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Dynamo action and the nearly axisymmetric magnetic 
field of Saturn 
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Abstract. We examine kinematic dynamo action in an 
electrically conducting spherical body of fluid with an 
overlying shell of differential rotation. It is thought that 
such flow types could explain the nearly axisymmetric 
magnetic field of Saturn. Although we find that an 
outer layer of differential rotation can 'axisymmetrize' 
the exterior magnetic field, surprisingly, sometimes it 
does not, giving magnetic fields that have no axisym- 
metric ingredients. 

Introduction 

Dynamo action in heavenly bodies is sustained by 
the flow of electrically conducting fluid. In a kinematic 
dynamo analysis, such as that discussed here, one in- 
vestigates the types of fluid flows that sustain dynamo 
action by solving the magnetic induction equation, 

OrB = R,•V x (u x B) + •72B, (1) 

where B is the magnetic field and u is a prescribed 
dimensionless fluid velocity. The magnetic Reynolds 
number, Rm, is a measure of the relative influence on 
the magnetic field of advection and diffusion. 

Fluid flow cannot generate axisymmetric magnetic 
fields [Cowling, 1934; Hide and Palmer, 1982; Ivers 
and James, 1984]. However, it is possible that dynamo 
fields can be nearly axisymmetric, an issue of relevance 
to Saturn. Spacecraft measurements have shown the 
Saturnian field to be remarkably axisymmetric [Acura 
and Ness, 1980; Smith et al., 1980]. Although it is not 
precisely axisymmetric [Desch and Kaiser, 1981], the 
Saturnian magnetic field is modelled well by zonal har- 
monics [Connerney, Ness and Acura, 1982], a config- 
uration that may have persisted for millions of years 
[Northrop and Connerney, 1987]. 

Dynamo action in Saturn probably arises from con- 
vection in a fluid interior made of metallic hydrogen 
and helium. Stevenson [1980] argues that, as a result 
of the planet's thermal evolution, overlying this convec- 
tive region is a fluid layer which is depleted in helium 
and therefore stably stratified. In this layer Steven- 
son [1982] suggests that the nonaxisymmetric ingre- 
dients of the magnetic field, sustained by the interior 
dynamo, are sheared by differential rotation, thereby 
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promoting ohmic dissipation of the surficial nonaxisym- 
metric magnetic field and giving an external magnetic 
field that is nearly axisymmetric. Alternatively, Rhein- 
hardt [1997] has suggested that asymmetric field ingre- 
dients in the Saturnian field are of short lengthscale, and 
are therefore geometrically attenuated at spacecraft dis- 
tances from the planet. Here we examine the viability 
of Stevenson's 'axisymmetrization' mechanism by calcu- 
lating the kinematic dynamo action of convective flows 
with overlying differential rotation. 

Method 

We adopt spherical coordinates (r, 0, •b) and consider 
a system consisting of an electrically conducting incom- 
pressible fluid sphere of unit radius (r - 1) surrounded 
by an electrical insulator. Equation (??) is solved by the 
Bullard and Gellman [1954] method: discretizing the 
equation by expanding the velocity field and magnetic 
field in terms of toroidal and poloidal vector harmonics 
and radial grid points. For a prescribed velocity field, u, 
the induction equation is then reduced to an algebraic 
eigenvalue problem. Standard numerical techniques are 
used to solve for the magnetic field, B, and the criti- 
cal magnetic Reynolds number, R•, at which dynamo 
action occurs and above which the solutions grow ex- 
ponentially. R• is defined so that {u} - 1, where/" '} 
denotes a volumetric rms average. 

Our aim is to investigate the kinematic dynamo ac- 
tion of flows similar to those considered by Stevenson 
[1982]. Specifically, we search for numerically conver- 
gent magnetic fields sustained by flows of the form 

u = u. + Uo, (2) 

where the flow ingredients are shown in Figure 1. Uo is 
an internal flow, being in sphere, 0 < r < to, and con- 
sisting of a mixture of toroidal and poloidal ingredients, 
those used originally by Kumar and Roberts [1975] and 
which have been demonstrated to sustain a magnetic 
field. uo is in an overlying shell, ro < r < 1, and con- 
sists of toroidal motion; we consider two types: one of 
radial shearing (case I) and one of solid body rotation 
(case II). By adjusting the relative sizes of Uo and Uo we 
can investigate the efficacy and efficiency of Stevenson's 
axisymmetrization mechanism. 

Previous related studies have considered flows like 

Uo, but for the whole sphere (to = 1), with various 
mixtures of toroidal and poloidal ingredients [Gubbins 
et al., 2000; Love and Gubbins, 1996] and with flows 
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a b 

d e Figure 1. Fluid velocity components. The interior flow 
(0 < r < to) consists of a mixture of toroidal and poloidal 

0 0 e• (s• s + ingredients: u. - t• ø + e2s2 + s•c). (a) Contours 
of •b-component of the interior toroidal flow, t• ø, in merid- 
ional cross section. (b) Streamlines of the meridional cir- 
culation, s• ø, in meridional cross section. (c) Streamlines 
of convective motion, s• s + s• c, in equatorial cross section. 
The outer toroidal flow (to • r • 1) is Uo -eoto, where 
to - V x V x (to cos 9•). We investigate two different outer 
flows similar to those considered by Stevenson [1982]: (d) 
component of case I, where to - (r- to) 3, which has radial 
shearing. (e) •b-component of case II, where to - (r - ro) 
which is solid body rotation. For this discussion the param- 
eters (e• ø, e•) are fixed at (1.028, 0.332); the radius ro is fixed 
at 0.8. Adjusting eo changes the fraction of Uo within u. 
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Figure 2. (a,b) Critical magnetic Reynolds number, R,•, as a function of overlying toroidal motion for cases I and II. 
T - sgn(eo)(Uo)/(u), so that T is positive (negative) if Uo is in the same (opposite) direction as the interior toroidal flow 
tl ø. Axial-dipole (equatorial-dipole) type solutions are shown by a solid (dashed) line. (c,d) Fraction of nonaxisymmetric 
field energy as a function of T for cases I and II. B• - (B•)2/(B)•', where B• is the nonaxisymmetric part of the magnetic 
field. (c) and (d) apply only to axial-dipole solutions since B• - I for the equatorial-dipole solutions. Solid (dashed) line 
is for volumetric 0 • r • I (surficial r - 1) average. Results for case II are similar to case I. 
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(a) 
II. Interestingly, the sustained magnetic fields are of two 
symmetries, either with surficial fields being primar- 
ily axial-dipolar, or with surficial fields being primarily 
equatorial-dipolar [Dudley and James, 1989; Gubbins, 
1973; Holme, 1997]. In Figure 2(a,b) the critical mag- 
netic Reynolds number R• is shown as a function of 
T, which is a measure of the size of Uo. Supercritical 
magnetic Reynolds numbers give exponentially grow- 
ing solutions; the realizable ('preferred') field configu- 
ration is that with the smallest R•. For the case of no 
overlying conducting shell (ro - 1), the critical mag- 
netic Reynolds number for the axial-dipole (equatorial- 
dipole) type solution is 140.55 (259.52); since this is 
higher than for the case with the stagnent overlying con- 
ducting shell (to = 0.8) considered here, 65.81 (124.88) 
for T - 0, the overlying shell makes dynamo action 
more e•cient. In Figure 2(a,b) we see that over most of 
the range of T the preferred solution is an axial-dipolar 
type, but for case I (case II) with T > 0.41 (T > 0.26) 
there is a crossover of critical magnetic Reynolds num- 
bers at point C, where the preferred solution changes 
to an equatorial-dipolar type. 

In the Figure 2(c,d) we show the nonaxisymmetric 
magnetic energy, B•, as a function of the amount of 
overlying toroidal motion, T. Over the volume of the 
sphere the total field for the axial-dipole type solutions 
becomes more (less) axisymmetric for T < 0 (T • 0). 
In the same figure we see that the surficial field of the 
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Figure 3. The radial component of the surficial magnetic 
field, Br, for case I. (a) Axial-dipole type solution at point 
0 in Figure 2(a), with no overlying toroidal motion, T - 0. 

• 10 -•- (b) Axial-dipole type solution at point C in Figure 2(a). (c) • 
Equatorial-dipole type solution at point C in Figure 2(a) • ß q• 

Note that the surficial field is more axisymmetric in (b) than • 
in (a), but that the field in (c) is an equatorial-dipole type • 10 -2 
and therefore has no axisymmetric ingredients. The mag- :• 
netic fields for case II (not shown) are similar. All contour • 
levels are the same. Projections are Mollweide. • 

:• 10-3 

like Uo, but with stagnant overlying conducting shells 
(to < r • 1, Uo - 0) of varying thickness [Hutch- 
eson and Gubbins, 1994; Satson and Gubbins, 1996]. 
There has also been a kinematic study of flows where 
the toroidal and poloidal ingredients were separated 
in space [Serebrianaya, 1988], but for which axisym- 
metrization was not explored. From such kinematic 
studies we learn that the configuration of the magnetic 
field, and even its symmetry, is a sensitive function of 
the details of the flow. 

Results and Discussion 

A suite of steady dynamos was found for varying 
amounts of overlying toroidal motion Uo, for cases I and 
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Figure 4. Magnetic energy (arbitrary units) of the dynamo 
fields at the point C for case I. Squares (circles) are for axial- 
dipole (equatorial-dipole) type solutions. Open (solid) sym- 
bols are for spherical harmonic expansions truncated at de- 
gree 20 (26). The energy decreases with increasing harmonic 
degree, and since the models are adequately converged, the 
inclusion of higher degree terms, those above degree 20, has 
little effect. The spectra for case II (not shown) are similar. 
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axial-dipole type solutions becomes more axisymmetric 
for ITI > 0. Stevenson's axisymmetrization mechanism 
works rather well for axial-dipole type magnetic fields; 
compare Figure 3(a) with 3(b). It fails dramatically, 
however, at point C, where the overlying differential 
rotation forces a change in symmetry from a nearly ax- 
isymmetric axial-dipole solution to an equatorial-dipole 
solution, Figure 3(c), which has no axisymmetric ingre- 
dients (B• - 1)! Convergence is verified in Figure 4. 

Conclusions 

Our analysis has been an idealization; we do not sug- 
gest that the details of our model flows resemble those 
of Saturn. Our goal was simply to investigate the abil- 
ity of overlying differential rotation to 'axisymmetrize' a 
dynamo magnetic field. In fact, it is somewhat artificial 
to suppose that the dynamo resides in a particular part 
of the flow; dynamo action occurs over the volume of 
the flow. By changing the field at the top by differential 
rotation the field in the interior is inevitably changed as 
well, sometimes even forcing a change in the symmetry 
of the magnetic field which is contrary to the expected 
axisymmetrization. We conclude that sometimes over- 
lying differential rotation acts to 'axisymmetrize' a dy- 
namo field, and sometimes it doesn't. 
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