Intro/Motivation

X-Ray Polarization from Accreting Black Holes

Jeremy Schnittman

Johns Hopkins University

Suzaku Science Symposium September 10, 2008

Outline

- Ray-tracing in Kerr metric: two paradigms
- Description of model
 - Steady-state thin disk
 - Hot corona
 - Polarization
- Results

Observer-to-Emitter

The "traditional" paradigm traces photons along geodesic paths from a distant observer to the disk

cf. Schnittman, Krolik, & Hawley (2006)

Noble et al. (2007)

Emitter-to-Observer

To include scattering effects and return radiation, we trace the photon paths from the emission region to the observer

Transport of polarization vectors

- Polarization vector is space-like and normal to wave vector: $\mathbf{f} \cdot \mathbf{k} = 0$ and $\mathbf{f} \cdot \mathbf{f} = 1$.
- Walker-Penrose constant of motion κ_{PW} , conserved along null geodesics, gives remaining components of \mathbf{f} . (Connors et al. 1980)
- Emission from scattering-dominated atmosphere is polarized parallel to disk surface. (Chandrasekhar 1960)

The thermal seed photons come from a relativistic thin disk

disk parameters:

Intro/Motivation

- BH mass M
- BH spin a/M
- accretion rate $M/M_{\rm Edd}$
- emissivity (Novikov-Thorne vs. power-law to horizon)
- corona parameters:
 - temperature, density profile $T_c(r)$, $\rho_c(r)$
 - ullet optical depth to Compton scattering au_{es}

Thompson scattering of polarized photons

- $\mathbf{f}_i \cdot \mathbf{k}_i = 0$
- $\mathbf{f}_f \cdot \mathbf{k}_f = 0$
- $(\mathbf{f}_i \times \mathbf{k}_f) \cdot \mathbf{f}_f = 0$
- $\delta = (X^2 + Y^2)^{1/2}$
- $\psi = \frac{1}{2} \tan^{-1}(Y/X)$

Plane polarization from a thermal disk is rotated by relativisite beaming and lensing

$$a/M=0.9$$
, $R_{
m in}=R_{
m ISCO}$, N-T emission, $L=0.1L_{
m Edd}$

Return radiation near the BH changes the polarization signature significantly

direct only

direct+return

Return radiation near the BH changes the polarization signature significantly

Scattering through optically thin corona rotates net polarization angle

Corona scattering preferentially changes polarization angle of high-energy photons

Applications/Future Work

- Integrated model allows us to
 - probe plunging region
 - estimate coronal properties
 - compute line emissivity profile
- Fitting observations
 - Green's function-type transfer (e.g. Magdziarz & Zdziarski 1995)
 - orthogonal basis of fitting functions to minimize parameter degeneracy
 - fold through *GEMS* response function
- 3-D numerical MHD simulations (Noble, Krolik, etc.)
 - develop realistic heating, cooling functions
 - define electron temperature everywhere
 - self-consistently calculate inverse-Compton spectrum and polarization

