
A New Approach to Manipulator Control:
The Cerebellar Model Articulation Controller

The Cerebellar Model Articulation Controller
(CMAC) [1, 2] is a neural network that models the
structure and function of the part of the brain known as
the cerebellum. The cerebellum provides precise co-
ordination of motor control for such body parts as the
eyes, arms, fingers, legs, and wings. It stores and
retrieves information required to control thousands of
muscles in producing coordinated behavior as a function
of time. CMAC was designed to provide this kind of
motor control for robotic manipulators. CMAC is a kind
of memory, or table look-up mechanism, that is capable
of learning motor behavior. It exhibits properties such as
generalization, learning interference, discrimination,
and forgetting that are characteristic of motor learning
in biological creatures.

In a biological motor system, the drive signal for each
muscle is a function of many variables. These include
feedback from sensors that measure position, velocity,
and acceleration of the limb; stretch in muscles; tension

in tendons; and tactile sensations from various points on
the skin. Feedback also includes information from the
eyes via the superior colliculus and visual cortex about
the positions of the hands and feet relative to their
intended targets. Drive signals to the muscles also
depend on higher level ideas, plans, intentions, motives,
and urges. These may be specified by variables that
identify the name of the task to be performed and
specify the goals that are desired, the procedures and
knowledge required to achieve those goals, and the pri-
orities that have been assigned to achieving those goals.

A block diagram of a typical CMAC is shown in
Fig. 1. CMAC modules are designed to accept both
input command variables from higher levels and feed-
back variables from sensors. Each CMAC merges these
two inputs into a set of memory addresses wherein are
stored the correct motor response. The combined input
selects a set of memory locations from a large pool of
memory locations. The output is the sum of the contents

Fig. 1. A block diagram of a CMAC for a single joint actuator. The vector S consists of an input command from
higher motor centers combined with feedback from sensors in the joints, muscles, and skin of a limb. Each CMAC
separately computes a S ⇒ A* mapping. A* is the set of locations in memory selected by the mapping. The selected
locations in A* contain weights corresponding to synaptic strength between parallel fibers and dendrites on a
cerebellar Purkinje cell. The computed output is the sum of the weights stored in the A* address set. In this example,
the output is a drive signal pj to the j -th joint actuator controller. The output signal may define a desired position,
velocity, or force of the j -th joint actuator depending on the command.

237



of the selected memory locations. Feedback input from
sensors causes the behavior to evolve along a goal-
directed stimulus-response chain. As feedback changes,
the output changes. This, in turn, causes the sensory
feedback to change further. The result is a closed servo
loop that makes the behavior reactive. The input com-
mand from above effectively selects a region of memory
wherein the proper set of stimulus-response pairs to
generate the desired behavior can be stored.

For each command, a string of stimuli produces a
string of responses. For a different command, the same
stimuli may produce a different string of responses.
The result is that a CMAC module decomposes
each different input command into a different string of
subcommands. Each different string of subcommands
corresponds to a different behavior. Thus, whenever the
command changes, a different behavior is generated.
For example, a command such as <pick up object X>
will select a region of memory where motor behavior
appropriate for picking up an object is stored. A differ-
ent command such as <scratch itch at skin location Y>
will select a different region of memory where scratch-
ing behavior is stored.

CMAC learns correct output responses for various
input conditions by modifying the contents of the
selected memory locations. For each input, the learning
process computes the difference between the CMAC
output and the desired output (provided by a teacher) as
shown in Fig. 1. This difference determines a correction
factor that is added to the contents of each of the
selected memory locations. The rate of learning
depends on a gain factor that determines the magnitude
of the correction factor.

The S ⇒ A* mapping employed by CMAC has the
property that any two input vectors that are similar (i.e.,
close together in input space) will select a highly over-
lapping subset of locations in the A* set. Thus, the
output response of a CMAC to similar input vectors will
tend to be similar because of many memory locations in
common. Hence, CMAC tends to generalize (i.e., to
produce similar outputs for similar inputs.) The amount
of generalization depends on the number of overlapping
memory locations in the A* set.

On the other hand, any two input vectors that are
dissimilar (i.e., far apart in input space) will select a
highly disjoint subset of locations in the A* set. Most
often, there will be no common memory locations in
A*. Thus, the output response of a CMAC to dissimilar
input vectors can be independent, making it easy for
CMAC to distinguish between dissimilar input vectors.
This means that CMAC can classify or recognize input
patterns. The sparse nature of the A vector makes it
possible for CMAC to learn to classify a large number
of patterns.

The ability to generalize between similar inputs
enables CMAC to quickly learn smooth mathematical
functions such as are typical of control system operators
in a memory of reasonable size. The S ⇒ A* mapping
and the resulting property of generalization also gives
CMAC many of the properties of a fuzzy controller.

To deal with the complexity of motor behavior
required to perform tasks in the natural world without
either side-stepping the computational difficulties
(as with teleoperated systems) or ignoring most of the
relevant variables (as with conventional automation)
it is necessary to partition the control problem into
manageable subproblems. This may be accomplished
through a hierarchical organization such as is typical in
military, government, and business organizations. In a
hierarchical control structure, each agent at each level
of the hierarchy takes direction from a supervisor in the
level above and issues directives to subordinates in the
level below. Each level has its own set of knowledge,
skills, and abilities. Each agent performs task decompo-
sition by decomposing input commands from above
into output commands to one or more agents at the next
lower level. Agents within the same organizational unit
often work together to accomplish tasks that require
cooperative behavior.

CMAC modules are specifically designed to be inte-
grated into a hierarchy wherein tasks are decomposed
into subtasks at each level. At each level, the input S is
a combination of a command vector from a higher level
plus a feedback vector from sensors or from a world
model or peer agents. The output P is a command to a
lower level module, a next state, and possibly a message
to a peer.

At each level, task commands are combined with
feedback to select an appropriate subtask command to
be issued to the next lower level. When command input
changes, the transfer function of the CMAC can change.
This enables higher level commands to select among a
library of transfer functions, each of which can generate
strings of task commands to the next lower level.
By this process, a hierarchy of CMAC modules can
decompose a complex high-level task into a string of
drive signals for individual actuators as shown in Fig. 2.
A hierarchy of similar building blocks in the brain can
be used to implement a hierarchy of behaviors such
as observed by Tinbergen [3] and others in simple
creatures such as fish, birds, and insects.

CMAC was based on a neurophysiological model of
the cerebellum published by Albus in 1971 and 1972
[6, 7]. This model was, in turn, inspired by a series of
experiments performed by Eccles [8] and others during
the 1960s that showed a striking resemblance between
the structure and function of the cerebellum and the
Perceptron neural net developed by Rosenblatt [9] in

238



the 1950s. The Albus model, combined with a similar
model published in 1969 by David Marr [10], have
become known as the Marr-Albus model of the cerebel-
lum. The Marr-Albus model has had a profound influ-
ence on brain research in the cerebellum and remains
one of the most widely accepted and frequently cited
models of the cerebellum today.

The short-term impact of CMAC research was
modest. CMAC was awarded an IR-100 award and a
Department of Commerce Silver Medal, but had little
immediate effect on the field of neural nets. At the time
of its publication, the field of neural networks had fallen
into a state of disrepute. Minsky and Papert had recently
published their influential book entitled Perceptrons in
which they demonstrated some of the theoretical limita-
tions of neural networks [11]. Over-reaction to the
negative conclusions of the Minsky-Papert critique had
a profound impact on neural net researchers. Virtually

all interest in (and funding support for) neural network
research evaporated for almost a decade. Serious interest
in neural network research did not recover until the late
1980s with the invention of back propagation, adaptive
resonance theory, Hopfield nets, and a number of other
new discoveries.

Since 1990, CMAC has began to attract increasing
levels of interest. CMAC has been used for computing
plant models for feedforward control on-line in
real-time. Miller has shown that CMAC can be used to
implement a real-time adaptive controller for various
robotic applications [12]. Miller and others have shown
that CMAC learning typically converges at least an
order of magnitude faster than back propagation. As the
properties of CMAC have become apparent, more and
more researchers have begun to apply CMAC to their
areas of interest. CMAC has become well known by
students and researchers in adaptive learning mecha-
nisms and is the subject of neural network studies in a
number of laboratories in several countries. The CMAC
papers have been cited in the literature over 240 times.

At least as important as its contribution to the field of
neural nets, is the influence CMAC has had in providing
the conceptual foundation for the Real-time Control
System architecture known as RCS. The fact that
CMAC could learn a set of transfer functions and transi-
tion matrices meant that a CMAC could be designed to
implement any state-table or expert system rule base.
The CMAC input vector (command, feedback, and
state) corresponds to the IF predicate. The output vector
corresponds to the THEN consequent and next state. At
each compute cycle, the CMAC input vector is com-
pared with the lines on the left side of a state table. For
the matching line, the right side of the state table
provides the output subcommand and next state. Thus,
any CMAC can be emulated by a finite state machine.
RCS is a control system built from a hierarchy of finite
state machine modules.

RCS was initially developed by Barbara et al. [4] to
implement controllers for sensory-interactive robots.
RCS enabled NBS robots to use visual feedback to
acquire randomly oriented objects and pursue moving
targets. During the early 1980s, RCS evolved into the
hierarchical shop control system architecture for the
Automated Manufacturing Research Facility (AMRF)
[5]. In the AMRF, RCS was implemented on the
Horizontal Machining Workstation, the Cleaning and
Deburring Workstation, the Material Handling Work-
station, and the Advanced Deburring and Chamfering
System. During the late 1980s, RCS was developed into
a control system for the DARPA Multiple Undersea
Autonomous Vehicle program and was adopted by
NASA for the Space Station Telerobotic Servicer. RCS
was adopted by the U.S. Bureau of Mines as a control

Fig. 2. A hierarchy of CMAC controllers. In response to each input
command from a higher level, each CMAC generates a string of
output commands to a lower level. These output commands are stim-
ulus-response behaviors that are selected by input commands and
driven by feedback variables. This hierarchy of CMACs can be used
to partition a manipulator control problem into a manageable set of
sub-problems.

239



system for automated mining operations. At Martin-
Marietta, Barbera and Fitzgerald developed RCS for
the Army TMAP unmanned vehicle. Later at Advanced
Technology Research Corporation, Barbera and
Fitzgerald used RCS to build an Automated Stamp
Distribution Center and to design a General Mail
Handling Facility for the U.S. Postal Service. Commer-
cial versions of RCS are currently being used for con-
trolling machine tools and laser cutting machines. RCS
was adapted by General Dynamics Electric Boat as a
control system for the next generation nuclear sub-
marine. At NIST, RCS has been used for the Enhanced
Machine Controller, the Next Generation Inspection
System, the Automated Welding Manufacturing System,
the RoboCrane, a computer controlled Man-Lift, and the
NIST Unmanned Ground Vehicle [13]. Most recently,
RCS has been adopted by the Army for the Demo III
Experimental Unmanned Vehicle program [14]. RCS is
currently under consideration for the Army’s Future
Combat Systems program.

By the end of the century, RCS evolved into a canon-
ical reference model architecture with sufficient struc-
ture to enable the development of metrics and interface
standards for intelligent systems. Elements of RCS have
been incorporated into standards activities in both
civilian and military sectors. RCS is currently influenc-
ing the development of interface standards for machine
tools under the Open Modular Architecture Controller
(OMAC) group, and for military vehicles under the Joint
Architecture for Unmanned Ground Systems Standards
(JAUGS) project [15, 16].

For his work on CMAC and RCS applied to the
AMRF, Albus was awarded the Department of
Commerce Gold Medal, the NIST Applied Research
Award, the Japanese Industrial Robot Association
Research and Development Award, and the Robot
Industries Association Joseph F. Engelberger Award.
For the past ten years, Albus has been working on a
theoretical foundation for the engineering of intelligent
systems [17]. He is currently a Senior NIST Fellow in
the Intelligent Systems Division of the Manufacturing
Engineering Laboratory.

Prepared by James S. Albus.

Bibliography

[1] J. S. Albus, A New Approach to Manipulator Control: The
Cerebellar Model Articulation Controller (CMAC), J. Dyn. Syst.
Meas. Control, Trans. ASME 97, 220-227 (1975).

[2] J. S. Albus, Data Storage in the Cerebellar Model Articulation
Controller (CMAC), J. Dyn. Syst. Meas. Control, Trans. ASME
97, 228-233 (1975).

[3] Niko Tinbergen, The Study of Instinct, Clarendon Press, Oxford
(1951).

[4] Anthony J. Barbera, M. L. Fitzgerald, James S. Albus, and
Leonard S. Haynes, RCS: The NBS Real-Time Control System,
in Robots 8: Conference Proceedings, Vol. 2, Detroit, Michigan,
June 1984, Society of Manufacturing Engineers, Dearborn, MI
(1984) pp. 19-1–19-33.

[5] J. A. Simpson, R. J. Hocken, and J. S. Albus, The Automated
Manufacturing Research Facility of the National Bureau of
Standards, J. Manuf. Syst. 1, 17-31 (1982).

[6] J. S. Albus, A Theory of Cerebellar Function, Math. Biosci. 10,
25-61 (1971).

[7] James Sacra Albus, Theoretical and Experimental Aspects of a
Cerebellar Model, Ph.D. Thesis, University of Maryland, Col-
lege Park, MD (1972).

[8] John C. Eccles, Masao Ito, and János Szentágothai, The Cerebel-
lum as a Neuronal Machine, Springer-Verlag, New York (1967).

[9] F. Rosenblatt, The Perceptron: A probabilistic model for infor-
mation storage and organization in the brain, Psychol. Rev. 65,
386-408 (1958).

[10] D. Marr, A Theory of Cerebellar Cortex, J. Physiol. (London)
202, 437-470 (1969).

[11] Marvin Minsky and Seymour Papert, Perceptrons: An Introduc-
tion to Computational Geometry, MIT Press, Cambridge, MA
(1969).

[12] W. Thomas Miller, III, Sensor-based control of robotic manipu-
lators using a general learning algorithm, IEEE J. Robot. Autom.
RA-3, 157-165 (1987).

[13] J. S. Albus, The NIST Real-time Control System (RCS): An
Application Survey, in Proceedings of the AAAI 1995 Spring
Symposium Series, Stanford University, Stanford, CA, March
27-29, 1995.

[14] J. S. Albus, 4-D/RCS Reference Model Architecture for
Unmanned Ground Vehicles, in Proceedings IEEE International
Conference on Robotics and Automation, San Francisco, April
22-28, 2000, Institute of Electrical and Electronics Engineers,
New York (2000) pp. 3260-3265.

[15] Homepage of the OMAC Users Group (http://www.
arcweb.com/omac), OMAC Users Group (2000).

[16] Joint Architecture for Unmanned Ground Systems (JAUGS)
(http://www.jointrobotics.com/Jaugs), U.S. Department of
Defense.

[17] James S. Albus, Outline for a Theory of Intelligence, IEEE
Trans. Syst. Man Cybern. 21, 473-509 (1991).

240


