Determination of Reduced Cells in
Crystallography

In theory, physical crystals can be represented by
idealized mathematical lattices. Under appropriate
conditions, these representations can be used for a
variety of purposes, such as identifying, classifying, and
understanding the physical properties of materials.
Critical to these applications is the ability to construct a
unique representation of the lattice. The vital link
that enabled this theory to be realized in practice was
provided by the 1970 paper of A. Santoro and A. D.
Mighell, Determination of Reduced Cells [1]. This
seminal paper led to a mathematical approach to lattice
analysis initially based on a systematic reduction proce-
dure and the use of standard cells. Subsequently, the
process evolved to a matrix approach based on group
theory and linear algebra, which offered a more abstract
and powerful way to look at lattices and their properties.

In the early 1960s, the Crystal Data Center at NBS
started to build a database with chemical and crystallo-
graphic information on all classes of materials, includ-
ing inorganics, organics, minerals, and metals. An
immediate challenge was to organize the information in
a systematic manner so that database users could readily
determine material relationships. For example, one
might wish to identify an unknown material by compar-
ing its structure with structures already in the database.
But this is not as simple as it might seem. The following
anecdote illustrates the nature of the problem.

On an archaeological expedition, two colleagues were
analyzing patterned designs on the walls of ancient
buildings. They noted that by simply translating a small
piece, or unit, of the design, one could create the entire
pattern. Each researcher independently searched the
archaeological site, selected a favorite design, and drew
a repeat unit (a unit cell) on a notepad to take home.
Later in their hotel, the colleagues carefully compared
their repeat units. Finding them to be quite different
in appearance, they concluded that their repeat units
defined different wall patterns. Upon returning home,
they used the repeat units to recreate the wall patterns
on their computers. To their surprise, the two wall
designs were identical.

What happened? Why were they tricked into thinking
that they had two patterns when in reality their unit cells
described only one? The answer is illustrated by the
simple example of a 2-dimensional lattice in Fig. 1.
Since there are no terminal edges in the idealized
lattice, the entire array of dots can be generated by
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Fig. 1. An infinite variety of unit cells, vastly different in appearance
and specification, can generate the same mathematical lattice.

translating the small rhombus of dots labeled A, B, C,
D. Here, translating means moving the unit cell right,
left, up, and down, where “right and left” are defined as
movements parallel to the direction AD, while “up and
down” are defined by the direction AB. However, notice
that the skewed parallelogram labeled E,F,G,H can be
translated to generate exactly the same array of dots. In
this case, “right and left” are defined as movements
parallel to the direction EH, while “up and down” are
defined by direction EF. At first glance, these two unit
cells neither look the same nor translate in the same way,
yet the readily apparent differences between a rhombus
and a skewed parallelogram cannot be observed in the
infinite lattices that they generate.

Exactly the same problem exists in describing the
idealized lattice of a physical crystal. In this case,
instead of a 2-dimensional planar wall pattern designed
by man, we have a 3-dimensional crystal (e.g., a mineral
such as an emerald, a ruby, or a diamond) designed by
nature. Like the wall pattern which can be created by
translating a 2-dimensional unit cell (a parallelogram), a
crystal lattice can be created using a 3-dimensional
building block (a parallelepiped), as illustrated in Fig 2.



Fig. 2. The rhombohedral unit cell (with axes OA,0OB,0C) and the
larger hexagonal cell (with axes OE,OF,0G) define the same three-
dimensional mathematical lattice.

This figure shows the case of a crystal with rhombo-
hedral unit cell (parameters a = 10.0 A o= 55.0°), and
the equally correct alternative hexagonal cell (with
a=9.235A and ¢ =2538 A. Either cell when trans-
lated will generate the same crystal lattice.

More generally, the parallelepiped of the unit cell may
be defined abstractly by three noncoplanar vectors
a, b, c. However, to achieve the full utility of theory and
practice, everyone must end up with the same a, b, ¢
even though alternative parallelepipeds might be con-
structed with equal validity. The problem is that the
equivalence of alternative parallelepipeds is not so
readily established that computerized search routines
could easily recognize two alternatives as being equiva-
lent. Because there are infinite varieties of alternative
cells, Santoro and Mighell chose to pursue the develop-
ment of a procedure that would arrive at a unique
representation.

The first step toward a unique representation was to
recognize that any lattice could be defined on the basis
of a cell with the smallest possible volume (known as a
primitive cell). But for a given lattice, which of the
many possible primitive cells should be selected?
Some four decades earlier, Niggli [2] had considered
this aspect of cell definition and had defined what was
termed a reduced cell which turned out to be a unique
cell. What remained to be established was the mathe-
matical theory and associated algorithms for calculating
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the reduced cell starting from any cell of the lattice. It
was this practical realization of reduced cells that was
achieved in the 1970 paper of Santoro and Mighell.

For a cell to be reduced, two sets of conditions,
termed the main and special conditions for reduction,
must be satisfied. The main conditions ensure that one
has selected a cell based on the three shortest vectors of
the lattice. The special conditions ensure that one has
determined a unique cell for those cases in which the
lattice has more than one cell with the same shortest
three vectors. Based on the theory in the 1970 paper,
algorithms were designed and software written that
could be applied universally to any cell ever published or
determined in the laboratory.

Application of the reduced cell to both the database
work and the laboratory research at NIST was immedi-
ately successful. For example, reduction played a central
role in the determination of the crystal structure of
benzene II, a high-pressure polymorph of benzene that
requires a pressure of about 1.2 GPa to stabilize. Using
the NIST high-pressure diamond anvil cell (DAC),
which is described elsewhere in this volume, benzene 11
became the first crystal structure determined in situ by
high-pressure single crystal x-ray diffraction techniques
[3]. Because of its narrow aperture, the diffraction data
from the DAC were highly restricted. There was,
however, a sufficient amount of data to determine
the reduced cell for the specimen and to establish
unambiguously that the crystal system was monoclinic.
Other techniques, which required more extensive data,
would have failed in this task.

In routine structure determination work, reduction
became a practical tool for analyzing difficult cases in
which traditional visual methods often failed. This was
especially true for a rhombohedral crystal, where it is
hard to find the right orientation to see the 3-fold
symmetry. As a result, the structure determination
for such a crystal was difficult and often incorrect. So
extreme was the frustration level that it was said, in jest,
that the best thing that could happen would be for the
crystal to fall off the instrument and disappear in a crack
in the floor. Reduction procedures, however, instantly
resolved the difficulty, and the resulting highly charac-
teristic reduced cell and form [4] immediately led the
experimentalists to the correct answer.

Additional successes derived directly from the
uniqueness property of the reduced cell, because it leads
directly to a general method for materials characteriza-
tion. By classifying all materials using the reduced cell,
one obtains the basis for a powerful method for
compound identification [5,7]. In this scheme, a unit
cell of an unknown is transformed to the reduced cell,
which is then matched against the file of known
materials represented by their respective reduced cells.



Combining the reduced cell match with an element type
match further enhances the selectivity. In practice, cell
matching has proved an extremely practical and reliable
technique to identify materials. Today this identification
strategy is widely used, as it has been integrated into
commercial x-ray diffractometers [8].

Due somewhat to serendipity, the most significant
and lasting value of this work is probably not reduction
itself. Rather, reduction has played a key transition role
in helping to move the rather conservative discipline of
crystallography in new directions with new insights.
The research on reduction proved that there are excel-
lent reasons for looking at the crystal lattice from an
entirely different point of view. Consequently, with
time, many other lattice-related papers followed,
including papers on sublattices and superlattices,
composite lattices, and coincidence site lattices. At
NIST, the mathematical analysis of lattices was pursued
further and evolved to a matrix approach that offered a
more abstract and powerful way to look at lattices and
their properties.

The matrix approach, in particular, has many applica-
tions, including for example, symmetry determination
[6,7]. In sharp contrast to other methods that focus on
the consequences of symmetry (such as dot products,
d-spacings, etc.), the matrix approach deals with
symmetry in its most abstract form, represented as
matrices. The basis of the matrix approach is to generate
the matrices that transform the lattice into itself. The
resulting set of matrices comprise a mathematical group
obeying the formal relations of group theory. These
matrices may be used both theoretically and practically
to analyze symmetry from any cell of the lattice. In this
formulation, the mathematics and algorithms used to
analyze symmetry become extremely simple since they
are based on manipulating integers and simple rational
numbers using elementary linear algebra. The matrix
approach, therefore, provides both the conceptual and
practical framework required in performing the experi-
mental procedures in a logical and general manner.

The ability to determine a unique reduced cell and the
subsequent achievements in lattice analysis, especially
the matrix approach, have been critical milestones in

190

crystallography. They established an important mathe-
matical rigor in crystallography and in the materials
sciences and have stimulated many practical applica-
tions.
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