
Iteration Method for the Solution of the
Eigenvalue Problem of Linear Differential and

Integral Operators

In 1946, the Office of Naval Research asked NBS to
help found a national center for mathematical computa-
tion. This center was to have four parts, the first of which
was the Institute for Numerical Analysis (INA). The
NBS director, E. U. Condon, sent his assistant, John
Curtiss, to the west coast, and it was decided to locate
the institute on the campus of UCLA. The INA was
successful in attracting several renowned scientists,
including Cornelius Lanczos, who was then working at
the Boeing Aircraft Company in Seattle. Lanczos, a
physicist and applied mathematician, had already been
very successful at devising algorithms for analyzing
a variety of mathematical models, and he was well
acquainted with the challenges of computation on desk
calculators. Since part of the INA mission was to pro-
mote the effective use of the new “high-speed” auto-
matic digital computers, his expertise was quite relevant,
and he was immediately successful in solving problems
of interest to the researchers there.

Lanczos first turned his attention to the solution of
linear systems of equations and matrix eigenvalue
problems. The eigenvalue problem was of particular
interest to him, as he notes at the beginning of his paper
[1], since the “vibrations of elastic structures, the flutter
problems of aerodynamics, the stability problem of
electric networks, [and] the atomic and molecular vibra-
tions of particle physics” [1, p. 255] can all be analyzed
in this way.

Computational researchers of that era faced a variety
of challenges. With only minimal understanding of the
effects of round-off errors on computations, they also
needed to deal with remarkably small computer
memories and limited computational capabilities. The
SWAC, for instance, the NBS Western Automatic
Computer, came on line in July 1950, capable of 16,000
operations per second on its 256 words of memory
[2, Appendix C]!

It was in this computational environment that
Lanczos investigated his method of “minimized itera-
tions,” a continuation of some work begun at Boeing.

Lanczos’ presentation in this paper is almost matrix-
free, not at all like the exposition of his algorithm in
contemporary textbooks [3, Chap. 9]. Yet the descrip-
tion is spare and elegant. He begins by noting that linear
differential and integral operator equations can be solved

by considering either of two series: the “Liouville-
Neumann expansion,” which only requires application
of the operator but can suffer convergence difficulties;
or the “Schmidt series,” which is unconditionally
convergent but requires knowledge of the eigensystem
(Section II). Lanczos makes the remarkable observation
that the first idea (which now is more commonly called
a Krylov subspace expansion) can be improved by
choosing a different set of basis functions, and he pro-
poses a basis that is computationally convenient and
numerically better behaved. Even better, his basis gives
a finite expansion, rather than a series expansion, and
thus yields a terminating algorithm, better suited for
automatic computers. He devotes considerable attention
to a numerical example that illustrates the algorithm and

Fig. 1. Cornelius Lanczos in 1946 (Courtesy of Mrs. Eleanor
Boyk; used with permission from North Carolina State University
[12]).
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presents a model for the bookkeeping involved in its use
(Section VI). But part of the genius of the paper is that
he doesn’t stop there, but turns his attention to the
very real numerical difficulties that can develop if the
algorithm is used on large matrices, which to him
mean those of dimension 12 or higher (Section VII).
These difficulties motivated a major improvement of the
algorithm: the development of a way to compute a basis
using a three-term recurrence. With this improvement,
he demonstrates the algorithm’s effectiveness on practi-
cal problems, such as computing the lateral vibrations of
a bar (Section IX) and vibrations of a membrane and a
string (Section X), through computational experiments
carried out by Fannie M. Gordon. In the last sections of
the paper, he discusses how to overcome complications
that arise when finding the eigensystem of an operator
rather than a matrix.

This work fit in very nicely with other developments
at INA. Researchers such as George Forsythe, J. Barkley
Rosser, and Magnus Hestenes were also thinking about
eigenvalue problems and the solution of linear systems,
and during the next two or three years they proposed and
tested a variety of approaches for “large” problems.
Lanczos, too, discussed the solution of linear systems
using the recurrence of his minimized iterations [4], and
recognized that it was mathematically equivalent to the
method of conjugate gradients [5], another noteworthy
NBS discovery discussed elsewhere in this volume.

Despite the original promise of the method of mini-
mized iterations, very little attention was given to it
during the following 10 years. Other algorithms were
more successful on problems of moderate size, and
when “large” came to mean of dimension 1000 or
larger, even the three-term recurrence had significant
numerical difficulties. But two research projects
renewed interest in the algorithm. In 1966, Shmuel
Kaniel [6] studied the accuracy of the eigenvalue and
eigenvector estimates when Lanczos’ iteration is termi-
nated early, as it must be when the size of the matrix is
prohibitively large. This opened the possibility of using
the algorithm to approximate the eigensystem, rather
than aim for full accuracy. In 1971, Chris Paige [7,8,9]
showed that even though round-off error ruins the
orthogonality of Lanczos’ basis, the necessary level of
accuracy can be maintained by judicious choice of
parameters and selective use of reorthogonalization.
Paige’s form of Lanczos’ algorithm was now a practical
alternative for truly large matrices.

Since then, continuous attention has been given to the
method. Almost 300 articles were published about
Lanczos’ algorithm and related Krylov methods in the
25 years following publication of Lanczos’ paper [10],
and copious citations to it continue to this day even
though it is a standard topic in textbooks and many

citations do not go back to this primary source. There
are several widely used numerical software packages,
including one due to Horst Simon and coworkers such
as Beresford Parlett at the University of California,
Berkeley, and another due to Jane Cullum and Ralph
Willoughby, developed at IBM. A package by David
Scott is available through NIST’s Guide to Available
Software (GAMS) project.

This Krylov subspace method of Lanczos, and its
later application to the solution of linear systems, was
recently designated one of the Top Ten Algorithms
of the Century [11] by Computing in Science and
Engineering, a joint publication of the IEEE Computer
Society and the American Institute of Physics.

A fascinating account of Lanczos’ life is given in
an essay by Barbara Gellai at the beginning of the
six volumes of his collected works [12,Vol 1, (1-3)-
(1-31)]. Cornelius Lanczos (born Kornél Löwy) began
and ended his life peacefully in Hungary, but his life
pivoted on three exiles. He was born in 1893, the eldest
son of a Jewish lawyer. He attended Jewish elementary
school, Catholic secondary school, and the University of
Budapest. His Ph.D. work concerning special relativity
received some attention by Einstein, but political
turmoil in Hungary and a ceiling for the number of Jews
at universities led Lanczos to move to Germany. He
continued his work in physics, and published an integral
formulation of the Schrödinger equation [13] just before
Schrödinger published his differential equation formula-
tion, but Lanczos’ paper was misinterpreted for many
years. During this period, he spent a year as Einstein’s
assistant, continued his work, and married a German,
Maria Rupp.

In 1931, Lanczos began a second exile, as economic
and political troubles made life in Germany difficult.
Lanczos took a visiting position at Purdue University,
but unfortunately had to travel without his wife, who
had contracted tuberculosis and could not get a visa. He
continued his work on Einstein’s field equations, Dirac’s
equation, and other topics in physics, but increasingly
his attention focused on mathematical techniques,
and he developed the Tau method for approximating
functions by telescoping series [14]. His wife died in
1939, and he brought his son to the United States. Dur-
ing this period he also became known as an excellent
teacher, eventually writing many popular and ground-
breaking textbooks, celebrated for their clarity and their
use of vivid examples. His approach to computation was
unique for the time: he worked with calculator, not slide
rule, and this led him to novel algorithmic approaches.
In the early 1940s he derived a method for evaluating
Fourier coefficients quickly [15], although the idea did
not become widely known until the popularization of
the (equivalent) Cooley-Tukey FFT algorithm.
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During 1943-44, Lanczos had his first association
with NBS, working on the Mathematical Tables Project,
during a leave from Purdue. After some time at Boeing
Aircraft Company in Seattle, he joined the Institute
for Numerical Analysis of the NBS. This provided a
fertile working environment, and Lanczos investigated
algorithms for solving linear systems of equations and
eigenvalue problems. But eventually, politicized investi-
gations led to the resignation of Edward Condon as
Director of NBS. Lanczos, too, came under investigation
for allegedly being a communist sympathizer, and this
may have contributed to his decision to begin a third
exile, in 1952, and then permanently in 1954, to the
Dublin Institute for Advanced Studies.

For the rest of his life, Lanczos maintained his ties to
Dublin, although he traveled and lectured extensively.
His expository skills were much renowned, and he won
the Chauvenet Prize for mathematical exposition in
1960 for one of his papers [16]. He married another
German, Ilse Hildebrand, and resumed his concentration
on physics research, including the geometry of space-
time, although his publications in mathematics contin-
ued. He died of a heart attack on his second visit back
to Hungary, in 1974.

Interest in Lanczos’ work continues, however. A
centenary celebration was held at North Carolina State
University, and his eigenvalue paper [1] in particular
continues to be a cornerstone of contemporary
eigenvalue computation and research, with over 850
citations in Science Citation Index between 1983 and
1999.

Prepared by Dianne P. O’Leary.
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