Skip Navigation Genome.gov - National Human Genome Research InstituteGenome.gov - National Human Genome Research InstituteGenome.gov - National Human Genome Research InstituteNational Institutes of Health
   
       Home | About NHGRI | Newsroom | Staff
Research Grants Health Policy & Ethics Educational Resources Careers & Training

Home>Educational Resources>Online Education Kit: Understanding the Human Genome Project>Online Education Kit: Timeline >Online Education Kit: 1941: One Gene, One Enzyme
Print Version


 Timeline:
 1800s                  
 1900s                  
 1940s                  
 1950s                  
 1960s                  
 1970s                  
 1980s                  
 1990 - 1994        
 1995 - 1996        
 1997 - 1999        
 2000 - 2001        
 2002 - 2003        
 2004 - Future    


Return to Online
Education Kit

Previous Event Previous Event | Next Event Next Event

1941: One Gene, One Enzyme

Illustration of 1 Gene for 1 EnzymeGeorge Beadle and Edward Tatum, through experiments on the red bread mold Neurospora crassa, showed that genes act by regulating distinct chemical events – affirming the "one gene, one enzyme" hypothesis.

George Beadle had spent two years in T. H. Morgan’s lab at Caltech, studying genetics using fruit flies as a model organism. In 1941, he and Edward Tatum turned to an even simpler model for studying genetics. In its normal, or "wild", state, the mold Neurospora crassa can grow on a medium containing just sugar, a small amount of biotin, and inorganic salts.

When the mold is exposed to X-ray radiation, mutations arise in occasional cells. Some of the mutations affect the mold’s ability to form organic compounds from simpler building blocks. For example, some lose the ability to assemble particular amino acids. To thrive, those strains need to have the particular amino acids supplied in their nutrient medium or, sometimes, they can make do with precursor compounds that the cells can convert into the required amino acids.

By supplying a variety of compounds in the nutrient medium and seeing which allow various mutant strains to grow and which don’t, Beadle and Tatum saw that they could deduce the sequence of biochemical reactions in cells that make necessary compounds like amino acids. The scientists concluded that the function of a gene is to direct the formation of a particular enzyme, which regulates a chemical event. A mutation can alter a gene so it no longer produces the normal enzyme, resulting in a physical symptom, like the need for nutritional supplements. Beadle and Tatum proposed that, in general, each gene directs the formation of one (and only one) enzyme.

For their work, Beadle and Tatum shared, with J. Lederberg, the 1958 Nobel Prize in Physiology or Medicine.

More Information

Reference:

Beadle, G.W., Tatum, E.L., Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci, 27(11):499-506. 1941. [PubMed]

Previous Event Previous Event | Next Event Next Event

Top of page

Last Reviewed: April 14, 2008


PrivacyCopyrightContactAccessibilitySite MapStaff DirectoryFOIAHome Department of Health and Human Services  National Institutes of Health  USA.gov