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Assimilation of photochemically active species and a case
analysis of UARS data

Boris V. Khattatov,’ John C. Gille,’ Lawrence V. Lyjak,' Guy P. Brasseur,’
Victor L. Dvortsov,”” Aidan E. Roche,” and Joe W. Waters’

Abstract. We present a short overview of applications of estimation theory in atmospheric
chemistry and discuss some common methods of gridding and mapping of irregular satellite
observations of chemical constituents. It is shown that these methods are unable to produce

truly synoptic maps of short-lived photochemically active species due to insufficient
temporal and spatial density of satellite observations. The only way to overcome this
limitation is to supplement observations with prior independent information given, for
instance, by atmospheric numerical models and/or climatologies. Objective approaches to
combining such prior information with observations are commonly referred to as data
assimilation. Mathematical basis of data assimilation known as optimal estimation equations
is presented following Lorenc [1986]. Two particular techniques of data assimilation, the
variational method and the extended Kalman filter, are briefly described, and their
applications to time-dependent numerical photochemical models are discussed. We
investigate validity of the linear approximation which is utilized in both methods, present
time evolution of the linearization and covariance matrices, and discuss some of their
properties. On the basis of ideas of Fisher and Lary [1995] we then employ a trajectory
model and a photochemical box model for assimilation and mapping of the Upper
Atmosphere Research Satellite (UARS) measurements of chemical species. The
assimilation is performed using the variational technique and the extended Kalman filter,

and results of both methods are presented and discussed.

1. Introduction

In order to characterize and to predict the evolution of the
Earth’s atmosphere one has to know its present state. The
state of the atmosphere is defined by instantaneous global dis-
tributions of a number of physical parameters such as winds,
temperature, concentrations of chemical constituents,
moisture, radiation field, etc. One cannot envision being able
to observe all the components of the atmospheric state
simultaneously and at every point in space and with a perfect
accuracy. It is inevitable then that to characterize the
atmosphere some additional information has to be brought
into consideration.

Such information can be introduced in two ways. It can be
given by theoretical equations that allow one to deduce some
components of the state from others or to derive them from a
smaller set of model parameters. In this case the number of
independent components of the state is reduced and the
effective density of observations is increased. Also, the addi-
tional information can be given by independent, a priori
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estimates of the atmospheric parameters with their
corresponding uncertainties. In the latter case one can think of
the a priori estimates and their corresponding uncertainties as
some additional “virtual measurements”, as Rodgers [1976]
suggested. Numerical models or climatologies can be used to
obtain such virtual measurements.

Objective approaches to combining a priori knowledge
about a physical system under consideration with available
(usually sparse and irregular) observations are often referred
to as data assimilation. The mathematical basis of data
assimilation is the estimation or inverse problem theory.
Inverse problem theory is an organized set of mathematical
techniques for obtaining useful information about the physical
world on the basis of observations [Menke, 1984]. In a
conventional “forward” problem one uses a set of a priori
parameters to predict the state of the physical system. In the
“inverse” or estimation problem one attempts to use available
observations of the state of the system to estimate poorly
known model parameters and/or the state itself.

The ideas and methods of estimation and inverse problem
theory can be applied to observations and modeling of almost
anything. The meanings of the model, state, model param-
eters, and observations depend on a particular application. In
atmospheric sciences, mathematical methods of estimation
and inverse theory have long been used in numerical weather
prediction, data retrievals from remote sensing experiments
(particularly satellite measurements), and inverse modeling of
surface fluxes of methane and carbon dioxide. A few recent
publications briefly described below demonstrated that the
same techniques can be very successfully applied for studies
of atmospheric chemistry and trace gases distributions.
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Austin [1992] made perhaps the first attempt to implement
sequential assimilation of satellite measurements into a global
chemistry-transport model on isentropic surfaces. Limb
infrared monitor of the stratosphere (1L.IMS) data and model
simulations were weighted to form initial conditions for the
model for the next integration period. The weights were
empirically determined from the relative confidence in the
model results and observations.

Riishojgaard [1996] has used the four-dimensional
variational technique to assimilate ozone data into a
numerical weather prediction model. Since the photochemical
lifetime of ozone is relatively long in the lower and middle
atmosphere, some dynamical information can be extracted
from its observations and used to improve the weather
forecasts.

Levelt et al. [1996] have used a variation of the objective
interpolation technique to assimilate the TIROS operational
vertical sounder (TOVS) total ozone amount measurements
using a two- dimensional, latitude-longitude, global advection
model.

Eskes et al. [1999] assimilated the Global Ozone Monitoring
Experiment (GOME) total column measurements in a two-dimen-
sional advection model using a variational approach and
provided estimates of the errors of the final analysis. Both Levelt
et al. [1996] and Eskes et al. [1999] provide means to constract
nearly synoptic maps from irregular and sparse (in time and
space) satellite measurements.

Lyster et al. [1997] for the first time have used a two-
dimensional transport model on isentropic surfaces and the
Kalman filter technique to assimilate cryogenic limb array etalon
spectrometer (CLAES)- and Halogen Occultation Experiment
(HALOE)-measured CH,. Although very computationally
expensive in terms of both CPU and memory resources, their
pioneering approach allows production of synoptic maps from
irregularly distributed UARS measurements. No photochemical
processes were taken into account, though, and thus this
approach in its current form is valid only when applied to inert
tracers. This approach should not be confused with the widely
used so-called “Kalman filter mapping” [e.g., Haggard et al.,
1986; Kohri, 1981], which is often applied for gridding satellite-
collected data such as the UARS 3B data
(http://grid.gsfc.nasa.gov:8001/www/ 13b_description.html).
Lyster et al. {1997] use the actual advection equations (i.e., 2
global transport model) to predict the evolution of the analysis
covariance matrix.

Fisher and Lary [1995] have used variational data
assimilation for assimilating and mapping the CLAES
observations of Os;, NO,, and HNO; using a fairly simple six-
species, 19-reaction photochemical box model in conjunction
with a trajectory model. This was the first application of data
assimilation techniques for analysis of photochemically active
species in the stratosphere.

Elbern et al. [1997] extended the variational method,
suggested by Fisher and Lary [1995], to assimilation of
various tropospheric trace gases using a box model which
included a number of organic species. They have shown that
even a very small number of observations can significantly
influence and improve the model simulations.

Levelt et al. {1998} have assimilated UARS Microwave
Limb Sounder (MLS) measurements of ozone in the global
three-dimensional (3-D) chemistry-transport model using the
3D-Var approach. This work demonstrated that sequential
assimilation using global photochemical models can be
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Figure 1. UARS cryogenic limb array etalon spectrometer
(CLAES) NO, measurements for 1 day at 30° N at 10 mbar.

successfully used for mapping irregular satellite observations
and filling in temporal and spatial gaps.

Interestingly, most of the referenced studies have
concentrated on assimilation and analysis of satellite data.
The global coverage of satellite measurements makes such
measurements  very attractive for producing global
distributions of chemical species. However, the geometry of
satellite orbits imposes strict limitations on the space and time
sampling. This makes analysis of photochemically active
species with a strong diurnal cycle particularly complicated.
Consider, for example, daily UARS CLAES measurements of
NO, at 10 mbar shown in Figure 1. At this altitude, NO,
undergoes strong diurnal variations. One can see that all daily
CLAES observations are grouped into two narrow clusters
separated by about 12 hours. Obviously, the local time
coverage of the CLAES data is insufficient to resolve the NO,

‘diurnal cycle. The data assimilation methodology makes use

of the additional constraints given by a priori knowledge and
thus makes it possible to overcome some of the limitations of
asynoptic satellite observations.

In this paper we describe two mathematical techniques, the
variational data assimilation and the extended Kalman filter,
and apply them to assimilation and mapping of the UARS-
measured chemical species. The employed mathematical
apparatus is not innovative by any means. Mathematical
derivations presented here can be found in a number of
publications [e.g., Lorenc, 1986]. However, applications of
this methodology to photochemical models are fairly rare. The
current work has been largely motivated by ideas introduced
for the first time by Fisher and Lary [1995].

An overview of the existing conventional methods of
satellite data mapping is given in the next section.
Mathematical foundations of the employed data assimilation
methodology are presented in section 3, followed by
description of a photochemical box model used in the
assimilation and description of the linear approximation to the
model. In the remaining sections we present evolution of the
linearization and error covariance matrices arising in both
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methods and describe assimilation of the actual UARS
observations.

2. Conventional Mapping Techniques

Atmospheric constituents exhibit variability on very
different temporal and spatial scales. Insufficient temporal
and spatial density of satellite observations generally does not
allow analysis of constituent variations on all scales
simultaneously. Well-established methods exist for mapping
and analyzing the long-lived species. Some of the most often
used methods include Fourier synoptic mapping [Salby,
1982a, b}, trajectory mapping [Morris et al., 1995; Sutton et
al., 1994], and the sequential estimation algorithm [Rodgers,
1976]. However, none of these techniques is directly suitable
for analysis of satellite observations of diurnally varying
species.

The synoptic mapping technique [Salby, 19822, b] is a
Fourier transform scheme modified for retrieving synoptic
maps from asynoptic satellite-collected data. This technique
works well for data that show relatively slow temporal
variability and large-scale spatial features. This method has a
major disadvantage: It requires continuous measurements
along the satellite orbit. Hence this technique cannot be used
for instraments that measure during only a portion of local
time span. Although it is possible to adopt this technique to
compute amplitudes of the diurnal variations of some species
[Sassi and Salby, 1998} the full diurnal cycle cannot be
resolved.

The trajectory mapping technique [Morris et al., 1995;
Sutton et al., 1994] overcomes some of the limitations
imposed by the satellite observational patterns through use of
the observed winds and temperatures to “map” irregularly
spaced observations made in the past onto regular grid points
in the present. It is in some respect superior to the synoptic
mapping since it introduces additional constraints through use
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of the observed dynamics. However, this method completely
ignores chemical interactions between atmospheric con-
stituents and is thus valid only on the timescales shorter than
the photochemical lifetime of the analyzed constituents. It is
therefore inappropriate for analysis of short-lived species. The
data assimilation methodology presented here can be thought
of as a combination of the trajectory mapping of Morris et al.
[1995] and a photochemical box model.

The sequential estimation technique has been used in
UARS data processing for producing the so-called level 3B
data, which consist of sets of Fourier coefficients in longitude
for every latitude and altitude level and some auxiliary
information.

Level 3B UARS data were included in a number of
scientific publications and are being used by the community.
However, this technique also has serious limitations imposed
by the asynoptic nature of satellite observations. Consider, for
instance, Plate 1, showing a map of NO, distribution at
approximately 10 mbar for May 3, 1993, produced from
CLAES level 3B data for 1200 UT. At these altituades, NO,
has a strong diurnal cycle. If the map shown in Plate 1 were
approximately synoptic, one should have been able to see
increased concentrations of NO, at the nighttime longitudes
and smaller concentrations at daytime longitudes. Clearly, the
terminator is not present in this plot. There is very little
longitudinal dependence in the distribution suggesting that all
points at a given latitude correspond to approximately the
same local time. Thus the sequential estimation technique
applied to observations of diurnally varying chemical con-
stituents yields results in which short temporal variability is
aliased into what is interpreted as longer temporal scales,
including the time mean component. Thus the technique is
unable to produce a synoptic analysis of these constituents. Its
results might be hard to interpret at best and misleading at
worst. The extent to which diurnal variations contribute to the
“zonal mean” and other Fourier harmonics is determined
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Plate 1. Map of UARS CLAES NO, (ppbv) produced from level 3B data for 1 day.
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Jargely by the amplitude of these variations and is expected to
be very significant for short-lived species such as NO, or C1O
in the stratosphere and ozone in the upper stratosphere.

One can attempt to separate the local time variation by
accumulating a number of days of observations at each
latitude, with each day corresponding to a slightly different
local time. For instance, in the case of the UARS the satellite
orbit precesses by about 20 min of local time per day, and
therefore about 36 days of observations for both ascending
and descending portions of the orbit are needed to cover all
local times. However, if the analysis is performed in this
manner, the day-to-day geophysical variability cannot be dis-
tinguished from the local time variability. Therefore the day-
to-day variations will be aliased into the local time variability
and vice versa. These difficulties are inherent in the asynoptic
satellite observations. In order to improve the situation some
additional information needs to be taken into consideration.

From the above discussion one can conclude that the
described techniques cannot produce a satisfactory analysis of
the satellite-measured time-space distributions of species that
exhibit temporal variations with timescales of about a day or
shorter. The data assimilation methodology provides means to
analyze various satellite observations of short-lived, as well as
long-lived, constituents by supplementing measurements with
our knowledge of atmospheric photochemistry and transport.

3. Mathematical Basis

Since applications of estimation and inverse problem
theories in atmospheric chemistry are fairly rare. a short
introduction to the employed mathematical framework is
offered. Key concepts of the data assimilation methodology
can be presented in a fairly concise mathematical form [e.g.,
Lorenc, 1986].

Consider a model of a physical system represented by
operator (generally nonlinear) M, and let vector x with
dimension N, be a set of input parameters for the model.
These input parameters are used to predict the state of the
system, vector y with dimension N,:

y=Mx) ¢

We assume that dimensions of vectors y and x are finite and
that therefore an appropriate discretization (grid) can be
introduced in the real continuous physical space. The model
state y is defined by values of the model variables at points of
the grid. The discretization errors will be considered
negligible in this discussion.

Let vector y, contain observations of the state. Usually, the
dimension of y, is significantly less than N,, the dimension of
the model space. Moreover, the locations of observations in
the real physical space can be different from the locations of
the grid points at which the model space y is defined. The
connection between y, and y can be established through the
so-called observational operator H, which represents
interpolation of the state variables from the locations of the
grid points to the locations of the observations:

@

Everywhere in this discussion we assume that the
interpolation errors associated with operator H are negligible.

yo = H(y)

KHATTATOV ET AL.: ASSIMILATION OF CHEMICAL SPECIES

The results are easily extended to the case when this is not
true {e.g.. Lorenc, 1986]. Combining the above two
equations, we get

Yo = H(M(x)) (3)

Our analysis problem is then to find the “best” value of x,
which inverts (3) for a given y, allowing for observation
errors and other prior information [Lorenc, 1986]. In most
cases, dimensions of vectors x and y, will be different, and
this problem will be either overdetermined or
underdetermined. Therefore inversion of (3) should be done
in the statistical sense.

“Best” here means that the errors of the final analysis are
minimal. An exact value of a physical quantity can rarely be
determined. One can only say that this value lies within a
certain range with a certain probability, and therefore all
estimates of the best value of x or x, obtained from the
observed y, are probabilistic in nature. A mathematically
robust definition of best or optimal x is, for instance, the
value corresponding to the maximum of the probability
density function (PDF) of x given observations y,. This is the
so-called maximum likelihood definition.

The exact shapes of the PDFs in both x and y spaces are
generally unknown. In order to solve the posed analysis
problem one needs to establish a relationship between the
PDF of x and the PDF of y. Formal transformation of PDFs
by the model from the parameter space x to the model space y
is described by the so-called Fokker-Kolmogorov equation
[e.g., Jazwinski, 1970], which is impossible to solve in most
practical applications. This is one of the reasons why
simplifications are needed in order to be able to solve
practical problems.

One simplification is that the probability density functions
can be approximated by Gaussian functions:

PDF(x) ~ exp[- 0.5(x-x,)TC" (x-x,)] @)

where x, is the true value of x and C is the corresponding
error covariance matrix. Its diagonal elements are the
uncertainties (standard deviations) of x, and the off-diagonal
elements represent correlation between uncertainties of
different elements of vector x. The covariance matrix C is
defined as

C=<(x-x)(x-%,)" > (5)
where angle brackets represent averaging over all available
realizations of x.

Here we assume that all probability density functions could
be approximated by Gaussian functions. We also assume that
there exist a prior, independent estimate of x, or x,, often
called the background, and the corresponding background
error covariances B. The solution minimizing the final

analysis errors is given by a minimum of the following func-
tional [Lorenc, 1986]:

J(x)=[y, - HM)] (0 +F) [y, - HM(x))] +
[x-%,) B [x-x,]

6)

here O is the observational error covariance matrix, F is the
error covariance corresponding to operators M and H, and B
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is the background error covariance matrix. They characterize
our confidence in the measurements, the model and
observation operator, and the a priori background estimate.
J(x) is often called the misfit or cost function.

Thus the solution of the optimal analysis problem can be
written as

X, 1 J (%) = min{J(x)} 7

Once the optimal estimate of x is obtained, (1) can be used to
derive the best estimate of the state y.

Note that both types of independent information mentioned
earlier in this section are included in (6). The information
given by theoretical equations is contained in operator M and
the a priori estimate of model parameters is given by x.. In the
ultimate case, when one measures the state directly at the
locations of the grid points, M and H are the identity
operators and x=y. In the case when no a priori first guess is
available, which effectively means that the background error
covariances become infinitely large, the second term in (6)
vanishes. Equations (6) and (7) are simply a generalization of
the well-known fact that independent measurements should
be added with weights inversely proportional to the square of
the measurement errors to form an optimal estimate.

In practical applications one has to find an appropriate way
to compute the error covariances and to minimize (6). In most
cases, in order to be able to do that we need to introduce the
linear approximation. In the linear approximation we assume
that for small perturbations of the parameter vector Ax the
following is approximately true:

M(x+Ax) =M(x) + LAx 8)

Note that in this expression L is a matrix, while M is, in
general, a nonlinear operator. Formally, L is a derivative of M
with respect to x: :

ng—‘\ﬁ 9

dx

The linearization L of the original model M will be used in
two ways. First, minimization of J(x) often requires
knowledge of the derivative of J(x) with respect to x. This, in
turn, requires knowing dM/dx. In this discussion we assume
that observational operator H is simply 2 linear interpolation
from times/locations of the model grid points to times/loca-
tions of the observations. Generalization to the case of
nonlinear H is straightforward [e.g., Lorenc, 1986, p. 1180].

Second, for small variations of x one can show (from
equations (5) and (8)) that transformation of error covariance
matrix C, in the parameter space to the error covariance
matrix C, in the model space is as follows:

C,=LC,L* (10)
This, in turn, allows one to establish correspondence between
PDF of x in the parameter space and PDF of y in the model
space.

We will now limit the discussion to the case when M is
used to predict the state of the system at some future time
from past state estimates. An example of such model is a
photochemical box model described later in this paper.
Formally, in this case

18,719
X=X, ¥ = Xpup an

and
Xope =M(X,) (12)

As an example, assume that vector x represents the state of a
time-dependent numerical photochemical model, 1ie.,
concentrations of modeled species at model grid points in the
atmosphere. In the case of a box model that includes N
species, the dimension of vector x would be N, while in a
multidimensional model that contains N, spatial grid points,
the dimension of x would be NxV,. These numbers can be
quite large: For instance, a 3-D model with 20 vertical levels
and 2 5° x 5° horizontal resolution contains 54,020 grid
points. If 20 chemical species are included, then the
dimension of x is 1,080,400. Significant computational
difficulties arise when dealing with vectors and matrices of
such high dimensions [e.g., Lyster et al., 1997].

In the next sections we will apply the above mentioned
concepts to the case of a time-dependent predictive model.
Specifically, we will present two techniques for solving the
analysis problem: the variational method and the sequential
method, also known as the Kalman filter.

3.1. Variational Technique

In the variational method a minimization algorithm is used
to find model initial conditions x that minimize a misfit
between model results and observations for the whole
analysis period. The analysis period is usually much longer
than the model time step Az

Usually, there is more than one observation available
inside the analysis interval, and (6) becomes
J0= Y [y'o -H M 00)] (O +FY Iy'o - H M ()] +

4
'{X-Xb}TB-E{X-Xb} 13)
Here index i corresponds to a particular time ¢, ¥, represents
an observation at this time, H'(M'(x)) is the model estimate of
the state interpolated, if necessary, to the time/location of Yoo
and O and ¥ are the error covariance matrices corresponding
to 4L

The model, observation, and the background error
covariances are considered to be known a priori and do not
change during the assimilation procedure. In practical
applications of the variational method the background term is
often neglected. This is justified if the background state x, is
poorly known or if enough observations are available to
properly constrain the system.

The variational data assimilation technique can be thought
of as a constrained least squares fit to a set of observations
distributed over some period of time. The constraints are
given by the model equations. The choice of the analysis
period is somewhat arbitrary and is dictated by the frequency
of the observations and the characteristic timescales of the
modeled system. The solution inside the analysis interval is
smooth, while usually there is a discontinuity at the ends of
adjacent analysis periods. Figure 2 illustrates the general idea
of the variational method.

Since M is almost always nonlinear, the explicit solution is
rarely possible, and a minimization algorithm has to be used
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Figure 2. Tlustration of the variational method. Initial
conditions are modified in order to minimize the misfit
between model simulations and observations.

for finding the optimal x. Most minimization algorithms
require knowledge of the gradient of the cost function J(x)
with respect to x. The so-called adjoint method [e.g.,
Talagrand and Courtier, 1987; Fisher and Lary, 1995] is
often used to compute dJ(x)Y/dx. The adjoint method relies on
the linearization of the model. This imposes additional
requirements on the length of the analysis period, which
should be short enough for the linear approximation t be
valid.

Although it may be possible to compute the gradient
di(x)/dx by analytically differentiating theoretical model
equations, such approach might be unsatisfactory. In practice,
the value of the cost function is obtained by numerically
solving the discretized model equations rather than solving
the theoretical model equations analytically. Thus the analyti-
cally obtained gradient may be inconsistent with the gradient
of the numerically computed cost function, and the employed
minimization algorithm might fail. To guarantee consistency
of the gradient and the cost function, one should differentiate
the numerical scheme that is used to integrate the model and
compute J(x). Modern techniques of automatic differentiation
[e.g.. Griewank, 1989] can be employed to facilitate this
process. We should note, however, that in some applications
an analytically computed gradient may suffice. An excellent
discussion of the advantages and shortcomings of either
approach is given by Sirkes and Tziperman [1997].

3.2. Sequential Technique (Kalman Filter)

In the sequential approach each observation is processed
separately, and the analysis length is the time between two
consecutive observations. Model forecast at the end of the
analysis interval is considered to be the a priori background
estimate X, The optimal analysis equation is used to obtain
the best estimate of x from the forecast value and a
corresponding observation. The result is used as the model
initial condition for the next analysis period [e.g., Lorenc,
1986; Lyster et al., 1997]. Therefore x, = x, is the model
forecasted value of x at time #; v, is the observation at time #;
and x is the optimal estimate of model state at time ¢ obtained
from x,and y,.

Equation (6) thus becomes

Tyl . Tg -1
JX) =[y,-HX] Oy, -H®I+[x-x] B, [x-x,] (14
Here B, is the forecast error covariance at time . Note that B
in (13) is also a forecast error covariance if the background is
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taken from a model forecast, as is often the case. Also, note
that in (14) operator M is not explicitly included in the cost
function. Since M is not included in the equation, an explicit
solution is possible provided that H is linear. To minimize
(14), one has 10 solve dJ(x)/dx = 0. The solution is

x=x, +K(y, - Hx,) (1%

K=BH (HBH  +0) (16)
Matrix K is called the Kalman gain matrix.

At the end of each analysis period the model value (x,) and
the corresponding observation (y,) are “mixed” with weights
inversely proportional to their respective errors according to
(15) and (16) to produce x. Then the model is integrated
forward in time starting from the obtained x. Once an
observation has been incorporated in the model, the analysis
error covariance should be updated to reflect this. It can be
shown that the new analysis error covariance is expressed as
[Lorenc, 1986]

B=B,-B,H' (HB,H' +0) HB, an
In the absence of observations, the model state is updated
using (12), while evolution of the error covariance is obtained
from the linearized model equations as in (10):

B.,=LBL @18
Equations (15)-(18) are often referred to as the extended
Kalman filter. In the case of a linear model, L=M and (15)-
(18) will become the Kalman filter equations.

In reality, the forecast model is usually not perfect, and
therefore equations (10), (12), and (18) should include
additional terms due to the forecast model error. Everywhere
in this work we assume that error is negligible relative to the
observational error and is therefore omitted from the above
equations.

Sequential analysis has a discontinuity whenever 2 new
observation is encountered during forward model integration
(Figure 3). If x is a function of both time and space, the four-
dimensional analysis, as in the case of the variational
technique when the analysis is done simultaneously in space
and time, is replaced by a sequence of three-dimensional
analyses performed at different times.

time
Figure 3. Illustration of the sequential method. A new
estimate of the state is obtained each time an observation is
encountered and the analysis contains discontinuities at these

times. Then model integration continues starting from the new
initial conditions.
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4. Photochemical Model

A photochemical box model was specifically created for
applications of the variational and extended Kalman filter
methods to assimilation of satellite data in the stratosphere.
The model uses adaptive-time-step Bulirsch-Stoer stiff solver
with accuracy monitoring {[Press et al., 1996], similar to that
described by Fisher and Lary [1995]. The photodissociation
rates are computed by the delta-Eddington method
implemented by Dvortsov et al. [1992]. The model
automatically generates photochemical kinetic equations from
a list of reactions and a list of species that the user wishes to
include as well as the comresponding Jacobian and Hessian
matrices. This is done by allocating special data structures in
memory and filling them with pointers to arrays of species
concentrations and photochemical reaction rates. When the
right-hand side of the kinetic model equations or the Jacobian
or Hessian need to be calculated in the model, algebraic
operations are performed with components of these data
structures according to rules inferred from a list of model
species and a list of reactions. Thus adding new species
and/or reactions to the model or altering the photochemical
scheme is easy and does not require modification of the
model code.

The photochemical scheme used in the data assimilation
experiments includes over 50 chemical reactions, 16
photodissociation reactions, and the following species: H,
OH, HO,, H;0,, NO, NO,, NO;, N,0s5, HNOs;, HNO,, Cl,
ClO, HOCI, HCl, CIONO,, O, O('D), 05, CO, CH.,, N,0, H,,
H,0, and sulfate aerosol. Rates of the photochemical reac-
tions were taken from DeMore et al. [1994]. Concentrations
of CO, CH,, N,O, H,, H,O, and sulfate aerosol were held
constant and typical for the altitude at which the calculations
were performed.

For model validation we performed simulations with
additional 16 species (OCIO, CL,0,, Cl,, CIO0, CH,, HCO,
H,CO, CH;0, CH;0, CH;00H, Br, BrO, HOBr, HBr,
BrONO,, and BrCl) and the corresponding extra
photochemical reactions. Results of these simulations were
compared with the Atmospheric Environmental Research
(AER) box model [e.g., Weisenstein et al., 1993] and an
excellent agreement was demonstrated (M. Danilin, personal
communication, 1998).

Linearization of the model, i.e., computer code, calculating
derivatives of the final concentrations with respect to the
initial concentrations, is required for implementation of both
variational assimilation and the extended Kalman filter. This
code was obtained by differentiating “by hand” the numerical
scheme of the stiff differential equation solver employed in
the model and then coding the result. The stiff numerical
solver requires knowledge of the Jacobian matrix of the
photochemical model, and the derivative of the scheme will
therefore require the Hessian. As was mentioned above, the
model provides means to compute these matrices as needed.
The linearizations are computed at each time step in the
model, and the resulting derivatives matrices corresponding to
all the time steps in the integration are then multiplied to
obtain the final linearization.

5. Linear Approximation

As was discussed above, linearization of a2 model used in
the assimilation is central in both variational and extended

KHATTATOV ET AL.: ASSIMILATION OF CHEMICAL SPECIES

Kalman filter approaches. It is therefore crucial to establish
the validity of linear approximation before these methods can
be used. Clearly, most stratospheric photochemical processes
are highly nonlinear, and it is not immediately obvious that
linear approximation of the original model will be satisfactory
in the case of stratospheric photochemistry. Even if linear
approximation holds for short integrations, it might fail as the
integration time increases. This imposes additional limitation
on length of the analysis interval in assimilation.

In order to investigate validity of linearization L of the
photochemical box model M described in the previous
section, we have performed full non-linear model integration
starting from steady state initial conditions x, and have
linearized the model around the obtained model path.
Formally,

x(8) = M(X,.1) 19
_ax(n)
Lin)= __dxo 20

Here vectors x and x, contain concentrations of all variable
species. Temperature and concentrations of nonvariable
species were held constant with absolute values typical for 10
mbar. We then perturbed the initial species concentrations
and performed calculations starting from the perturbed initial
conditions X,+Ax using first the original nonlinear model:

XNL({)zM(XO“i'AX,Z) (2})
and then the linear approximation
Xy ()=M(x,,1) +L{z) Ax 22)

We then computed an error of linear approximation as a
function of time as follows:

IXnp () =% (D]

=
" X () 10720

Value of 10 in the denominator was added to avoid division
by zero when concentrations of some species disappear in
diurnal cycle. The amplitude of perturbation Ax was set to
10% and 20% of the initial conditions x,. The shape of the
perturbation was chosen at random, and several different
perturbations were tried. Plots of €(¢) are shown in Plate 2 for
up to 10 days for some species. The relative error can be as
high as 35% for brief periods of time for species experiencing
strong diurnal cycles. Note that for some species (O; and
HNO;) the error is actually smaller at the end of a 10-day
integration than in the middle. This can be perhaps explained
by noting that the initial perturbation Ax pushes the chemical
system away from its equilibrium state determined by initial
conditions X,. During some time after initial perturbation the
system experiences a nonlinear transition to a new
equilibrium state. It appears that during this transition linear
approximation does not hold as well as after the transition,
when the system is in the vicinity of a new equilibrium state.

In general, as appears from results shown in Plate 2, linear
approximation holds surprisingly well for a 10-day
integration. This behavior is probably due to the fact that
concentrations of short-lived species undergoing nonlinear
transformations are typically determined by concentrations of
a few long-lived species such as O; or HCl and such
parameters as total reactive chlorine and nitrogen. As long as
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concentrations of these long-lived species do not vary
significantly during analysis, we expect linear approximation
to hold fairly well. During brief periods of time when short-
lived species are not in photochemical equilibrium, at sunrise
and sunset, the relative error increases rapidly, as seen in
Plate 2. It appears therefore that validity of linear
approximation is limited by the lifetime of long-lived
constituents. For instance, we expect the linearization to fail
when rapid photochemical production or destruction of
ozone, such as that occurring in the ozone hole, takes place. It
is also possible that linear approximation will not hold as well
in the presence of high concentrations of background sulfate
acrosol, for example, after heavy volcanic eruptions. These
limitations should be kept in mind when interpreting our
results. :

While (23) represents relative difference between the linear
and nonlinear models, it does not characterize the error in
assuming linear dependency of the results on the size of initial
perturbation Ax. In order to estimate this error, we computed
the ratio of the nonlinear and linear terms in the Taylor series
expansion of M(X,+Ax, ?):

IM(x, +Ax%,8) ~M(x,,t) - L{#)Ax}

[L()HAx +1072 |
The results are shown in Plate3. As one can see, the
magnitude of &(7) can be rather large. Particularly surprising
is the rapid growth and decrease of the error in case of ozone
simulation. Upon examination of the results we discovered
that at the time the error reaches its maximum (day 7), the
nonlinear as well as linear simulations, X (f) and x.(2),
approach the basic state M(x,,?). Therefore, the magnitude of
the linear term L(t)Ax decreases drastically, while the
magnitude of the nonlinear term M(x,+AX, 1) - M(X,.f) -
L{:)Ax! remains approximately the same (about 1% of the
basic state, as seen in Plate 2). This leads to a rather
intuitively obvious conclusion that linear approximation
becomes invalid when the magnitude of L(#) becomes very
small. Nevertheless, it appears that linear approximation
remains reliable for up to about 3-4 days.

()=

(24)

6. Evolution of the Linearization
and Covariance Matrices

The photochemical box model M described above can be
thought of as an algebraic transformation from N-dimensional
space of constituent concentrations at present time to some
future time, as illustrated in Figure 4. N is the length of the
vector X, ie. the number of modeled species. As was
demonstrated in the previous section, for small (<10-20%)
increments AX to the basic state, the nonlinear transformation
given by the original model can be successfully approximated
by linearization of the model:

Ax,. ., = LAx, (25)
The linearized model L is an NXN matrix, and therefore the
transformation from present to future constituent space can be
approximated as multiplication of matrix L by vector of
concentration increments at the present time Ax, This
framework allows us to apply methods of linear algebra for
Quantitative investigation of some properties of the model.
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Figure 4. The photochemical model can be thought of as an
algebraic transformation from the space of constituent
concentrations at past time to future time.

Plate 4 presents normalized matrix L for Ar=0, 6, and 12
hours and 1, 3, and 6 days since the beginning of integration.
The normalization was introduced to facilitate visualization of
matrix L, which is made difficult due to very large differences
in the magnitudes of elements of L. To introduce normalized
linearization matrix, we assume that AX, and AX,, can be
written as follows:

Ax, =S f, 26

AXH-A: =Sxf:-:-A: (27)
where matrix S, is a diagonal matrix, with its diagonal
elements being the scaling factors for the concentrations.
These diagonal elements are set equal to the concentrations of
model species at time ¢, ie., elements of x,. Elements of
vectors f, and £, thus représent fractions of these
concentrations.
Combining equations (25), (26), and (27), we get
Lo =Sx_21‘sxft 28
The normalized linearization matrix shown in Plate 4 is given
by

Ly =S,7'LS,

(29)
and
fl+A.t =LNf‘, (30)

Ly therefore represents sensitivity of elements of fou to
elements of f. Normalized linearization matrix is shown for
all 18 modeled species as well as for sulfate aerosol, concen-
tration of which is not changing in the model. The diagonal
element of Ly comresponding to sulfate aerosol is therefore
constant and always equals 1. The related row and column
contain zeroes. At the beginning of integration, As=0 and Ly
is simply the identity matrix. As time increases, the structure
of Ly alters. Values of the diagonal elements change, and
nonzero off-diagonal elements start appearing. As expected,
for long-lived constituents such as ozone, HCI, or HNO;,
values of the diagonal elements remain close to 1, showing
that their final concentrations are largely determined by their
own initial concentrations. For short-lived species such as H,
OH, or Cl, undergoing strong diurnal cycles, the diagonal
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elements quickly decrease while off-diagonal elements grow
in amplitude, indicating that for these species final
concentrations are determined by initial concentrations of spe-
cies other than themselves. Note that the eighteenth matrix
column, corresponding to ozone, contains mainly nonzero
elements, thus showing that final concentrations of almost all
species depend on initial ozone concentration.

After a few days of integration 2 certain pattern clearly
emerges in distribution of the nonzero elements, with only a
few columns containing most nonzero values. This demon-
strates that a relatively small number of mostly long-lived
species or families, such as NO,, determine concentrations of
all constituents in the model at later times. This perhaps helps
to understand why linear approximation described in the
previous section holds so well.

We found that matrix L is not invertable for Az of a few
hours or longer. The reason for this is that the rank of L, i.e.
number of linearly independent rows or columns, quickly
decreases with time. The rank is shown in Plate 4 on top of
each plot. As one can see, after just 6 hours the rank
decreases from 19 to 11 and becomes 9 after 4 days of
integration (day 4 is not shown). This means that, in general,
only nine linear combinations of initial species concentrations
compietely define concentrations of all 19 constituents after 4
days. Formally, on day 4. matrix L represents a
transformation from 19-dimensional space to 9-dimensional
space. This is a multidimensional equivalent of multiplication
by zero along some of the dimensions. No matter how large
some concentration was initially, in a few hours or a few days
its impact might be completely negligible. Clearly, this
behavior is due to a strong diumnal cycle and the short lifetime
of some species in the model.

An interesting consequence of this is that the past state of
the modeled stratospheric chemical system can never be
determined from present observations of the system since L
cannot be inverted. On the other hand, it means that one does
not have to know concentrations of all species to predict the
state at some later time. For example, provided that the mode}
is fairly realistic, only nine linear combinations of species
concentrations spanning the orthogonal space of matrix L
need to be known in order to predict concentrations of all 19
model constituents 4 ‘days later. Although it is fairly
straightforward to determine the orthogonal space of matrix L
and therefore the defining linear combinations of the basis
species concentrations, this has little practical value. In
reality, most instruments measure concentrations of individual
species and not their weighted sums. Perhaps a more relevant
practical question is, What is the uncertainty of the model
prediction given specified uncertainty of measurements of
initial concentrations? A related question is, What are the
measurement requirements that yield a specified uncertainty
of the prediction? The first question is fairly easy to answer
using time evolution of the error covariance matrix described
above. The second problem is not so trivial and will contain
multiple solutions. Careful investigation of this problem is
beyond the scope of this paper.

Matrix L can be used to compute time evolution of the
error covariances in the model according to (18). We have
assumed that initial concentrations of all species in the model
are known with 10% uncertainty and that these errors are
uncorrelated. This means that for Ar=0 all diagonal elements

KHATTATOV ET AL.: ASSIMILATION OF CHEMICAL SPECIES

of the relative error covariance matrix are equal t0 0.1> = 0.01
and all off-diagonal elements are zeros. The relative error
covariance matrices are shown in Plate 5 at the same times as
in Plate 4. Shortly after the beginning of integration, the
original error covariance matrix structure breaks down and a
large number of nonzero, both positive and negative, off-
diagonal elements appear. The nonzero off-diagonal elements
represent  error  correlation  between  different  model
constituents. Their appearance in the covariance matrix is
expected, since initial “error, for instance, of ozone
concentration, ‘will “propagate” to other constituents due to
photochemical interactions in the model. At different portions
of the diurnal cycle, some off-diagonal elements can change
sign because of photochemical transformations between some
constituents. For example, an uncertainty associated with CIO
concentrations during daytime will be related to uncertainty of
CIONO, concentrations during nighttime and vice versa.
Values of the diagonal elements will, of course, always be
positive. At later times, a stable distribution of nonzero off-
diagonal elements appears in the covariance matrix. Such
elements indicate strong photochemical links between various
species (e.g., photochemical families).

Note that the values of “diagonal elements or error
variances associated with atomic oxygen and ozone decrease
with time. This can be understood if we note that the modeled
photochemical system is not enclosed and is slowly evolving
to equilibrium with the environment. The equilibrium state is
determined by external conditions such as the amount of solar
radiation, temperature, pressure, etc. “Excessive” odd oxygen
in the model is removed from the system through catalytic
destruction cycles, and just the “right” amount of new odd
oxygen is  produced  from = molecular  oxygen
photodissociation. Since we assumed a perfect model, the
uncertainty -associated - with -odd - oxygen asymptoticaily
decreases with time as the model approaches its new
equilibrium state.

In the next sections we will utilize lnearization and error
covariance matrices for assimilation of UARS data into a
photochemical box model using the variational technique and
the extended Kalman filter.

7. UARS Observations

In this paper we use data from two UARS instruments, the
cryogenic limb drray etalon spectrometer (CLAES) and the
Microwave Limb Sounder (MLS). Specifically, we will con-
sider CLAES observations of O;, NO,, HNO,, CIONO,, CH,,
and N,O as well as MLS observations of CIO and H,O. This
particular choice of data represents a compromise between the
importance of various chemical constituents in stratospheric
photochemistry, the availability of data to the authors at the
time when the described computations, the quality of data,
and the efficiency of computations and programing. Thus this
choice of data is not optimal. An extensive UARS validation
campaign has been completed, and for description of
uncertainties and quality of measurements of all UARS
instruments the reader should refer to a special issue of the
Journal of Geophysical Research (101 (D6), 9539-10.476,
April 30, 1996). Throughout this manuscript we use UARS
level 3 AT data: nongridded, along the satellite track profiles
of mixing ratios.
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Plate 3. Ratio of the linear and nonlinear terms.
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Plate 4. Normalized linearization of the photochemical box model
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8. Trajectory Model and Data Selection

We have used the NASA Goddard Space Flight Center
(GSFC) trajectory model described by Newman et al. {1988]
to compute parcel trajectories on isentropic surfaces. We
defined a grid with 5° latitude and 10° Jongitude spacing in
the Northern Hemisphere and performed backward and
forward trajectory computations for 24 hours, each starting
from predefined grid points. Thus each trajectory arrives at its
corresponding grid point simultaneously. All calculations
were made at 840-K potential temperature surface, or
approximately 10 mbar. The trajectory calculations described
above have been used for all experiments with variational
assimilation. For the extended Kalman filter analysis, we only
performed the backward trajectory calculations, with each
integration lasting 48 instead of 24 hours. In this case the
length of analysis is the same as in the case of the variational
method but all trajectories arrive at the predefined grid points
at the end of the 48-hour interval rather than in the middle.
This distinction is made because in a variational approach one
expects 1o get the best results in the middle of the analysis
period, while in the sequential approach the best results
should be obtained at the end of the interval. Along with the
horizontal coordinates the GSFC model provides
temperatures along the trajectories at 30-min intervals. These
temperatures were used in the box model calculations.

The choice of the day (May 3, 1993) and the pressure level
(10 mbar) for the assimilation experiment is somewhat
arbitrary and was dictated by the following general guidelines.
The altitude level was chosen to be in the middle of the MLS
and CLAES retrieval range, where retrieval errors are
minimal. The model does not contain the (polar stratospheric
clouds) PSC chemistry, so we chose to perform simulations in
the Northern hemisphere, at the time when the PSC chemistry
is not important and during relatively unperturbed dynamics
conditions. At the present time we are extending the model
and the assimilation scheme with a goal to systematically
assimilate UARS observations on a few pressure levels and
for different seasons.

After performing the described trajectory calculations, we
searched for CLAES and MLS observations located within
1000 km and 1 hour from the trajectories. Measurements sat-
isfying both these criteria were averaged together with
weights inversely proportional to the measurements errors.
These errors were assumed to grow proportionally to
exp{0.5(AL/L)* + 0.5(ATIT)*}, where AL and AT are distances
in space and time between a measurement and the
corresponding trajectory point, L=300 km, and 7=2 hours.
The obtained averaged species concentrations were assigned
to a point along each trajectory. Errors of individual
measurements at the measurement location were obtained
from the quality flag of the level 3AT data files. In most cases
the quality indicator characterizes the lower boundary of the
measurement eIror.

9, Variational Method

In the variational method we constructed the cost function
from the UARS measurements and their uncertainties for each
trajectory according to (13). We assumed that no background
estimate of the initial concentrations (X,) exist, and therefore
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the last term in (13) was ignored. The model error covariance
F was also ignored. We then minimized the cost function with
respect to initial concentrations of all variable constituents in
the model: H, OH, HO,, H,0,, NO, NO,, NO;, N,O5, HNO;,
HNO,, Cl, CIO, HOCI, HCl, CIONO,, O, O('D), and O;. For
each trajectory, concentrations of CHy, N,O, and H,O were
obtained from the UARS data and then simply interpolated in
time along the trajectory. The analysis was done individually
for each trajectory. The analysis interval is 48 hours, and the
middle of this interval is when all trajectories arrive at the
predefined grid points. Calculations were performed at the
840-K potential temperature surface or approximately 10
mbar.

For minimization of the cost function we employed the
limited memory conjugate gradient technique described by
Buckley [1994]. This algorithm requires knowledge of deriva-
tives of the cost function. These derivatives were computed
from the linearization matrices described above using the
adjoint approach, similarly to Fisher and Lary [1995]. The
inner product used in the minimization is the inner dot
product. To account for different orders of magnitude of the
concentrations of the species, a scaling similar to (26) was
used.

The variational analysis consists of the following steps:

1. Compute the first-guess initial conditions by integrating
the box model for 10 days at the location of the corresponding
¢grid point using temperature, pressure, and concentrations of
nonvariable species typical for that location.

2. Integrate the model starting from the current initial
conditions and compute the cost function and its derivative
from results of the model run and observations.

3. Pass the obtained values of the cost function and its
gradient to the minimization routine, which returns a vector of
new initial conditions.

4. Check for convergence. If convergence is not reached,
return to step 2.

Typically, about 10 iterations are needed to decrease the
cost function by a factor of 10-100 for each trajectory. This
translates into 10 integrations of the box model and 10 inte-
grations of the corresponding adjoint model. Once the
convergence is reached, model concentrations corresponding
to the middle of the integration are extracted and used to
produce global distributions of modeled species. The CPU
time required to complete the assimilation analysis for one
trajectory on an IBM 590 RS 6000 is approximately 1 min.

An important issue in the variational approach is the shape
of the «cost function, in particalar its smoothness
(differentiability) and existence of multiple minima. If the
cost function is not differentiable, then the minimization
algorithm relying on the derivative of the function is likely to
fail. If the cost function has multiple minima, then the
minimization process might find a local minimum rather than
a true, global minimum. It is practically impossible to
numerically investigate all properties of the cost function due
to its high dimensionality. In our case the cost function
depends on 18 varables, and even storing a crudely
discretized cost function is only marginally possible.
Nevertheless, it might be beneficial to examine at least some
cross-sections of the cost function. We computed a few cost
function cross sections for several trajectories by varying
initial concentrations of up to three species at a time,
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Plate 5. Relative error covariance matrix.
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Figure 5. Results of variational assimilation for one

trajectory. Dashed lines correspond to the very first box
model integration with the first-guess initial conditions. The
crosses are the UARS observations for the trajectory, and the
solid lines are the final model integration starting from the
optimized initial conditions.

including H, OH, NO, NO,, NO;, HNO;, CIO, CIONO,, and
O;. Some typical cross sections of the logarithm of the cost
* function are shown in Plate 6. In all investigated cases the
resulting cost function cross sections were smooth and had
either one global minima or a fold line, thus indicating that
the cost function is not sensitive to changes in initial
concentration of the species parallel to the trough line.

Results of the variational assimilation are presented in
Figure 5 for one trajectory. The dashed line corresponds to the
very first box model integration with the first-guess initial
conditions. The crosses are the UARS observations for the
trajectory, and the solid line is the final model integration
starting from the optimized initial conditions. The agreement
with observations is clearly better in the second case for all
species except ClO. The variational method is in effect a
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constrained weighed least squares fit to all observations,
where constraints are given by the model equations. The
relative weight of observations depends on their uncertainties
(see equation (13)). The reported error of the MLS CIO
measurements is much higher than errors of observations of
other species, and therefore ClO observations have relatively
small influence on the results.

Global maps of some model species obtained by this
method are shown in Plate 7 for 1200 UT on May 3, 1993. As
one can see, the presented distributions are fairly realistic.
Ozone concentrations are largest near the equator and
decrease toward the pole, as expected. Distributions of short-
lived species show clearly defined terminator, thus indicating
that these distributions are truly instantaneous. Compare a
map of NO, mixing ratio in Plate 7 with that in Plate 1. The
latter plate is produced from the level 3B UARS data and
shows very little longitudinal variation in NO, distribution,
while the map in Plate 7 clearly indicates higher NO, mixing
ratios in the nighttime regions and lower mixing ratios in the
sunlit regions. Note that concentrations of species other than
those observed by the UARS are presented in Plate 7 (e.g., O,
NO, and CI). Concentrations of these chemicals have been
constrained by the available observations during assimilation.

In order to provide an approximate estimate of how well
the assimilation results agree with observations, we calculated
the root mean squares (RMS) deviations of our results from
observations for each trajectory. Plots of these deviations are
shown in Plate 8 for all five assimilated species. Note that the
shown RMS differences should be interpreted not as the
uncertainties of the assimilation results but rather as average
deviations from UARS measurements. This might explain
sporadic areas of high RMS differences seen in the plots: If a
nearby observation has a large uncertainty, it will not affect
the assimilation results, and the cormresponding RMS
difference might become quite large. The RMS differences
are due to inability of the photochemical model to precisely
fit all data points at the same time. This, in turn, can be
caused by a few reasons. An obvious reason is that obser-
vations themselves have errors and therefore do not satisfy the
model equations. Second, some processes occurring in the
real atmosphere are not adequately described or simply not
included in either photochemical or trajectory model. This
includes possible errors in the rates of photochemical
reactions. The third source of differences is the error of time
and space interpolation introduced when selecting UARS
observations for each trajectory. Estimating contribution of
each source as well as determination of errors of the final
analysis constitute a significant research project which is
beyond the scope of this paper.

10. Extended Kalman Filter

For the extended Kalman filter analysis we performed
backward trajectory calculations for 48 hours starting from
the predefined grid points. This was done because in the
sequential method, observations made after the time for
which state estimates are sought do not influence the analysis
at that time. To keep the number of observations for each
trajectory approximately the same as in the variational
method, we use the same length of the analysis interval (48
hours).
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Plate 7. Synoptic maps of some species produced with the variational method for May 3, 1993, at 1200 UT.
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Plate 8. Averaged RMS errors for assimilated species in the variational method.

As in the variational case, vector X contains concentrations
of 18 variable species included in the box model. The
extended Kalman filter analysis consists of the following
steps:

1. Compute initial value of x as in the variational approach
and initialize the covariance matrix.

2. Integrate the model starting from the current value of x
until time of the next observation.

3. Update the background error covariance matrix using
(18).

4. Perform analysis using equations (15) and (16).

5. Stop if the end of the analysis period is reached.
Otherwise, return to step 2.

The state variables in the extended XKalman filter
calculations are concentrations of variable species. The initial
state of the filter is the same as in the variational approach.

The starting analysis error covariance matrix is diagonal, with
variances corresponding to 10% of the initial concentrations.
The CPU time required to complete the assimilation analysis
for one trajectory on an IBM 590 RS 6000 is approximately
30 sec.

Results of the extended Kalman filter assimilation for one
trajectory are shown in Figure 6. As one can see, the model
mixing ratios are rather abruptly modified when an
observation is encountered, similar to what is shown in Figure
3. Magnitude of the correction depends on the error of the
observation and the current error covariance matrix. Note that
for long-lived species with relatively small observational
error, O3 and HNO,, the analysis fits observations much
closer than in the case of variational assimilation. This
behavior is expected since the model constraints are violated
at the times of observations, thus allowing for more degrees
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Figure 6. Results of the extended Kalman filter assimilation
for one trajectory. Dashed lines correspond to the very first
box model integration without incorporation of observations.
The crosses are the UARS observations, and the solid lines
are the extended Kalman filter results.

of freedom and a better fit. In the variational assimilation,
analysis generally has discontinuities at the end of the
analysis interval, while in the sequential method a
discontinuity normally appears whenever a new observation is
introduced. For species with relatively large observational
errors, ClO and CIONQO,, the corrections are rather small.

A fairly common problem arising in applications of the
(extended) Kalman filter is the so-called filter divergence. If
the model error is assumed to be zero, the analysis may
eventually diverge from observations since observations are
rejected in favor of the model solution, which is then no
longer constrained by reality. In our case, however, the
divergence did not occur, probably due to a relatively short
analysis window (2 days).

Global distributions of some species produced with the
extended Kalman filter technique and the corresponding RMS
differences for observed species are shown in Plate 9 and
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Plate 10. General features of the constituent distributions are
fairly similar to those obtained in the variational method
(Plate 7), but the absolute values of mixing ratios are
noticeably different in some cases. At the same time, the
RMS deviations (Plate 10) are smaller in the case of the
extended Kalmen filter assimilation, which is to be expected
as discussed above. Possible reasons for the observed
differences between the variational and extended Kalman
filter analysis will be discussed in the next section.

11. Summary and Conclusions

Nearly global coverage, relatively high spatial density, and
large volume of satellite-supplied measurements provide
opportunities to study a wide range of atmospheric phenom-
ena and make it possible, at least in principle, to constrain
global atmospheric models with real data. At the same time,
satellite measurements are usually irregular in both time and
space while models operate on regular grid points. Orbital
geometry imposes significant limitations on satellite sampling
capabilities which may result in large data voids. In addition,
short-lived atmospheric constituents experiencing variability
on timescales of hours to days generally cannot be adequately
sampled by satellite-based instruments. These features of
satellite observations require unconventional methods of data
analysis.

Analyses which rely on data assimilation methodology are
potentially superior to conventional means of data processing
in that they utilize our knowledge of the underlying physical
processes governing the behavior of the physical system. This
allows one to better utilize observations. For example, data
assimilation provides ways to optimally fill in spatial and
temporal gaps. This feature makes data assimilation very
attractive for analysis of irregularly distributed, asynoptic or
sparse observations, such as those collected by satellites, and
for combining data sets from multiple instruments and
platforms. In this paper we attempted to provide a general’
introduction to the related basic mathematical apparatus and
considered applications of these mathematical techniques to 2
photochemical box model and analysis of the UARS chemical
data.

t was demonstrated that in the case of a stratospheric
photochemical box model the linear approximation essential
to applicability of both the variational and the extended
Kalman filter techniques holds fairly well for up to 10 days.
This behavior can be explained by noting that concentrations
of many short-lived species in the model are largely
determined by concentrations of a few relatively long-lived
species such as ozone and parameters such as total active
chlorine or nitrogen.

Analysis of time evolution of linearization and error
covariance matrices gives further evidence to an idea that the
future evolution of the system is completely determined by a
few linear combinations of species concentrations at the
beginning of integration as the rank of linearization matrix
decreases with increasing integration length. It appears that
analysis of these matrices might provide interesting insights
on interdependency of chemically active constituents in the
model. The described calculations might be useful in
determining uncertainty of model prediction given uncertainty
of measurements. A related problem is determining
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Plate 9. Synoptic maps of some species produced with the extended Kalman filter for May 3, 1993, at 1200 UT.



KHATTATOV ET AL.: ASSIMILATION OF CHEMICAL SPECIES

03 RMS, ppmv

CLONO2 RMS, ppbv

18,735

NO2 RMS, ppbv

T EE
< 02 08 14

CLO RMS, ppbv

Plate 10. Averaged RMS errors for assimilated species in the extended Kaiman filter method.

measurement requirements necessary to predict the future
system state with a specified uncertainty. Note, however, that
only the (extended) Kalman filter provides this opportunity as
a part of the algorithm.

A few cross sections of the cost function appearing in the
variational method have been computed, and it was shown
that these cross sections are smooth and do not have multiple
minima. This gives some confidence in the applicability of
the variational approach to chemical data assimilation.
Synoptic maps of various species obtained with both
variational assimilation and the extended Kalman filter
display the same general features with a clearly defined
terminator in distributions of constituents expected to have
strong diurnal cycles. Absolute values of mixing ratios can be
quite different in the two techniques. These differences can be
attributed to a number of reasons.

Perhaps the most important reason is the fundamental
difference in the basic principles of the variational and

sequential techniques. In the variational method the 48-hour
analysis (in our case) is the true solution of the model
equations. Therefore it is implicitly assumed that errors due to
uncertainties of the (photo)chemical reaction rates, trajectory
calculations, missing photochemical processes, etc., are
significantly smaller than the observational errors. The only
set of adjustable parameters is the initial species
concentrations. It is assumed that correct determination of
these concentrations will allow the model to fit observations
within the measurement error. Clearly, this assumption is not
very realistic. However, as Figure 5 demonstrates, it results in
a much better agreement of the analysis and observations than
the model simulations alone. By assuming a perfect model,
the variational method adjusts to both initial state errors and
model error by adjusting only the initial state. Depending on
the number and location of observations and the background
conditions during analysis, minimization may or may not find
the initial state that results in simulations fitting observations.
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For instance, D. Lary (personal communication, 1998) found
that it was impossible to fit a set of particular observations
without including additional chemicals in the model. In such
situations, the variational method provides a means to sys-
ternatically validate models against observations by analyzing
residual differences (cost function values) at the end of the
minimization. If these differences are larger than typical
observational errors, then either the model is unable to
simulate the reality or observational errors are
underestimated. Another way to validate the model in the
framework of the variational approach is to consider the
forecast made at the end of the analysis interval and compare
the forecast value with independent observations.

The extended Kalman filter analysis, generally speaking,
does not satisfy the model equations. Clearly, discontinuities
seen in Figure 6 are unrezlistic and can never be reproduced
by solving the model photochemical equations for the 48
hours. This, however, does not make the sequential approach
less valuable than the variational method, where a smooth
solution might appear as a result of adherence to possibly
incorrect model dynamics. The extended Kalman filter
method might be more advantageous when the goal is to
predict the state of the photochemical system in between just
two consecutive observations or if it is needed to predict the
state at some later time, when no observations are available. It
is also possible that with some specification of model error
the discontinuities seen in Figure 6 would be reduced. An
important advantage of the extended Kalman filter technique
is that it allows one to explicitly account for the mode] errors,
provided, of course, that these errors are known. This aspect
of the filter was not considered in our work.

One other possible reason for the observed differences is
incorrect specification of observational error covariances. The
observational errors are likely to be unrealistic and under-
estimated, as was mentioned in section 7. This will cause the
extended Kalman filter to give more weight to the
observations and lead to larger discontinuities. In addition,
the sudden change of concentrations of the observed species
in the model will introduce a “shock” in the system. As a
result, some species might experience nonlinear transition to a
new equilibrium state. This might affect our final results if the
observation was encountered shortly before the trajectory
arrives to the predefined grid point.

Note also that different sets of observations were used in
each case due to different trajectory model initialization.
Perhaps a better way to compare the two techniques would be
to use the so-called Kalman smoother. In this method the
usual extended Kalman filter analysis is followed by the
analysis performed backward in ‘time, thus propagating
information from the future observations backward. In this
case the same set of trajectories and observations could be

“used in both methods. This does not mean, kowever, that the
Kalman smoother is preferable to the (extended) Kalman
filter. Rather, the choice of the technique should be dictated
by goals of a particular analysis. ~

The performed research demonstrates that both variational
assimilation and the extended Kalman filter technique can be
used for assimilation and mapping of satellite observations of
a number of chemical species using relatively complex
numerical photochemical models. It is very desirable to apply
these techniques for producing consistent, global climatol-
ogies of atmospheric chemicals that are constrained by global
satellite measurements.
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Depending on the application, either method can be used
for as long as estimates of the analysis errors are provided. If
the goal is to simply produce instantaneous analysis that best
agrees with observations and/or if the observational errors are
relatively small, then the extended Kalman filter (or
smoother) might be more advantageous than the variational
technique. The sequential technique is also appropriate when
analysis needs to be performed systematically, day after day,
for prolonged periods of time. If the goal is to produce
analysis over a moderately long finite period that best fits the
observations within the limits imposed by model constraints
or if the observational errors are large, the variational
technique might be more suitable. The variational method will
also be useful when one seeks to diagnose the quality of the
model. In either case, it appears that more realistic estimates
of corresponding observational errors are needed for practical
applications of these techniques.
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