			\$
TheophyllineComplete2-8 hours*Biphasic*17 minutes and 6 hours*0.5DextropropoxypheneComplete'1-2 hoursBiphasic*5 and 15 hours*16PropranololComplete'1-2 hoursBiphasic?3.9 and 164.3PhenobabitalCompletenrFirst-order100 hours*0.6ParaquatModerate*< 4 hours*	Liver,' kidney, lung, skin		Free	0.6	2.4 and 5 hours* ^t	First-order	1.5-3 hours*	Complete	Isoniazid	35
TheophyllineComplete2-8 hours*Biphasic*17 minutes and 6 hours*0.5DextropropoxypheneComplete'1-2 hoursBiphasic*6 hours*6 hours*PropranololComplete'1-2 hoursBiphasic?3.9 and 15 hours*16PropranololComplete'1-2 hoursBiphasic?3.9 and 164.3PhenobabitalGood1-2 hours*Biphasic5 and 84 hours*0.6ParaquatGood1 hourBiphasic5 and 84 hours*0.6Arsenic trioxideGood1 hourBiphasic2 and 300.2?Copper (II) sulphatePoornrBiphasic2-3 hours and2Mercury (II) chlorideModerate'nrBiphasic2 and 24-50> 1Thioridazine hydrochlorideGood'2-4 hoursMultiphasic26 hours18Marfarin LindaneGood3-9 hoursBiphasic*48 and 964.6ChloroformGood3-9 hoursBiphasic*21 hours and22-96 hoursGood2-4 hoursBiphasic*10 hours?*18Marfarin LindaneGood3-9 hours2-96 hours?11*ChloroformGood3-9 hours21 hours and11*LindaneGood3-9 hours21 hours and11*LindaneGood3-9 hours21 hours and11*LindaneGood3-9 hours21 hours and11*LindaneGood3-9 hours21 hours and </td <td>Liver,^f kidney,^f (fat)</td> <td></td> <td>Free</td> <td>, 1</td> <td>11 and 43 hours</td> <td>Biphasic*</td> <td>nr</td> <td>Good</td> <td>Carbon tetrachloride</td> <td>34</td>	Liver, ^f kidney, ^f (fat)		Free	, 1	11 and 43 hours	Biphasic*	nr	Good	Carbon tetrachloride	34
TheophyllineComplete2-8 hours*Biphasic*17 minutes and 6 hours*0.5DextropropoxypheneCompletel1-2 hoursBiphasic*5 and 15 hours*16Propranolol hydrochlorideCompletel1-2 hoursBiphasic?3.9 and 164.3Phenobarbital ParaquatComplete1-2 hoursBiphasic?3.9 and 164.3Arsenic trioxide hydrochlorideGood1 hourBiphasic5 and 84 hours*0.6Copper (II) sulphate hydrochloridePoornrBiphasic2-a hours and 2.6 days*0.2?Thioridazine hydrochlorideGood ¹ 2-4 hoursBiphasic2 and 24-50> 1Thallium sulphate LindaneGood ⁴ 2-4 hoursBiphasic*48 and 964.6Warfarin LindaneGood ⁴ 3-9 hoursBiphasic*22-96 hours*0.11*	CNS, liver, kidney, (fat) ^k		Free	2.6	1.5 hours	First-order?	1 hour	Complete	Chloroform	33
TheophyllineComplete2-8 hours*Biphasic*17 minutes and 6 hours*0.5DextropropoxypheneComplete'1-2 hoursBiphasic*5 and 15 hours*6hydrochlorideComplete'1-2 hoursBiphasic?3.9 and 164.3hydrochlorideCompletenrFirst-order100 hours*0.6PhenobarbitalGood1 hourBiphasic?5 and 84 hours*0.6Arsenic trioxideGood1 hourBiphasic5 and 84 hours*0.2?Copper (II) sulphatePoornrBiphasic2-3 hours and2Mercury (II) chlorideModerate*nrBiphasic2 and 24-50> 1hydrochlorideGood2-4 hoursMultiphasic26 hours*18hydrochlorideGood2-4 hoursBiphasic*48 and 964.6MarfarinGood3-9 hoursFirst-order22-96 hours*0.11*	CNS, liver, kidney, (fat)			nr	21 hours and 10 days?*	Biphasic*	6 hours	Good	Lindane	32.
TheophyllineComplete2-8 hours*Biphasic*17 minutes and 6 hours*0.5DextropropoxypheneCompletel1-2 hoursBiphasic*5 and 15 hours*16Propranolol hydrochlorideCompletel1-2 hoursBiphasic?3.9 and 164.3Phenobarbital ParaquatCompletenrFirst-order100 hours*0.6Arsenic trioxide Moderate*Good1 hourBiphasic5 and 84 hours*1.4*Copper (II) sulphate hydrochloridePoornrBiphasic2.3 hours and 2.6 days*2.7Thioridazine 	Restricted none	ricted		0.11	22-96 hours*	First-order	3-9 hours	Good	Warfarin	31
TheophyllineComplete2-8 hours*Biphasic*17 minutes and0.5DextropropoxypheneCompletel1-2 hoursBiphasic*6 hours*6 hours*16hydrochlorideCompletel1-2 hoursBiphasic?3.9 and 15 hours*16phenobarbitalCompletenrFirst-order100 hours*?0.6ParaquatModerate*<4 hours*	kidney Restricted Kidney, heart, liver, CNS ^m	tricted	Res	4.6	48 and 96 hours?*	Biphasic*	2-4 hours	Good	hydrochloride Thallium sulphate	30
TheophyllineComplete2-8 hours*Biphasic*17 minutes and0.5DextropropoxypheneCompletel*1-2 hoursBiphasic*6 hours*6 hours*hydrochlorideCompletel*1-2 hoursBiphasic?3.9 and 15 hours*16hydrochlorideCompletel1-2 hoursBiphasic?3.9 and 164.3PhenobarbitalCompletenrFirst-order100 hours*0.6ParaquatModerate*< 4 hours*		ě	Free	18	26 hours	Multiphasic	2-4 hours	Good	Thioridazine	29
TheophyllineComplete2-8 hours*Biphasic*17 minutes and0.5DextropropoxypheneCompletel1-2 hoursBiphasic*6 hours*6 hours*PropranololCompletel1-2 hoursBiphasic?3.9 and 15 hours*16hydrochlorideCompletel1-2 hoursBiphasic?3.9 and 164.3PhenobarbitalCompletenrFirst-order100 hours*0.6ParaquatModerate*<4 hours*	Restricted Blood, kidney, liver,	stricted	Ree	×1	2 and 24-50	Biphasic	nr	Moderate	Mercury (II) chloride	28.
TheophyllineComplete2-8 hours*Biphasic*17 minutes and0.5DextropropoxypheneCompletel1-2 hoursBiphasic*6 hours*6 hours*PropranololCompletel1-2 hoursBiphasic?3.9 and 15 hours*16hydrochlorideCompletel1-2 hoursBiphasic?3.9 and 164.3PhenobarbitalCompletenrFirst-order100 hours*0.6ParaquatModerate*< 4 hours*	Restricted Blood, liver ⁽	stricted	Re	2	2-3 hours and	Biphasic	nr	Poor	Copper (II) sulphate	27.
TheophyllineComplete2-8 hours*Biphasic*17 minutes and0.5DextropropoxypheneCompletel1-2 hours6 hours*6 hours*hydrochlorideCompletel1-2 hoursBiphasic*5 and 15 hours*16hydrochlorideCompletel1-2 hoursBiphasic?3.9 and 164.3hydrochlorideCompletelnrFirst-orderhours*?0.6PhenobarbitalCompletenrFirst-order100 hours*0.6ParaquatModerate*< 4 hours*	Restricted Liver, kidney, heart, GIT ^m	stricted	Re	0.2?	1-2 and 30 hours*	Biphasic*r	1 hour	Good	Arsenic trioxide	26.
Theophylline Complete 2-8 hours* Biphasic* 17 minutes and 0.5 Dextropropoxyphene Complete ¹ 1-2 hours Biphasic* 5 and 15 hours* 16 hydrochloride Complete ¹ 1-2 hours Biphasic? 3.9 and 16 4.3 hydrochloride Complete ¹ 1-2 hours Biphasic? 3.9 and 16 4.3 hydrochloride First-order 100 hours*? 0.6	ee? Lung, liver, kidney	e?	Free?	1.4*	5 and 84 hours*	Biphasic	< 4 hours*	Moderate ^q	Paraquat	<u>,</u> 01
Theophylline Complete 2-8 hours* Biphasic* 17 minutes and 0.5 Dextropropoxyphene Complete ¹ 1-2 hours Biphasic* 5 and 15 hours* 16 hydrochloride Complete ¹ 1-2 hours Biphasic? 3.9 and 16 4.3 Propranological Complete ¹ 1-2 hours Biphasic? 3.9 and 16 4.3	ee Liver ^ſ	ee	Free	0.6	100 hours*	First-order	nr	Complete	Phenobarbital	24
Theophylline Complete 2-8 hours* Biphasic* 17 minutes and 0.5 Dextropropoxyphene Complete ¹ 1-2 hours Biphasic* 5 and 15 hours* 16	ee CNS, liver, ^f kidney ^k	ee	F	4.3	3.9 and 16	Biphasic ?	1-2 hours	Complete	nyarocnioriae Propranolol	23.
Theophylline Complete 2-8 hours* Biphasic* 17 minutes and 0.5		ĕ	Free	16	5 and 15 hours*	Biphasic*	1-2 hours	Complete ¹	Dextropropoxyphene	22.
	e None	e	Free	0.5	17 minutes and	Biphasic*	2-8 hours*	Complete	Theophylline	21.

No.	Chemical	Absorption in the gut ^h	Time to peak (ingestion)	Kinetics	T1/2°	Vd l/kg	Passage of blood-brain barrier	Accumulation in vital organs	Blood protein binding	Refer- ences ^d
41.	Chloroquine	Good	1-3 hours*	Triphasic	2, 7 and 45	94	Free	Heart, liver, kidney,	55-61%	16, 49
5	phosphate	2 -	2	i -	days**	\$	1	lung, erythrocytes	00 057	
42.	Orphenadrine hydrochloride	Good	3 hours	First-order Biphasic?*	15 hours 6 and 15 hours*	6	Free	CNS, liver, lung*	20-95%	16, 50, 51
43	Quinidine sulphate	Good	> 2 hours*	First-order?	> 7.8 hours*	2.7*	Restricted	Liver, ⁽ kidney, heart ^k	60-90%	-
44.	Diphenyl- hydantoin	Poor/good	30-120 hours*	Zero-order and first-	24-230 hours**	0.6*	Free	Liver, ⁽ kidney, CNS	60%*	52
45	Chloramphenicol	Good	2-3 hours	First-order	2.5 hours	1.2	Free	Liver, ^ſ kidney	55%	
46.	Sodium oxalate	Poor	6 hours?	First-order?	4 hours?*	E0.4	E0.4* Restricted	Kidney, liver	P	26, 64
47.	Amphetamine sulphate	Complete	1–4 hours*	First-order?	7-34 hours ^p	3-6.]	3-6.1 Free	Liver, kidney	16%	-
48.	Caffeine	Complete	1 hour	First-order?	9-16 hours*	0.6	Free	None (liver 2x)	35-60%	,
49.	Atropine sulphate	Good	> 2 hours*	First-order?	3.5 hours	دى	Free	Kidney, liver	50%	53, 54
50	Potassium chloride	Complete	0.5 hours	Multiphasic	nr	nr	Free?	None	None	6

poor = 0-20%. 'One value indicates T1/2 of the elimination phase. Successive values represent separate phases (alpha, beta, etc.). ^dOther than references 10, 11, 13, 14 and 17. 'Non-linear in overdose? (Also a biotransforming organ. *POISINDEX*, Information Systems (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA). ^hAbsorbed as acetylsalicytic acid. ⁱDue to corrosivity. ^JProbably large, i.e. around 5/kg; ^{*}Early accumulation. ⁱDocumented first therapeutic doses, i.e. bioavailability is decreased by rapid binding in the liver of a large fraction of the absorbed dose (25–85%). For most such chemicals, passage of the intestinal mucosa is probably complete. However, the term "good" is often used in this table, based on literature reports on the total absorption (the sum of intestinal passage and first pass reduction of bioavail-ability). "Slow accumulation. "Alpha phase: 2.9 hours. "Probably large Vd and protein binding. ^pH-dependent. ^qDependent of bioavail-between rapid and slow acetylators. "Alpha-phase: 3 hours in overdose. ^vDose-dependent. "In = non reported; CNS = central nervous system (A-----) Crm

ume.

Table V: continued

.

MEIC evaluation part V: rodent and human toxicity data

597

						Case rep	orts	
No	. Chemical	Time to peak (hours)	Peak conc. mg/l	Type of curve	Sub- lethal	Lethal (clinical)	Lethal (post- mortem)	Total
1.	Paracetamol	4	358	LC50	81	62	0	143
2.	Salicylic acid	20	1070	LC50	31	46	1	78
3.	Iron	4	43.5	LC50	15	12	0	27
4.	Diazepam	2	19.9	LC100	4	0	0	4
5.	Amitriptyline	6	1.69	LC50	8	6	10	24
6.	Digoxin	3	0.071	LC50	15	9	1	25
7.	Ethylene glycol	2.5	1550	LC50	28	12	9	49
8.	Methanol	2	3790	LC50	76	37	7	120
9.	Ethanol	ī	8440	LC50	20	1	143	164
	Isopropanol	ī	4960	LC50	13	2	2	17
11.	1,1,1-Trichloro- ethane	1	231	LC50	3	0	2	5
12	Phenol	0.5	80	LC50	3	0	4	7
	Sodium in sodium chloride	5	11700	LC50	3	9	1	13
14	Fluoride	3	19.4	LC0	3	3	7	13
	Malathion	5	1.88	LC0	2	1	11	14
16.	2,4-Dichloro- phenoxyacetic aci	14 d	1125	LC50	7	1	4	12
17.	Xylene	1	110	LC0	3	0	1	4
18.	Nicotine	0.5	13.5	LC0	1	1	3	5
19.	Cyanide	0.5	16.4	LC50	12	9	10	31
20.	Lithium	3	97.2	LC100	4 ^b	0	0	4 ^b
21.	Theophylline	12	180	LC50	57	18	1	76
	Dextropropoxy- phene	2	8	LC0	2	1	6	9
23.	Propranolol	4	3.11	LC50	6	2	1	9
	Phenobarbital	15	230	LC50	20	1	0	21
25.	Paraquat	2.5	12.6	LC50	23	66	16	105
26.	Arsenic	4	1.65	LC50	10	8	3	21
	Copper	11	15.9	LC50	10	5	1	16
	Mercury	12	40.1	LC50	12	2	4	18
	Thioridazine	4	4.08	LC50	1	1	4	6
30.	Thallium	24	7.35	LC50	25	5	2	32

Table VI: Peaks from approximate 50% lethal concentration (LC50) curves^a .

^aFrom reference 26. ^bDocumented single-dose cases (not overdose on previous medication).

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616.

B. Ekwall et al.

Table VI: continued

598

					Case rep	orts	
No. Chemical	Time to peak (hours)	Peak conc. mg/l	Type of curve	Sub- lethal	Lethal (clinical)	Lethal (post- mortem)	Tota
31. Warfarin	6	200	LC0	3	0	0	3
32. Lindane	6	1.3	LC0	5	2	1	8
33. Chloroform	2	49 0	LC50	2	0	5	7
34. Carbon tetrachlor	ide 6	5.8	LC50	5	1	1	7
35. Isoniazid	3	167	LC50	24	3	4	31
36. Dichloromethane	3	344	LC0	0	0	9	9
37. Barium	2	305	LC100	9	0	0	9
38. Hexachlorophene	5	116	LC50	2	1	1	4
39. Pentachloropheno	1 10	79.1	LC50	1	0	3	4
40. Verapamil	2	13.2	LC50	10	9	4	23
41. Chloroguine	2	9.41	LC50	4	1	9	14
42. Orphenadrine	2	11.3	LC50	6	ī	8	15
43. Quinidine	6	26	LC50	4	2	0	6
44. Diphenylhydantoi	n 34	202	LC50	13	1	Ó	14
45. Chloramphenicol	6	180	LC0	5	4	0	9
46. Oxalate	6	110	LC0	1	1	0	2
47. Amphetamine	2	15.5	LC50	1	ī	5	7
48. Caffeine	ĩ	179	LC50	6	ō	4	10
49. Atropine	3	4.05	LC100	2	õ	ō	2
50. Potassium	ĩ	375	LCO	4	š	ĩ	8

^bDocumented single-dose cases (not overdose on previous medication).

a few organs are routinely screened for chemicals, such as blood, heart, liver, kidney, brain and lung. Thus, the information on body distribution is often limited to these organs.

The qualitative human toxicity data

The human toxicity data presented in Table IX are the result of a study of references 10-17, in a few instances supplemented by data from other sources. In the same way as the kinetic data in Table V, the toxicity data represent the sum of the information from all the handbooks consulted. The classification of lethal symptoms into main causes and other causes of death, as well as the classifi-

cation of lethal action into known, unknown and hypothetical mechanisms, represent judgements by the handbook authors. However, the lists of lethal symptoms in various handbooks have been extensively edited to provide uniform terminology. The handbook authors have used a plethora of terms for essentially the same type of event. To mention only one example, circulatory failure in Table IX stands for vascular collapse, vasomotor collapse, shock, circulatory shock, hypovolaemic shock, hypotensive shock, and so on.

Potentially the most controversial data in Table IX are those that are based on mecha-

No	No. Chemical	Lethal symptoms"	Mean time to death	Danger over	Target organs	Toxic metab- olites ^b	Lethal mechanisms
-	Paracetamol	Hypoglycaemic coma Liver failure M Kidney failure	3–5 days	nr	Liver P Kidney P (CNS)	More toxic intracellular metabolites	Known: Covalent NAPQI bi lipid peroxidation
oر ا	Acetylsalicylic acid	Metabolic acidosis M Cerebral bleedings Pulmonary oedema Cardiovascular failure	48 hours	nr	Kidney P Liver P CNS P Lung P GIT P	Salicylic acid is the reactive metabolite of the parent compound	
ω	Iron (II) sulphate	Haematemesis GIT perforation Pulmonary oedema CNS excitation/depression Circulatory failure Liver and kidney failure	6 or 48 hours	72 hours	GIT P Liver P Kidney CNS CVS Lung P	ţp	
<u>+</u>	Diazepam	CNS depression M	2 hours	3 hours	CNS	(Nordiazepam) Unknown	
, Çi	Amitriptyline hydrochloride	CNS excitation/ depression Heart arrythmias/arrest M	< 12 hours	6 days	CNS Heart	(Nortriptyline) Hypothetical: Blocks norad and dopamine uptake; preve heart noradr	<u>ت</u>
<u>6</u>	Digoxin	Fleart arrythmias/ arrest M Hyperkalaemia	7 hours	20 hours	Heart	(Metabolites)	

Source: Ekwall et al. 1998. MEIC Evaluation of Acute Systemic Toxicity. Part V. ATLA 26:571-616

CNS excitation/depression M 20 hours Cerebral bleedings Cardiovascular failure Dubonary failure	 25 hours C		
CNS excitation/depression M 1 hour Heart arrest/pulmonary oedema Liver and kidney failure	 24 hours C	24 hours CNS Heart Liver Kidney GIT P	
CNS depression M 3 hours Heart arrythmias Cardiovascular failure Pneumonia	4 hours C	4 hours CNS P CVS Lung P	CNS CVS Lung
CNS depression M 3 hours 4 Cardiovascular failure Pneumonia	48 hours C	18 hours CNS CVS Lung P	
CNS depression M 6 hours ^d 1 Cardiovascular failure	12 hours C	2 hours CNS CVS	
CNS depression M 32 hours ^d r Metabolic acidosis 173 hours ^f Cardiovascular failure	HXL PO	nr CNS P ^e Pancreas P Liver P Kidney P Heart P	CNS P [*] Pancreas Liver P Kidney P Heart P
1-12 hours: CNS 17 hours 7 excitation/depression M 12-24 hours: heart failure 24-72 hours: kidney failure	72 hours C H K	2 hours CNS Heart P Kidney P	

No.	No. Chemical	Lethal symptoms*	Mean time to death	Danger over	Target organs	Toxic metab- olites ^b	Lethal mechanisms
14.	Sodium fluoride	Cardiovascular failure CNS excitation/depression	2-4 hours	20 hours	Heart ^h CNS ^h Liver Kidney	tp	Hypothetical: Protoplasmic poison interfering with many enzymes. May lower S-Ca and induce potassium efflux from cells
15	Malathion	Early: Cholinergic crisis/ respiratory failure M Later: Heart failure Heart arrythmias/arrest	0.5-6 hours	24 hours	CNS Muscles Heart P	Maloxon	Known: Inhibition of acetylcholine esterase resulting in acetylcholine accumulation in CNS and effector organs
16.	2,4-Dichloro- phenoxyacetic acid	Hyperthermia/myotonia CNS excitation/depression Metabolic acidosis Heart failure Liver failure	8-96 hours	48 hours	CNS P Liver P Kidney P Heart	tp	Hypothetical: Hypermetabolism due to uncoupling of oxidative phosphorylation. Dir ect toxin to striated muscle
17.	Xylene	CNS depression M Heart arrythmias/arrest Heart failure Pulmonary oedema	1-2 hours?	72 hours	CNS P Heart Lung P Liver P	ťp	Unknown: Heart failure caused by sensi- tisation of myocardium to endogenous catecholamines?
18.	Nicotine	CNS excitation/depression M Cardiovascular failure	minutes –1 hour	4 hours	CNS PNS	tp	Known: Cholinergic block causing polarisation of CNS and PNS synapses
19.	Potassium cyanide	CNS excitation/depression M Metabolic acidosis Circulatory failure	0.5-1 hour	4 hours	CNS P Heart VS	tp	Known: General enzyme inhibition. High affinity for ferric ion. Inhibits cytchrome oxidase

NICEATM MEIC Program Overview

25.	24	23	22	21.	20
Paraquat	24. Phenobarbital	Propranolol hydrochloride	Dextropropoxy- phene hydrochloride	Theophylline	Lithium sulphate
Early (24 hours): CNS excitation Pulmonary oedema Heart failure Kidney failure M Liver failure Later (48 hours–6 days): Pulmonary fibrosis M	CNS depression M Circulatory failure	CNS excitation/depression Cardiovascular failure Bronchospasm	CNS excitation/depression Heart arrythmias/arrest Cardiovascular failure	CNS excitation M Metabolic acidosis Heart arrythmias Electrolyte disturbances GIT bleedings	CNS depression Circulatory failure Kidney failure
3 hours- 4 weeks	5 hours- 7 days	0.5-2 hours	0.5-2 hours	1–5 days	1–7 days
쿠	10 days	4-20 hours CNS Hear VS	24 hours	막	7 days
Lung P Kidney P Heart P Liver P CNS P	CNS Heart	s CNS Heart VS	CNS Heart	CNS Heart (GIT)	CNS Heart Kidney
ťp	ţ	tp?	(Norprop- oxyphene)	ťp	tp
Hypothetical: Multisystem failure due to depletion of superoxide disputase, formation of free-radicals, and lipid peroxidation. Lung fibrosis due to accumulation of paraquat in this oxygen-rich organ	Aypothetical: CNS depression through inhibition of GABA synapses? Inhibits hepatic NADH cytochrome oxidoreductase	Unknown: Beta-adrenergic blockade?	Hypothetical: Binds to morphine receptors. Stabilises cell membranes. Norpropoxyphene is a primary cardiotoxin	Unknown: Inhibits prostaglandins and cGMP metabolism. Adenosine receptor antagonist	Unknown: Partial substitution for normal cations of cells may disturb energy processes?

No. Chemical L	26. Arsenic trioxide P B B B B B B C C	27. Copper (11) 1. sulphate 1. (28. Mercury (11) (chloride H	29. Thioridazine (hydrochloride I	
Lethal symptoms ^a	Gastroenteritis Circulatory failure Heart failure Pulmonary ocdema Intravascular haemolysis Kidney failure Liver failure CNS excitation/depression	Liver failure Kidney failure Intravascular haemolysis Circulatory failure CNS excitation depression	Gastroenteritis Circulatory failure Kidney failure	CNS depression Heart arrythmias/arrest_M	Gastroenteritis Cardiovascular failure M Respiratory failure Kidney failure Liver failure
Mean time to death	1 hour-4 days	3 hours-7 days	3 hours-14 days	2-10 hours	24 hours-3 weeks
Danger over	4 days	4 days	14 days	nr	4-5 weeks
Target organs	Kidney P Heart Liver P VS P CNS P GIT P	Liver P Kidney VS	Kidney P VS GIT P	CNS Heart	Heart P VS Kidney P Liver P CNS P PNS
Toxic metab- olites ^h	tp	ťp	tp	(Mesoridazine?) Unknown	ťp
Lethal mechanisms	Known: Cellular poison. Multisystem failure due to uncoupling of oxidative phosphorylation and inhibition of pyruvate and succinate oxidative pathways	Hypothetical: Cupric copper is reduced to cuprous form by thiol groups in cell membranes. Superoxide is formed by reoxidation of cuprous copper, which induces lipid peroxidation	Hypothetical: Changes membrane potentials and blocks enzyme reactions in cells by targeting the sulphydryl part of active sites of some enzymes	Unknown	Hypothetical: Enzyme inhibition by binding to sulphydryl groups of mitochondrial membranes. Interference with oxidative phosphorylation by inhibition
Refer- ences ^c	-	18			18

41. Ch pho	40. Ve hy	39. Ре рh	38. He	37. Ba	No. Ct
Chloroquine phosphate	Verapamil hydrochloride	Pentachloro- phenol	Hexachlorophene Early Gastr Hype Circul 12-18 excita 48-60 arryth	Barium nitrate	No. Chemical
Cardiovascular failure Cardiac arythmias/arrest M CNS excitation/depression Hypokalaemia	Circulatory failure Heart arrythmias/arrest Metabolic acidosis CNS depression Hypoglycaemia	Hyperthermia CNS excitation/depression Circulatory failure Myotonia Metabolic acidosis	Early: Gastroenteritis Hyperthermia Circulatory failure 12–18 hours: CNS excitation/depression 48–60 hours: Heart arrythmias/arrest	Muscle paralysis/ respiratory failure Heart arrythmias/arrest High blood pressure Convulsions	Lethal symptons"
1-24 hours	24 hours	4-24 hours	4–60 hours	2-3 hours or 2-3 days	Mean time to death
24 hours	36 hours	24 hours	3 days	24 hours	Danger over
Heart VS CNS	VS Heart	Heart P VS CNS Liver P Kidney P	GIT VS Heart CNS"	Muscle''' Heart (Kidney)	Target organs
tp	(Metabolites)	ťp	ţ	tp	Toxic metab- olites ^b
Hypothetical: Stabilisation of cell membranes leading to reduction of excitation and conduction in beart	Known: Inhibition of transmembrane Ca flux in excitatory tissues. Also alpha-adrenergic blocking	Hypothetical: Uncoupling of oxidative phosphorylation. Protein binding, including selective enzyme inhibition (liver/kidney P450)	Hypothetical: Uncoupling of oxidative phosphorylation in cells. Binding to proteins in cytoplasma membrane and cell organelles	Hypothetical: Neuromuscular depolarisation. Potassium is forced into cells by an action on Na/K ATPase?	Lethal mechanisms
			47	19	Refer- ences ^c

Table IX: continued

IX-7

47.	46.	45	44	43	42
Amphetamine sulphate	Sodium oxalate	Chloramphenico	Diphenyl- hydantoin	Quinidine sulphate	Orphenadrine hydrochloride
(Hyperthermia) Cardiac arrythmias/arrest CNS excitation/depression M Metabolic acidosis	Initially (minutes): Gastroenteritis Circulatory failure Later (hours): CNS excitation/depression Heart arrythmias/arrest Later (2 days): Kidney failure	Chloramphenicol Cardiovascular failure CNS excitation/depression Metabolic acidosis (Liver and kidney failure)	(Nystagmus/ataxia) CNS excitation/depression M Heart arrythmias/arrest°	Early: Heart failure Heart arrythmias/arrest M Later: CNS excitation/depression Kidney failure	CNS excitation/depression (max. 2-5 hours) M Heart arrythmias (max. 12-18 hours) Heart failure Liver failure
2-4 hours	3 hours	5 hours-2 days	30 hours-14 days	6 hours?	1-48 hours
2	P	곡	14 days	곡	24 hours
CNS P ^p Heart P Liver P Kidney	GIT CNS ^h Heart ^h Kidney	Heart VS CNS Liver Kidney	CNS (Cerebellum) Heart	Heart VS CNS Kidney	CNS Heart Liver P
tp	ť	da l	tp	tp?	tp?
Hypothetical: Release of biogenic amines (dopamine, norepinephrine) from nerve terminal stores. Direct action as false transmitter	Hypothetical: Calcium-complexing action, depressing the level of ionized calcium in body fluids. The direct action on GIT, VS and kidney cannot explained that way. Corrosivity is not caused by acidity.	Hypothetical: Binds to mitochondrial ribosomes and inhibits enzyme synthesis, for example, enzymes necessary for oxidative phosphorylation	Unknown: Binds to specific receptors in neuronal cell membranes. Inhibits voltage-dependent sodium channels	Unknown: Decreased electrolyte permeability of cell membranes leading to depression of heart excitability, conduction velocity and contractility.	Unknown

tp tp tp
· · · · · · · · · · · · · · · · · · ·

Table IX: continued

metapointes with the same toxicity as the purent withpoint are on waveew. It introduces point the parties of construction of points, ed. B.H. Rumack, references 10–17. "Post-mortem cases. "Including the eye (blindness). "Clinical cases. "POISINDEX", Information Systems, ed. B.H. & D.G. Spoerke), Micromedex (Denver, CO, USA). "Targets of a decreased blood calcium level? "TOMES", Information Systems (ed. B.H. Rumack & D.G. Spoerke), Micromedex (Denver, CO, USA). "Cerebral bleeding is most life-threatening. "Inhalation. "Ingestion. "Motor end-plates of muscles." Repeated dermal exposure. "Intravenous administration. "Vasculitis, haemorrhages. an d. m n

 $M = main \ causes \ of \ death$; $P = histopathological \ organ \ lesions$; $CNS = central \ nervous \ system$ (blood vessels/capillaries); $GIT = gastrointestinal \ tract$ (gut); $PNS = peripheral \ nervous \ system$; $tp = toxicity \ of$ parent compound only; nr = not reported.

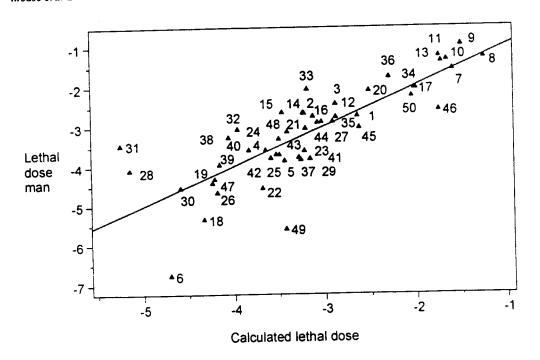


Figure 1: Plot of acute lethal dosage in humans against values calculated by a PLS model based on rat oral LD50 and mouse oral LD50.

Source: Ekwall et al. 1999. MEIC Evaluation of Acute Systemic Toxicity. Part VIII.

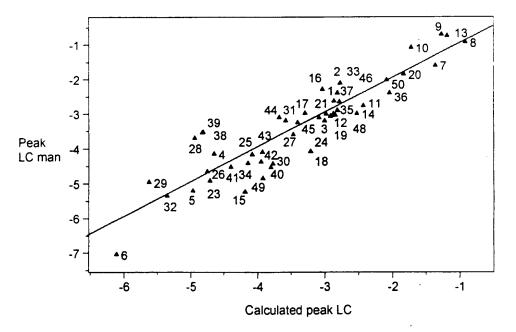
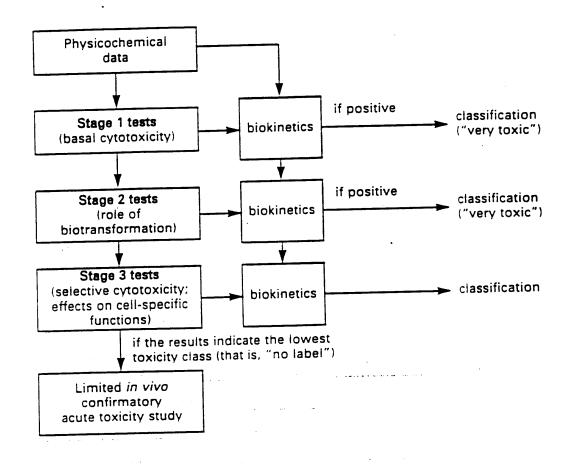


Figure 10: Plot of peak lethal blood concentrations in man against IC-50 values calculated by a PLS model based on peak lethal blood concentrations in man, all 50 chemicals, and "blood-brain barrier compensated results" from assays 1, 5, 9 and 16.

Source: Ekwall et al. 1999. MEIC Evaluation of Acute Systemic Toxicity. Part VIII.

Table I: Priority areas for development and evaluation of new *in vitro* tests on systemic toxicity


No. Subproject

....

1.	Repeat dose toxicity						
2.	Mechanism studies:						
	a) protein denaturation						
	b) morphology of injury to cell lines						
	c) differential cytotoxicity 30						
	minutes/24 hours						
	d) toxicity to aerobic cells						
. '	e) time-frames for cytotoxic effects						
3 .	Extracellular receptor toxicity						
4.	Excitatory toxicity						
5.	Reversibility of cytotoxicity						
6.	Passage across blood-brain barrier						
7.	Absorption in the gut						
8.	Blood protein binding						
9.	Distribution volumes (Vd)						
10	More-toxic metabolites						
10.	MULC-CONIC INCOMPOLICE						

Source: Ekwall et al. 1999. EDIT: A new international multicentre programme to develop and evaluate batteries of *in vitro* tests for acute chronic systemic toxicity. ATLA 27:339-349.

• •

Figure 1: Proposed testing scheme for the classification and labelling of chemicals according to their potential acute toxicities

Source: Ekwall et al. 1999. EDIT: A new international multicentre programme to develop and evaluate batteries of *in vitro* tests for acute chronic systemic toxicity. ATLA 27:339-349.