High levels of nitryl chloride in the polluted subtropical marine boundary layer

HANS D. OSTHOFF^{1,2}*, JAMES M. ROBERTS^{1†}, A. R. RAVISHANKARA^{1,3}, ERIC J. WILLIAMS^{1,2}, BRIAN M. LERNER^{1,2}, ROBERTO SOMMARIVA^{1,2}, TIMOTHY S. BATES⁴, DEREK COFFMAN⁴, PATRICIA K. QUINN⁴, JACK E. DIBB⁵, HARALD STARK^{1,2}, JAMES B. BURKHOLDER¹, RANAJIT K. TALUKDAR^{1,2}, JAMES MEAGHER¹, FRED C. FEHSENFELD^{1,2} AND STEVEN S. BROWN¹

¹National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory, CSD, 325 Broadway, Boulder, Colorado 80305, USA

²Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA

⁴National Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environment Laboratory, 7600 Sand Point Way, Seattle, Washington 98115, USA

⁵Climate Change Research Center, Institute for the Study of Earth Oceans and Space, University of New Hampshire, Durham, New Hampshire 03824, USA

*Present address: Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada

[†]e-mail: James.M.Roberts@noaa.gov

Published online: 6 April 2008; doi:10.1038/ngeo177

The cycling of halogen compounds in the lower atmosphere is poorly understood. It is known that halogens such as chlorine, bromine and iodine are converted from halides, which are relatively inert, to reactive radicals. These reactive radicals can affect ozone production and destruction, aerosol formation and the lifetimes of important trace gases such as methane, mercury and naturally occurring sulphur compounds. However, the processes by which halides are converted to reactive halogens are uncertain. Here, we report atmospheric measurements of nitryl chloride, an active halogen, along the southeast coastline of the United States and near Houston, Texas. We show that the main source of nitryl chloride is the night-time reaction of dinitrogen pentoxide with chloride-containing aerosol. The levels observed are much greater than earlier estimates based on numerical models and are sufficiently large to affect oxidant photochemistry in areas where nitrogen oxides and aerosol chloride sources coexist, such as urban areas and ship engine exhaust plumes.

Chemically active halogens (free radicals such as Cl, Br atoms or ClO, BrO and IO) are important trace reactants of the lower atmosphere¹. They are involved in processes such as oxidant chemistry in the mid-latitudes^{2,3}, conversion of marine sulphur emissions to non-sea-salt sulphate aerosol⁴ and destruction of ozone in the polar springtime boundary layer⁵. Despite extensive evidence of halogen chemistry in the troposphere⁶⁻⁹, the detailed chemical processes by which inert halides (for example, chloride) are converted to the reactive atomic or radical forms (for example, Cl atoms) are still quite uncertain^{5,9,10}. Here, we report the first observations of nitryl chloride (ClNO₂), a potentially important source of active halogens in the troposphere. These measurements show this compound to be quite abundant, more than 1 p.p.b.v. (parts per 10⁹ by volume), in the subtropical marine boundary layer (MBL) partly owing to NO_x (= NO + NO₂) emissions.

Laboratory studies have shown that ClNO_2 is produced efficiently from the heterogeneous reaction of dinitrogen pentoxide (N_2O_5) on sea salt¹¹⁻¹⁵ and to some extent in dilute chloride solutions¹². The importance of these processes in the atmosphere has been uncertain because of a lack of direct observations of the relevant species. We present evidence to show that ClNO_2 is produced in high yield at night from the reaction of N_2O_5 on all chloride-containing aerosol particles. The observed ClNO_2 mixing ratios were larger than predicted by current inventories and models^{16,17}, even one that explicitly considers ClNO_2 in polluted

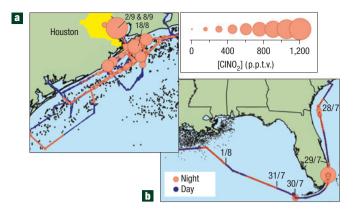
continental outflow¹⁸. ClNO₂ was found to accumulate at night and be photolysed after sunrise to produce chlorine atoms, at a time when other oxidants and radicals (for example, OH, NO₃) were scarce, very likely leading to enhanced oxidation of volatile organic compounds (VOCs) and acceleration of photochemical ozone production. The implications of these observations for regional air quality are greatest for near-coastal urban areas, where NO_x, O₃, sea salt and aerosol sources coexist.

ClNO₂ was measured in ambient air using chemical ionization mass spectrometry (using I⁻ as a reagent ion), simultaneously with N₂O₅ (by cavity ring-down spectroscopy) and aerosol size distribution and composition. These measurements were conducted on the National Oceanic and Atmospheric Administration (NOAA) research vessel Ronald H. Brown during an air quality and climate study in the Gulf of Mexico, with particular emphasis on Houston, Texas, during the summer of 2006. Detailed descriptions of instrumental methods are given below and in the Supplementary Information. The data show that (1) ClNO₂ is predominantly a night-time species, (2) mixing ratios of ClNO₂ are large and correlate strongly with those of N_2O_5 , (3) ClNO₂ is sufficiently longlived at night to constitute a large photolabile Cl and NO_x reservoir at sunrise and (4) the corresponding Cl production is sufficient to affect regional photochemistry, as indicated by numerical modelling.

³Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA

ARTICLES

NITRYL CHLORIDE OBSERVATIONS


Figure 1b shows the portion of the ship track along the United States southeast coastline and across the Gulf of Mexico, where the air was primarily of remote marine origin. Here, the largest NO_x sources were the exhaust plumes of ship engines: all but the most recently emitted of these plumes contained measurable quantities of ClNO₂. The ClNO₂ mixing ratios were surprisingly large, on occasion exceeding 1 p.p.b.v., up to 15% of total reactive nitrogen (NO_y). In contrast, ClNO₂ mixing ratios in the clean nocturnal MBL were below the 50 p.p.t.v. instrumental detection limit during this campaign. Observations closer to Houston (Fig. 1a) also showed large ClNO₂ levels at night, in a pattern clustered around NO_x sources located in the urban and industrial areas of the Houston ship channel. During the daytime, ClNO₂ was present in large concentration only during the morning hours (see below): there were indications of much smaller amounts of ClNO₂ at other times of day under conditions conducive to the formation of daytime N₂O₅ (ref. 19). The overall uncertainties for the ClNO₂ measurements during this campaign are estimated at $\pm (30\% + 50 \text{ p.p.t.v.}).$

THE RELATIONSHIP BETWEEN N205 AND CINO2

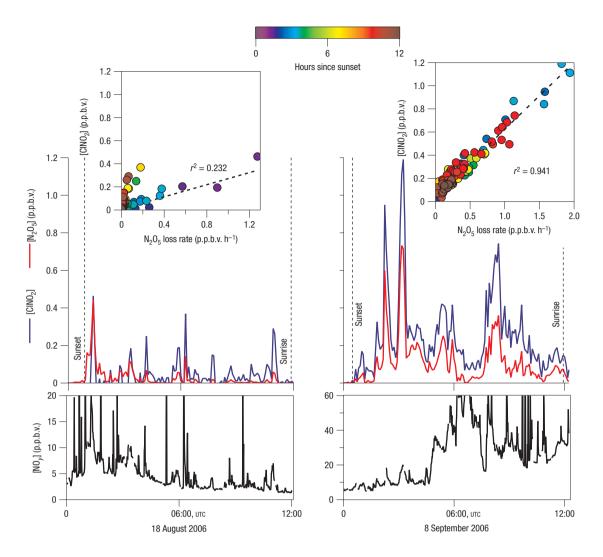
The broad correlation of N2O5 and ClNO2 throughout the sixweek campaign strongly indicates that N2O5 was the source of ClNO₂. Figure 2 shows this correlation during two representative periods. In the first, a mixture of NO_x-containing ship and oil platform plumes was sampled south of Galveston Bay on 18 August in an air mass also impacted by continental pollution; in the second, nearby urban/industrial emissions were sampled in an inlet off Galveston Bay on 8 September. Timelines for measured total NO_{ν} , also in Fig. 2, show many of the same broad features, with ClNO₂ reaching at most 7% of NO_y during these periods. The insets show correlations of measured ClNO2 with the calculated uptake rate of N2O5 on aerosol²⁰ using a laboratory-derived uptake coefficient, $\gamma_{N_2O_5} = 0.03$ (ref. 21) and measured aerosol surface area. On 8 September, the correlations had similar slopes ($r^2 = 0.941$) throughout the night, indicating similar reaction times because NO_x emission sources were nearby; in contrast, the 18 August data, although temporally correlated, exhibited variable slopes from plumes with different transport times to the research vessel.

The relationship between ClNO₂ and N₂O₅ was assessed quantitatively for individual plumes by numerical integration of their respective formation and loss processes (see the Supplementary Information), including gas-phase reactions of NO2 with O3 to produce NO3 and N2O5, heterogeneous reaction of N₂O₅ with aerosol to yield ClNO₂ and loss of NO₃ due to gas-phase reactions (for example, VOC oxidation). The value of k_{het} , the firstorder rate coefficient for conversion of N2O5 to ClNO2, was varied to match the simulated and observed mixing ratios of N2O5 and ClNO₂. The ratio of k_{het} to the total loss rate coefficient of N₂O₅, calculated from the aerosol surface area density, is a measure of the yield of ClNO₂ from heterogeneous N₂O₅ uptake. The model was applied to plumes in which NO_x sources could be clearly identified or were sufficiently isolated (for example, ship plumes against a clean background), so that the nocturnal transport time could be estimated.

The range of estimated k_{het} was from 1×10^{-4} s⁻¹ to 3×10^{-3} s⁻¹, significantly larger than that predicted for N₂O₅ uptake on sea-salt aerosol, which is primarily supermicrometre in size, implying that a substantial fraction of the reaction occurred on submicrometre aerosol. Chemical analyses of submicrometre aerosol showed chloride concentrations in the range 0–1 M, with a median of 0.05 M, consistent with HCl_(g) partitioning to the aerosol phase²²

Figure 1 Maps of the study area. a,b, Maps of the study area showing a detailed view of the focused study area in the vicinity of Houston, Texas (shown in yellow) (a) and the ship track along the United States southeast coastline and across the Gulf of Mexico (b). Measured CINO₂ (5 min average) is plotted along the track scaled by size. The colour coding differentiates night time (red) from daytime (blue). Black dots along the Texas–Louisiana coast are oil and natural gas platforms. The locations of measurements shown in Figs 2 and 3 (18 August, 2 September and 8 September) are indicated.

and a minor contribution from submicrometre sea salt. Although measured submicrometre chloride mass loadings were insufficient to produce observed ClNO₂, there was sufficient measured gasphase chloride (mainly HCl) to replenish aerosol-phase Cl⁻ and support continuous heterogeneous ClNO₂ production. Laboratory studies have shown 25% yields of ClNO₂ on solutions with [Cl⁻] as low as approximately 0.1 M, consistent with Cl⁻ being an efficient scavenger of the NO₂⁺ ion proposed as an intermediate in the first step of N₂O₅ surface reaction¹². In our study, ClNO₂ was observed in the presence of N₂O₅ and submicrometre Cl⁻ molarities as low as 0.02 M. The net effect of these gas-particle processes can be summarized by the following reaction.


$$HCl_{(g)} + N_2O_{5(g)} \xrightarrow{het} ClNO_{2(g)} + HNO_{3(aq)}$$

The simulation–measurement comparison implies not just a larger than anticipated source for ClNO₂, but also a long lifetime for ClNO₂ (>30 h) in the nocturnal MBL. The latter is expected, because the most likely nocturnal ClNO₂-loss pathway is heterogeneous uptake, and Henry's law constant (4.6 × 10^{-2} M per atm for water)¹⁵ and uptake coefficients ($\gamma < 5 \times 10^{-6}$ over water and Cl⁻-containing solutions)²¹ are small. Reactions of ClNO₂ with gas-phase species have not been extensively studied, but those that are known, such as reaction with NO ($k = 2 \times 10^{-17}$ cm³ molecule⁻¹ s⁻¹) (ref. 23), are slow. Indeed, the lifetime of ClNO₂ may be such that it will be widespread in polluted regions of the nocturnal MBL. The detection limit of our measurement (50 p.p.t.v.) did not permit us to explore this further.

THE EFFECT OF CINO₂ ON ATMOSPHERIC CHEMISTRY

Efficient ClNO₂ production has two important consequences for air quality in coastal regions. First, ClNO₂ acts as a nocturnal reservoir for NO_x, regenerating NO₂ on photolysis at sunrise. In environments where ClNO₂ yields are appreciable (such as the 10–65% found in this study), overnight conversion of NO_x to HNO₃ (NO_x loss) would be considerably reduced²⁴. Second, ClNO₂ produces reactive chlorine atoms that can significantly enhance

ARTICLES

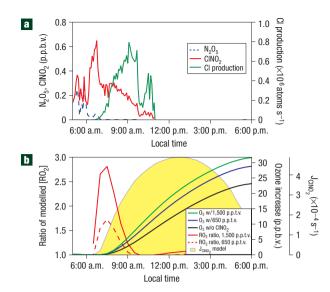


Figure 2 Measurements of CINO₂ and N₂O₅ on two different nights. Time series of CINO₂ and N₂O₅ on the nights of 18 August and 8 September. The bottom panels show total reactive nitrogen (NO_y). The insets show the correlation between CINO₂ and the heterogeneous uptake rate of N₂O₅ (see text), colour coded according to sampling time since sunset. The nearly constant ratio of CINO₂ over N₂O₅ loss rate observed on 8 September ($r^2 = 0.941$) suggests that CINO₂ is dominated by rapid production.

VOC oxidation rates, particularly in a VOC-rich area such as Houston, at a time of day when other common oxidants (for example, NO₃, OH) are scarce²⁵.

The effect of ClNO₂ as a Cl atom source is shown in Fig. 3a for the morning of 2 September 2006. In this case, ClNO₂ remained into the mid- to late-morning hours, long after N₂O₅ had been destroyed by thermal decomposition and photochemical degradation of NO₃. The resulting Cl source, calculated from the observed ClNO₂ and measured photolysis rates, approached 1×10^6 atoms cm⁻³ s⁻¹. This Cl source can be compared to other photolytic oxidant sources present in this early-morning air mass: OH from O₃, OH from HONO and HO₂ from HCHO, listed in Table 1. The O_3 and HCHO sources were calculated from measured concentrations and photolysis rates. The HONO source was estimated from measured NO₂ assuming a 5% HONO/NO₂ ratio consistent with observations during the TexAQS 2000 study at the LaPorte site²⁶, 5 km from our site. Estimated OH from HONO, 8×10^6 mol cm⁻³ s⁻¹, is consistent with calculations from observed HONO at another continental site27, although it is not clear that HONO in a marine environment will be as large. The Cl atom source from ClNO₂ is modest relative to the other oxidants; however, Cl is more reactive than OH, and will more efficiently produce radicals from oxidation of less-reactive VOCs, such as alkanes. Table 1 shows both the absolute radical production rates and production rates weighted by the ratio of reaction rate coefficients for Cl and OH with propane (an abundant alkane). By this measure, Cl is the dominant oxidant.

The precise consequences of ClNO₂ chemistry to marine and coastal O₃ production depend on the VOC and NO_x levels within a given air mass. Figure 3b gives an example calculation using the master chemical mechanism (see the Supplementary Information) with added photolysis of ClNO2 and Cl-VOC chemistry. The model case used has been described previously²⁸ and is typical of a polluted air mass after one-day transport in the MBL. Addition of 650 p.p.t.v. of ClNO₂ (consistent with some of the highest observed levels on 2 September) and 1,500 p.p.t.v. of ClNO₂ (slightly higher than the high values we observed in this study) resulted in early increases in photochemical activity as measured by faster O₃ production and larger midday O₃. These increases in ozone of 6 and 9 p.p.b.v., respectively, above that present at sunrise, were driven by both NO_x and Cl release. The latter is illustrated from the morning peak in total peroxy radical concentration RO₂ $(RO_2 = hydroperoxy + organic peroxy radicals)$ of factors of 1.7 and 2.8.

Figure 3 Production of Cl atoms from CINO₂ **photolysis. a**, Measured mixing ratios of CINO₂ and N₂O₅ and the Cl atom production rate resulting from the photolysis of CINO₂ on 2 September 2006, while the ship was stationary in an inlet off Galveston Bay. **b**, Master chemical mechanism results for a representative modestly polluted marine air mass, to which 650 and 1,500 p.p.t.v. of CINO₂ have been added. Note that **b** is not intended as a model for the specific conditions in **a**, but rather to provide a general representation of the effect of CINO₂ chemistry.

A thorough understanding of the effects of $CINO_2$ on regional photochemistry requires three-dimensional regional models. However, recent studies of other potential Cl sources in urban airsheds corroborate the predicted enhancement in photochemical ozone from our model. Knipping and Dabdub³ considered the production of Cl species from sea salt with a primary focus on the production of Cl₂ from OH chemistry, and estimated that near-shore Cl sources impact greater Los Angeles with up to 12 p.p.b.v. of extra photochemical O₃. Increased O₃ production has also been attributed to industrial and domestic sources of photolabile Cl (for example, Cl₂ or HOCl) in the Houston area², and control strategies have been proposed²⁹. Our results imply that control of all Cl sources would require control of marine and coastal NO_x sources because ClNO₂ may be appreciable in comparison with directly emitted Cl sources.

GLOBAL ASPECTS AND OVERALL SIGNIFICANCE OF NITRYL CHLORIDE

ClNO₂ chemistry can have global, in addition to regional, impacts. Just over half of the global population lives within 200 km of a coastline³⁰, where urban and industrial NO_x and aerosol pollution combines with sea-salt aerosol, leading to enhanced photochemical O₃ production. A simple and admittedly rough estimate of the global ClNO2 source can be made from the N2O5 to ClNO2 conversion efficiencies determined in this study and global NO_x emission data³¹. Considering only NO_x sources within 50 km of a coastline and marine vessel sources, and further assuming that on average half of that NO_x is converted to NO_y through conversion to and reaction of N₂O₅ (ref. 32), then N₂O₅ to ClNO₂ conversion efficiencies similar to those inferred from these observations (5% for coastal urban and 15% for ship emissions) result in an estimate of 3.2 Tg yr^{-1} as Cl. This is much larger than the global ClNO₂ estimate of 0.06 Tg Cl yr⁻¹ from Erickson et al.¹⁶, but is about 8% of the total Cl atom source inferred from the ${}^{13}C/{}^{12}C$ kinetic isotope effect of Cl reaction with methane⁸. The ozone production

Table 1 The effect of $CINO_2$ as a radical source on 2 September 2006.		
Radical source	Maximum rate (molecules $cm^{-3} s^{-1}$)	Effective radical source from propane (p.p.b.v.)*
Cl	0.8×10 ⁶	28 [†]
OH from O_3	1.1×10^{7}	1.6
OH from HONO	8×10^{6}	3.6
HO_2 from HCHO [‡]	6.3×10^6	0.94

*Integrated from sunrise to 1100 local time.

[†]Estimated by multiplying the integrated source by the ratio of the rate constant of the Cl atom to that for OH. [‡]Assumed to make OH radicals on reaction with NO (present after sunrise).

that results from this Cl source will have consequences for global climate forcing and tropospheric chemistry. The resulting halogen release may also have an impact on the abundances of non-sea-salt sulphate generated from dimethyl sulphate.

These first observations of ambient ClNO_2 demonstrate its efficient production from heterogeneous uptake of N_2O_5 on aerosol particles, linking odd-nitrogen and halogen cycles in polluted coastal environments and ship plumes. ClNO_2 was significant (>1 p.p.b.v.), amounting to as much as 15% of NO_y, implying that its production takes place not only on sea salt, but also on chloride-containing particles of continental origin. Photolysis of ClNO_2 results in NO_x regeneration and chlorine atom production during morning hours, at times when other radical species, for example, NO₃ and OH, are at their lowest abundance. This Cl atom source initiates and accelerates daytime oxidant production in near-coastal environments where NO_x, O₃ and sea-salt sources coexist.

METHODS

Nitryl chloride measurements were made with a chemical ionization mass spectrometer (CIMS) using iodide (I⁻) as a reagent ion. The instrument is similar to that described by Slusher et al.33, and the ion chemistry pertinent to ClNO₂ is discussed by McNeill et al.³⁴. The ion {I·ClNO₂}⁻ at mass 207.9 was chosen for this measurement because it was deemed most specific and had a very low background in the CIMS system. The CIMS instrument was set to scan 10 ions for 0.5 s each, including the reagent ion, and complete mass scans were carried out approximately every few days. Zero levels were determined for 2 min every hour by online thermal decomposition of ambient air on a stainless-steel surface at 200 °C. The instrument was calibrated post-campaign using three independent methods: conversion of a known amount of N2O5 on a NaCl slurry surface, and measurement of the output of a synthetic ClNO₂ source by NO_v and by ultraviolet absorption spectroscopy. The three methods yielded an average response factor that had a relative standard deviation of $\pm 18\%$. The response factor is a function of reagent ion number density, so the measured reagent ion counts were used to calculate a response factor as a function of time for the entire campaign. The overall uncertainty was $\pm(30\% + 50$ p.p.t.v.) for the ClNO₂ measurement for 5 min integrated data.

 $N_2O_5,\,NO_3$ and NO_2 were measured by a multichannel cavity ring-down spectrometer $^{35,36}.\,NO_3$ was measured by absorption at 662 nm and N_2O_5 was measured as NO_3 after thermal conversion. NO_2 was measured by absorption at 532 nm in two cells that followed the NO_3 and N_2O_5 ring-down cells. Zeroing of the NO_3 and N_2O_5 channels was accomplished through the addition of nitric oxide (NO) to the inlet and NO_2 was zeroed by overflowing the absorption cell with clean 'zero' air. The transmission efficiency of the inlets was examined routinely by addition of a synthetic sample of N_2O_5 , and by determination of the NO_2 formed when NO is added in the zero mode. The accuracy of the N_2O_5 measurement was $\pm (25\% + 0.1*[NO_3] + 0.5$ p.p.t.v.), and the (1 s) measurement precision was ± 0.5 p.p.t.v.

The aerosol surface area was derived from the number size distributions measured with two differential mobility analysers (submicrometre fraction) and with an aerodynamic particle sizer (supermicrometre fraction) at a relative humidity of 55%–60% with 5 min time resolution and was corrected for changes in size due to water loss or uptake when the ambient relative humidity was different to the measurement relative humidity. Aerosol composition

reported here was measured by ion chromatography of impactor samples³⁷. The nitrogen oxide species, NO, NO₂ and total NO_y and O₃ were measured using the methods described by Williams *et al.*³⁸. The photolysis rate of ClNO₂ ($j(ClNO_2)$) was calculated from a parameterization of photolysis rates of NO₂, and O₃ ($j(NO_2)$, and $j(O_3)$) measured by filter radiometry³⁹.

Total gaseous chloride was measured by the mist-chamber ion chromatographic method described by Scheuer *et al.*⁴⁰ and Dibb *et al.*⁴¹. The Cl⁻ ion concentration was measured every 5 min. Although not measured as such, gaseous chloride is presumed to be in the form of HCl. The collection of other volatile chlorine species, for example ClNO₂ or Cl₂, is not expected due to their low solubility and slow hydrolysis in neutral pH water.

Received 16 January 2008; accepted 10 March 2008; published 6 April 2008.

References

- 1. Platt, U. & Honninger, G. The role of halogen species in the troposphere. Chemosphere 52,
- Tanaka, P. L. *et al.* Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas. Atmos. Environ. 37, 1393–1400 (2003).
- Knipping, E. M. & Dabdub, D. Impact of chlorine emissions from sea-salt aerosol on coastal urban ozone. *Environ. Sci. Technol.* 37, 275–284 (2003).
- von Glasow, R. & Crutzen, P. J. Model study of multiphase DMS oxidation with a focus on halogens. *Atmos. Chem. Phys.* 4, 589–608 (2004).
- Simpson, W. R. et al. Halogens and their role in polar boundary-layer ozone depletion. Atmos. Chem. Phys. 7, 4375–4418 (2007).
- Platt, U. & Janssen, C. Observation and role of the free radicals NO₃, ClO, BrO and IO in the troposphere. *Faraday Discuss.* 100, 175–198 (1995).
- Pszenny, A. A. P. et al. Evidence of inorganic chlorine gases other than hydrogen-chloride in marine surface air. Geophys. Res. Lett. 20, 699–702 (1993).
- Platt, U., Allan, W. & Lowe, D. Hemispheric average Cl atom concentration from ¹³C/¹²C ratios in atmospheric methane. *Atmos. Chem. Phys.* 4, 2393–2399 (2004).
- Spicer, C. W. et al. Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 394, 353–356 (1998).
- 10. Law, K. S. & Stohl, A. Arctic air pollution: Origins and impacts. Science 315, 1537–1540 (2007).
- Finlayson-Pitts, B. J., Ezell, M. J. & Pitts, J. N. Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N₂O₃ and ClONO₂. *Nature* 337, 241–244 (1989).
- Behnke, W., George, C., Scheer, V. & Zetzsch, C. Production and decay of CINO₂, from the reaction of gaseous N₂O₃ with NaCl solution: Bulk and aerosol experiments. *J. Geophys. Res.* 102, 3795–3804 (1997).
- Finlayson-Pitts, B. J. The tropospheric chemistry of sea salt: A molecular-level view of the chemistry of NaCl and NaBr. Chem. Rev. 103, 4801–4822 (2003).
- Behnke, W., Kruger, H. U., Scheer, V. & Zetzsch, C. Formation of atomic Cl from sea spray via photolysis of nitryl chloride—determination of the sticking coefficient of N₂O₅ on NaCl aerosol. J. Aerosol Sci. 22, S609–S612 (1991).
- Frenzel, A. et al. Heterogeneous interconversion reactions of BrNO₂, ClNO₂, Br₂, and Cl₂. J. Phys. Chem. A 102, 1329–1337 (1998).
- Erickson, D. J. III, Seuzaret, C., Keene, W. C. & Gong, S. L. A general circulation model based calculation of HCl and CINO₂ production from sea salt dechlorination: Reactive chlorine emission inventory. *J. Geophys. Res.* **104**, 8347–8372 (1999).
- McFiggans, G., Cox, R. A., Mossinger, J. C., Allan, B. J. & Plane, J. M. C. Active chlorine release from marine aerosols: Roles for reactive iodine and nitrogen species. *J. Geophys. Res.* 107, 4271 (2002).
 Pechtl, S. & von Glasow, R. Reactive chlorine in the marine boundary layer in the outflow of polluted
- Pechtl, S. & von Glasow, R. Reactive chlorine in the marine boundary layer in the outflow of polluted continental air: A model study. *Geophys. Res. Lett.* 34, L11813 (2007).
- Osthoff, H. D. et al. Observation of daytime N₂O₅ in the marine boundary layer during New England Air Quality Study—Intercontinental Transport and Chemical Transformation 2004. J. Geophys. Res. 111, D23S14 (2006).

- Fuchs, N. A. & Sutugin, A. G. Highly Dispersed Aerosols (Ann Arbor Science Publishers, Newton, 1970).
- 21. Rossi, M. J. Heterogeneous reactions on salts. Chem. Rev. 103, 4823-4882 (2003).
- 22. Clegg, S. L., Brimblecombe, P. W. & Wexler, A. S. A thermodynamic model of the system
- H-NH₄-Na-SO₄-NO₃-Cl-H₂O at 298.15 K. J. Phys. Chem. A 102, 2155–2171 (1998).
 23. Wilkins, R. A. Jr, Dodge, M. C. & Hisatsune, I. C. Kinetics of nitric oxide catalyzed decomposition of nitryl chloride and its related nitrogen isotope exchange reactions. J. Phys. Chem. 78,
- 2073–2076 (1974).
 24. Brown, S. S. *et al.* Nighttime removal of NO_s in the summer marine boundary layer. *Geophys. Res. Lett.* **31**, L07108 (2004).
- Platt, U. et al. Free radicals and fast photochemistry during BERLIOZ. J. Atmos. Chem. 42, 359–394 (2002).
- Stutz, J. et al. Relative humidity dependence of HONO chemistry in urban areas. J. Geophys. Res. 109, D03307 (2004).
- Alicke, B. et al. OH formation by HONO photolysis during the BERLIOZ experiment. J. Geophys. Res. 108, 8247 (2003).
- Roberts, J. M. et al. Measurements of PANs during the New England Air Quality Study, 2002. J. Geophys. Res. 112, D20306 (2007).
- Wang, L., Thompson, T., McDonald-Butler, E. C. & Allen, D. T. Photochemical modeling of emissions trading of highly reactive volatile organic compounds in Houston, Texas. 2. Incorporation of chlorine emissions. *Environ. Sci. Technol.* 41, 2095–2102 (2007).
- Hinrichsen, D. Coastal Waters of the World: Trends, Threats, and Strategies (Island Press, Washington, 1998).
- Olivier, J. G. J. & Berdowski, J. J. M. in *The Climate System* (eds Berdowski, J., Guicherit, R. & Heij, B. J.) 33–78 (A. A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands, 2001).
- Dentener, F. J. & Crutzen, P. J. Reaction of N₂O₅ on tropospheric aerosols: Impact on the global distributions of NO₄, O₃ and OH. J. Geophys. Res. 98, 7149–7163 (1993).
- Slusher, D. L., Huey, L. G., Tanner, D. J., Flocke, F. M. & Roberts, J. M. A thermal dissociation-chemical ionization mass spectrometry (TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide. *J. Geophys. Res.* 109, D19315 (2004).
 McNeill, V. F., Patterson, J., Wolfe, G. M. & Thornton, J. A. The effect of varying levels of surfactant
- McNeill, V. F., Patterson, J., Wolfe, G. M. & Thornton, J. A. The effect of varying levels of surfactant on the reactive uptake of N₂O₅ to aqueous aerosol. *Atmos. Chem. Phys.* 6, 1635–1644 (2006).
- Dubé, W. P. et al. Aircraft instrument for simultaneous, in situ measurement of NO₃ and N₂O₅ via pulsed cavity ring-down spectroscopy. *Rev. Sci. Instrum.* 77, 034101 (2006).
- Osthoff, H. D. et al. Measurement of atmospheric NO₂ by pulsed cavity ring-down spectroscopy. J. Geophys. Res. 111, D12305 (2006).
- Quinn, P. K. et al. Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine. J. Geophys. Res. 111, D23836 (2006).
- Williams, E. J. et al. Intercomparison of ground-based NO_y measurement techniques. J. Geophys. Res. 103, 22261–22280 (1998).
- Stark, H. *et al.* Atmospheric in situ measurement of nitrate radical (NO₃) and other photolysis rates using spectroradiometry and filter radiometry. *J. Geophys. Res.* **112** doi:10.1029/2006JD007578 (2007).
- Scheuer, E. et al. Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE. J. Geophys. Res. 108, 8370 (2003).
- Dibb, J. E. et al. Ship-based nitric acid measurements in the gulf of Maine during New England Air Quality Study 2002. J. Geophys. Res. 109, D20303 (2004).

Supplementary Information accompanies this paper on www.nature.com/naturegeoscience.

Acknowledgements

We thank the officers and crew of the NOAA R/V R. H. Brown for their assistance and professionalism. We thank S. Herndon and M. Zahniser for the use of their formaldehyde data. We thank J. Thornton for helpful discussions. We thank D. Tanner, G. Huey, A. Neuman, J. Nowak, W. P. Dubé and S. Ciciora for help with instrumentation. The EDGAR 3.2 NO₄ emissions data were obtained from the website http://www.mnp.nl/edgar/. This work was supported by the NOAA Climate Forcing and Air Quality Programs.

Author information

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions. Correspondence and requests for materials should be addressed to J.M.R.