Coastal Hazardous Waste Site Review: Site Reports September 1990

Contributing Authors:

Tracy Barrett^{*}, Jean Backman^{*}, Mike Buchman, Lew Consiglieri, Frank Csulak, Chip Demarest, Robert Dexter^{*}, Jay Field, Ken Finkelstein, Alyce Fritz, Rebecca Hoff, John Lindsay, and Nancy Musgrove^{*}

Edited By:

Rebecca Hoff and Lori Harris

National Oceanic and Atmospheric Administration National Ocean Service Office of Oceanography and Marine Assessment Ocean Assessments Division Hazardous Materials Response Branch

	Contents
	Page
	Introduction i
	Table 1: Sites with which NOAA has been involved through 1990iiiTable 2: Acryonms and abbreviationsxiii
Region 1	Naval Construction Battalion Center1
	Naval Education Training Center7
	New London Naval Submarine Base
	Pease Air Force Base19
Region 2	Brookhaven National Laboratory25
U	Chemical Insecticide Corporation
	FAA Technical Center Atlantic City Airport
Region 3	Koppers Company Facilities
	Publicker Industries47
Region 4	Naval Air Station Cecil Field53
	Chem-Form, Inc
	Ciba-Geigy Corporation63
	Naval Air Station Jacksonville69
	Olin Chemical Corporation75
	Pensacola Naval Air Station81
	Savannah River Plant87
Region 9	Camp Pendleton Marine Corps Base
	Fort Ord Army Base97
	Travis Air Force Base103
Region 10	U.S. Naval Submarine Base, Bangor109
	Bonneville Power Administration, Ross Complex 117
	Elmendorf Air Force Base123
	Standard Steel129
	Union Pacific Tie Treating Facility135

Introduction

This report identifies uncontrolled hazardous waste sites that could pose a threat to natural resources for which the National Oceanic and Atmospheric Administration (NOAA) acts as a trustee. NOAA carries out responsibilities as a Federal trustee for natural resources under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the National Oil and Hazardous Substances Pollution Contingency Plan. As a trustee, NOAA is responsible for identifying sites that could affect natural resources, determining the potential for injury to the resources, evaluating cleanup alternatives, and carrying out restoration actions. NOAA works with the U.S. Environmental Protection Agency (EPA) when identifying and assessing risks to coastal resources from hazardous waste sites and developing strategies to minimize those risks.

NOAA regularly conducts evaluations of hazardous waste sites proposed for addition to the National Priorities List¹ (NPL) by EPA. The waste sites evaluated in this report are drawn from the list of all sites, including Federal facilities, proposed for inclusion on the NPL. The sites covered in this report were either proposed for inclusion on the National Priorities List by EPA in Update #8, 9, or 10, or listed in earlier NPL updates but not covered in previous NOAA reports.

The sites of concern to NOAA are located in counties bordering the Atlantic Ocean, Pacific Ocean, and Gulf of Mexico, or are near inland water bodies that support anadromous fish populations. Not all sites in coastal states will affect NOAA trust resources. To select sites on the National Priorities List for initial investigation, only sites in coastal counties or sites bordering important anadromous fish habitat are considered to have potential to affect trust resources. This initial selection criteria works better in some states than in others. It is dependent on topography, hydrography, and the nature of political subdivisions.

The information in the hazardous waste site reports provides an overall guide to the potential for injury to NOAA trust resources resulting from a site. This information is used by NOAA to establish priorities for investigating sites. Sites that appear to pose ongoing problems will be followed by a NOAA Coastal Resource Coordinator (CRC) in the appropriate region. The CRC communicates concerns about ecological impact to EPA, reviews sampling and monitoring plans for the site, and participates in planning and setting objectives for remedial actions to clean up the site. NOAA works with other trustees to plan a coordinated approach for remedial action that protects all natural resources. Other Federal and state trustees can use the hazardous waste site reports to help determine the risk of injury to their trust resources. EPA uses the site reports to help identify the types of information that may be necessary to complete an environmental assessment of the site.

¹National Oil and Hazardous Substances Pollution Contingency Plan, <u>40 CFR Part 300</u>.

Coastal site reports are often NOAA's first examination of a site. Sites with potential to impact NOAA resources may be followed by a more in-depth Preliminary Natural Resource Survey.

Thirty-one coastal sites were identified in 1990 using this selection method. Further investigation showed that seven of these sites were not likely to affect NOAA trust resources. Coastal hazardous waste site reports were completed for the remaining 24 sites. A total of 238 coastal hazardous waste sites have been reviewed by NOAA since 1984. Two hundred fourteen sites identified as potentially affecting NOAA trustee resources were reported in April 1984,² June 1985,³ April 1986,⁴ June 1987,⁵ and March 1989⁶ The 24 sites in this report bring the total number of sites identified by NOAA as having the potential to affect trust resources to 238.

The 1990 coastal hazardous waste site reports contain three major sections. The "Site Exposure Potential" section describes activities at the site that resulted in the release of contaminants, local topography, and contaminant migration pathways. The "Site-Related Contamination" section identifies contaminants of concern to NOAA, the partitioning of the contaminants in the environment, and the concentrations at which the contaminants are found. The "NOAA Trust Habitats and Species" section describes the types of habitats and species potentially injured by releases from the site. The life stages of organisms using habitats near the site, and commercial and recreational fisheries, are discussed.

Tables and Screening Values

Most of these reports contain tables of contaminants measured at the site. These tables were formulated to highlight contaminants that represent a potential problem, and to focus our concerns on only a few of the many contaminants normally present at a waste site. Data presented in tables were screened against standard comparison values, depending on the media of the sample. Screening values used are ambient water quality criteria⁷, selected soil averages⁸, and Effective Range-Low (ER-L) values⁹. Because releases to the environment from hazardous waste sites can span many years, we are concerned about chronic

²Ocean Assessments Division. 1984. <u>Coastal Hazardous Waste Site Review April 13, 1984</u>. NOAA/OAD, Seattle, Washington.

³Pavia, R., et al. 1985. <u>Coastal Hazardous Waste Site Review June 1985</u>. NOAA/OAD, Seattle, Washington.

⁴Pavia, R., et al. 1986. <u>Coastal Hazardous Waste Site Review April 1986</u>. NOAA/OAD, Seattle, Washington.

⁵Pavia, R., et al. 1987. <u>Coastal Hazardous Waste Site Review June 1987</u>. NOAA/OAD, Seattle, Washington. ⁶Pavia, R., et al. 1989 <u>Coastal Hazardous Waste Site Review March 1989</u>. NOAA/OAD, Seattle, Washington.

⁷U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C. ⁸Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u>. John Wiley & Sons, New York.

⁹Long, E.R. and L.G. Morgan. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA/OAD, Seattle, Washington.

impacts. Therefore, we typically make comparisons with the lower standard value (i.e., chronic AWQC).

Tables and Screening Values, cont.

Very little information exists regarding the toxicity of contaminated soil or sediment. No criteria similar to the AWQC are available. Sediment concentrations were screened by comparison with the ER-L reported by Long and Morgan⁹. The ER-L value is the concentration equivalent to that reported at the lower 10 percentile of the screened sediment toxicity data. As such, it represents the low end of the range of concentrations at which effects were observed in the studies compiled by those authors. Although freshwater studies were included, predominantly marine and estuarine toxicity studies were used for generating ER-L values.

Soil samples were compared to selected average levels from Lindsay (1979) as reported by EPA in 1983 in Hazardous Waste Land Treatment. These values were averaged from a data set selected by Lindsay to represent background levels from soil throughout the entire U.S. Ideally, reference values for soil would be calculated on a regional basis, from a data set large enough to give a value representative of the area. In the absence of such data, the values from Lindsay were used as a reference for comparison purposes only.

All of the hazardous waste sites considered by NOAA in this review are contained in the Table of Contents, including the name and location of the site and the beginning page number of the site report. Table 1 lists all the sites at which NOAA has been involved that have the potential to affect trust resources (488), as of September 1990. Table 2 lists acronyms, abbreviations, and terms commonly used in these waste site reports.

Table 1. Sites at which NOAA has been involved in remedial operations (488) as of September 1990, including those sites for which a Coastal Hazardous Waste Site Review (238) or Preliminary Natural Resource Survey (PNRS) (79) have been completed.

			Report	
State	e Cerclis	Site Name	Date	PNRS
Fede	eral Region 1			
CT	CTD980732333	Barkhamsted-New Hartford Landfill	1989	
CT	CTD072122062	Beacon Heights, Inc.	1984	
CT	CTD108960972	Gallup's Quarry	1989	
CT	CTD980670814	Kellogg-Deering Well Field	1987	
CT	CTD980521165	Laural Park, Inc.		1988
CT	CTD001153923	Linemaster Switch		

CT	CTD982747933	New London Submarine Base		
CT	CTD980669261	Nutmeg Valley Road		
CT	CTD980667992	O'Sullivans Island	1984	
CT	CTD980670806	Old Southington Landfill		
CT	CTD004532610	Revere Textile Prints Corps		
CT	CTD009717604	Solvents Recovery Service		
CT	CTD980906515	US Naval Submarine Base, New London	1990	
CT	CTD009774969	Yaworski Waste Lagoon	1985	1989
MA	MAD001026319	Atlas Tack Corp	1989	
		•	Report	
Stat	e Cerclis	Site Name	Date	PNRS
Fed	anal Dagian 1 ca	nt		
reu		III. Detail 9 McCreter Inc.		
MA	MAD001041987	Baird & McGuire, Inc.		1000
MA	MAD0/9510/80	CE Bridgewater	1004	1988
MA	MAD980525232	CE Plymouth	1984	1990
MA	MAD003809266	Charles George Land Reclamation	1987	1988
MA	MAD980732317	Groveland Wells 1&2	1987	1988
MA	MAD980523336	Haverniii Municipal Landfiii	1985	
MA	MAD980732341	Hocomonco Pond	1007	1000
MA	MAD0/0380930	Industripiex	1987	1988
MA	MAD031787323	Iron Horse Park	1004	
	MAD980731333	New Bedford Newwood BCB's	1984	
	MAD980070300	Norwood PCDS	1007	
	MAD990083422	nyanza Chemical	1987	
MA	MAD900731403	roc Decelue Inc		
MA		Resolve, IIIC.		
MA	MAD900524109	Rose Disposal Fit		
MA	MAD900323240	Salelli Acles Shnack Dump		
MA	MAD900303973	Silpack Dullip Silpasim Chamical Corp		
MA	MAD000192393	Sullivan's Lodge	1087	1080
MA	MAD300731343	W P Crace and Co	1507	1505
MA	MAD001002232	Wall C & H		1000
ME	MED08059/078	Mekin Company	108/	1550
ME	MED080721475	O'Coppor Company	108/	
ME	MED980731475	Pinettes Salvage Vard	1504	
ME	MED980504393	Saco Municipal Landfill	1989	
MF	MED980520241	Saco Tannery Waste Pits	1000	
ME	ME81700220211	U.S. Navy Brunswick NAS	1987	
ME	MED042143883	Union Chemical Company Inc	1007	
ME	MED980504435	Winthron Town Landfill		
NH	NHD980524086	Auburn Road Landfill		1989
NH	NHD064424153	Coakley Landfill	1985	1989
NH	NHD980520191	Dover Municipal Landfill	1987	1990
NH	NHD001079649	Fletcher's Paint Works and Storage	1989	1000
NH	NHD069911030	Grugnale Waste Disposal Site	1985	
NH	NHD981063860	Holton Circle Ground Water Contamination	2000	
NH	NHD062002001	Kearsarge Metallurgical		
NH	NHD092059112	Keefe Environmental Services		
NH	NHD980503361	Mottolo Pig Farm		
NH	NHD990717647	Ottati & Goss Great Lakes Container Corp		
NH	NH7570024847	Pease Air Force Base	1990	

NΗ	NHD980671002	Savage Municipal Water Supply	1985	
NΗ	NHD980520225	Somersworth Sanitary Landfill		
NΗ	NHD980671069	South Municipal Water Supply		
NH	NHD099363541	Sylvester's	1985	
NH	NHD989090469	Tibbetts Road		
NΗ	NHD062004569	Tinkham Garage		
RI	RID980520183	Central Landfill (Johnston Site)		
RI	RID980731459	Davis GSR Landfill		
RI	RID980523070	Davis Liquid Waste Site	1987	
RI	RI6170022036	Davisville Naval Construction Battalion Ctu	1990	
RI	RID093212439	Landfill and Resource Recovery (L&RR)		
RI	RI6170085470	Newport Naval Education/Training Center	1990	
RI	RID055176283	Peterson/Puritan. Inc.	1987	1990
RI	RID980579056	Picillo Farm	1987	1988
101			Report	1000
Ctat	o Comolia	Site Norme	Dete	DNIDC
Stat	e Cerciis	Site maine	Date	PINKS
Fad	anal Dagian 1 con	+		
reu	BIDAGESCION I, COM		1000	
RI	RID980521025	Rose Hill Regional Landfill	1989	1000
RI	RID980731442	Stamina Mills	1987	1990
RI	RID009764929	Western Sand and Gravel	1987	
VT	VTD981064223	Bennington Municipal Landfill		
VT	VTD980520092	BFI Sanitary Landfill	1989	
VT	VTD003965415	Burgess Brothers Landfill		
VT	VTD980520118	Darling Hill Dump		
VT	VTD000860239	Old Springfield Landfill	1987	1988
VT	VTD981062441	Parker Sanitary Landfill		
VT	VTD980523062	Pine Street Canal		
VT	VTD000509174	Tansitor Electronics, Inc		
- I				
Fede	eral Region 2			
NJ	NJD000525154	Albert Steel Drum	1984	
NJ	NJD002173276	American Cyanamid	1985	
NJ	NJD980654149	Asbestos Site		
NJ	NYD980768675	BEC Trucking		1990
NJ	NJD063157150	Bog Creek Farm	1984	
NJ	NJD980505176	Brick Township Landfill	1984	
NJ	NJD053292652	Bridgeport Rental & Oil Services (BROS)		1990
NJ	NJD078251675	Brook Industrial Park	1989	
NJ	NJD980504997	Burnt Fly Bog		
NJ	NJD000607481	Chemical Control	1984	
NJ	NJD980484653	CHEMICAL INSECTICIDE CORP	1990	
NJ	NJD047321443	Chemical Leaman	1989	
NJ	NJD980528897	Chipman Chemical	1985	
NJ	NJD001502517	Ciba-Geigy Corp.	1984	1989
NJ	NJD980785638	Cinnaminson		
NJ	NJD000565531	Cosden Chemical	1987	
NJ	NJD002141190	CPS Chemical/Madison Industries		1990
NJ	NJD011717584	Curcio Scrap Metal	1987	-
NJ	NJD980761373	De Rewal Chemical Co.	1985	
NJ	NJD980529002	Delilah Landfill	_ , , , ,	
NJ	NJD046644407	Denzer and Schafer X-Ray	1984	
NJ	NJD980528996	Diamond Alkali/Diamond Shamrock	1984	
•				

NJ	NJD980529085	Ellis Property		
NJ	NJD980761365	EWAN		
NJ	NJ9690510020	FAA Tech Center	1990	
NJ	NJ2210020275	Fort Dix		
NJ	NJD041828906	Fried Industries		
NJ	NJD053280160	Garden State Cleaners	1989	
NJ	NJD980529192	GEMS Landfill		
NJ	NJD063160667	Global Sanitary Landfill	1989	
NJ	NJD980530109	Goose Farm		
NJ	NJD980505366	Helen Kramer Landfill	1990	
NJ	NJD002349058	Hercules, Inc.	1984	
NJ	NJD053102232	Higgins Disposal	1989	
NJ	NJD981490261	Higgins Farm	1989	
NJ	NJD980663678	Horseshoe Road Dump	1984	
NJ	NJD980532907	Ideal Cooperage	1984	
NJ	NJD981178411	Industrial Latex	1989	
NJ	NJD980505283	Jackson Township Landfill	1984	
NJ	NJ0141790006	Jamaica Bay		
NJ	NJD002493054	Kauffman and Minteet	1989	
			Report	
Stat	e Cerclis	Site Name	Date	PNRS
Fad	aval Dagion 9	ont		
reu	NIDOA000000		1004	1000
INJ		KIN-BUC LANDIII	1984	1990
INJ		King of Prussia	1004	
INJ		Koppers Company	1984	
INJ	NJD980329838 NJ7170099744	Lakaburat NAEC	1985	
INJ	INJ/1/0023/44	Linori Londfill		
INJ	NJD900303410	Lipari Lanunn Met Doligo		
INJ NH	NJD003032104	Marhaim Avanua Sita		
INJ NH	NJD900034100 NJD009517479	Motoltoc		
INJ NH	NJD002J17472 NJ0910099759	Military Ocean Terminal		
NI	NJD210022752	Mahary Ocean Terminar Mobil Chamical Company	1084	
NI	NID00000730	Muors property	1504	
NI	NID061843949	N I Industries	1984	
NI	NID002362705	Nascolite	1504	
NI	NI01700221703	Naval Weapons Station Farl		
NI	NID980529598	Pene Field		
NI	NID980653901	Perth Amboy's PCB's	1984	
NI	NID980505648	PIP landfill	1984	1990
NJ	NJD981179047	Pohatcong Valley Groundwater Cont.	1001	1000
NJ	NJD980769350	Pomona Oaks		
NJ	NJD070281175	Price Landfill	1984	
NJ	NJD980582142	Pulverizing Services Inc.	1001	
NJ	NJD000606442	Quanta Resources (Allied, Shady Side)		
NJ	NJD980529713	Reich Farm		
NJ	NJD070415005	Renora		
NJ	NJD980529739	Ringwood Site		
NJ	NJD073732257	Roebling Steel Company	1984	1990
NJ	NJD030250484	Roosevelt Drive-In	1984	
NJ	NJD980754733	Sayerville Pesticide	1984	
NJ	NJD980505754	Sayreville Landfill	1984	1990

NJ	NJD070565403	Scientific Chemical Processing, Inc.	1984	1989
NJ	NJD980505762	Sharkey Landfill	1990	
NJ	NJD980766828	South Jersev Clothing Co.	1989	
NJ	NJD064263817	Syncon Resins	1984	
NJ	NJD980769475	T. Fiore Demolition. Inc.	1984	
NJ	NJD980761357	Tabernacle Drum		
NJ	NJD002005106	Universal Oil Products. Inc.	1984	
NJ	NJD980529879	Ventron/Velsicol	1984	
NJ	NJD002385664	Vineland Chemical	1990	
NJ	NJD054981337	Waldick Aerospace Devices		1990
NJ	NJD001239185	White Chemical Company	1984	
NJ	NJD980529945	Williams Property	1984	
NJ	NJD045653854	Witco Chemical Corporation		
NJ	NJD980505887	Woodlands Route 532		
NJ	NJD980505879	Woodlands Route 72		
NY	NYD072366453	Action Anodizing Site	1989	
NY	NYD002066330	American Thermostat		
NY	NYD001485226	Anchor Chemical		
NY	NYD980535652	Applied Environmental Services	1985	
NY	NYD980768683	Bioclinical Laboratories		
NY	NYD980652275	Brewster Wellfield		
NY	NY7890008975	Brookhaven National Lab	1990	
NY	NYD980780670	Byron Barrel and Drum		
NY	NYD981561954	C and J Disposal Site	1989	
		1	Donort	
			κεροπ	
State	e Cerclis	Site Name	Date	PNRS
State	e Cerclis	Site Name	Date	PNRS
<u>State</u> Fede	e Cerclis eral Region 2, con	Site Name t.	Date	PNRS
State Fede	e Cerclis eral Region 2, con NYD010968014	Site Name t. Carrol and Dubies	1989	PNRS
State Fede NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229	Site Name t. Carrol and Dubies Circuitron Corp. Site	1989	PNRS
State Fede NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576	Site Name t. Carrol and Dubies Circuitron Corp. Site Clothier Disposal	1989	PNRS
State Fede NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048	<i>Site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill	1989	PNRS
State Fede NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746	<i>Site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield	1989	PNRS
State Fede NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD002050110	<i>Site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site	1989	PNRS
State Fede NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD002050110 NYD091972554	<i>Site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry	1989 1989	PNRS
State Fede NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD002050110 NYD091972554 NYD980768717	<i>Site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site	1989 1989	PNRS
State NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD091972554 NYD091972554 NYD980768717 NY4571924451	<i>Site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB	1989 1989	PNRS
State NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD092050110 NYD091972554 NYD980768717 NY4571924451 NYD980785661	<i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland	1989 1989	PNRS
State Fede NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD002050110 NYD091972554 NYD980768717 NY4571924451 NYD980785661 NYD980780779	<i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill	1989 1989	PNRS
State Fede NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD091972554 NYD980768717 NY4571924451 NYD980785661 NYD980780779 NYD002920312	<i>Site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill Hooker/Ruco	1989 1989	PNRS
State Fede NY NY NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD091972554 NYD980768717 NYD980768717 NY4571924451 NYD980785661 NYD980780779 NYD002920312 NYD980763841	<i>Site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill Hooker/Ruco Hudson River PCBs (GE)	1989 1989	PNRS
State NY NY NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD091972554 NYD980768717 NY4571924451 NYD980768717 NY4571924451 NYD980785661 NYD980780779 NYD002920312 NYD980763841 NYD980534556	<i>site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill Hooker/Ruco Hudson River PCBs (GE) Jones Sanitation	1989 1989 1989 1989 1989 1987	PNRS
State NY NY NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD002050110 NYD091972554 NYD980768717 NY4571924451 NYD980768717 NY4571924451 NYD980785661 NYD980780779 NYD002920312 NYD980763841 NYD980763841 NYD9807638456 NYD980780795	t. Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill Hooker/Ruco Hudson River PCBs (GE) Jones Sanitation Katonah Municipal Well	1989 1989 1989 1989 1989 1987	PNRS
State NY NY NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD002050110 NYD091972554 NYD980768717 NY4571924451 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD9807638456 NYD980780795 NYD000337295	t. Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill Hooker/Ruco Hudson River PCBs (GE) Jones Sanitation Katonah Municipal Well Liberty Industrial Finishing	1989 1989 1989 1989 1989 1987 1985	PNRS
State NY NY NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD092050110 NYD091972554 NYD980768717 NY4571924451 NYD980785661 NYD980785661 NYD980780779 NYD002920312 NYD980763841 NYD980763841 NYD9807638456 NYD9807638456 NYD980780795 NYD000337295 NYD000337295 NYD013468939	t. Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill Hooker/Ruco Hudson River PCBs (GE) Jones Sanitation Katonah Municipal Well Liberty Industrial Finishing Ludlow Sanitary Landfill	1989 1989 1989 1989 1987 1985	PNRS
State Fede NY NY NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD091972554 NYD980768717 NYD980768717 NY4571924451 NYD980768717 NYD980780779 NYD002920312 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763842 NYD000337295 NYD013468939 NYD013468939 NYD980535124	<i>site Name</i> <i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill Hooker/Ruco Hudson River PCBs (GE) Jones Sanitation Katonah Municipal Well Liberty Industrial Finishing Ludlow Sanitary Landfill MALTA Rocket Fuel Site	1989 1989 1989 1989 1987 1985	PNRS
State NY NY NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD091972554 NYD980768717 NY4571924451 NYD980768717 NY4571924451 NYD980780779 NYD002920312 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD98073556 NYD980780795 NYD000337295 NYD013468939 NYD980535124 NYD980535124	<i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill Hooker/Ruco Hudson River PCBs (GE) Jones Sanitation Katonah Municipal Well Liberty Industrial Finishing Ludlow Sanitary Landfill MALTA Rocket Fuel Site Marathon Battery	1989 1989 1989 1989 1987 1985 1985	PNRS
State NY NY NY NY NY NY NY NY NY NY NY NY NY	e Cerclis eral Region 2, con NYD010968014 NYD981184229 NYD000511576 NYD980508048 NYD980780746 NYD980780746 NYD980780746 NYD980768717 NY4571924451 NYD980768717 NY4571924451 NYD980785661 NYD980780779 NYD002920312 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD980763841 NYD9807535124 NYD010959757 NYD010959757 NYD010959757	<i>t.</i> Carrol and Dubies Circuitron Corp. Site Clothier Disposal Croton Point Sanitary Landfill Endicott Village Wellfield Genzale Plating Site GM Foundry Goldisc Site Griffiss AFB Haviland Hertel Landfill Hooker/Ruco Hudson River PCBs (GE) Jones Sanitation Katonah Municipal Well Liberty Industrial Finishing Ludlow Sanitary Landfill MALTA Rocket Fuel Site Marathon Battery Mattiace Petrochemical	1989 1989 1989 1989 1987 1985 1985 1984 1989	PNRS 1989 1990

Nepera Site Niagara 102nd Street NY NYD980506810 NY NYD000514257 Niagara County Refuse Niagara Mohawk Power Corp. NY NYD980664361

NY

NYD002014595

NY NY NY NY	NYD980780829 NYD980762520 NYD991292004 NYD980641047	Ninety-Third Street School North Sea Municipal Landfill Pasley Solvents Pennsylvania Ave. Landfill	1985	1989
NY	NYD000511659	Pollution Abatement Services		
NY	NYD980654206	Port Washington Landfill	1984	1989
NY	NYD980768774	Preferred Plating Corp.		
NY	NYD980507735	Richardson Landfill	1007	
NY	NYD981486954	Rowe industries	1987	
NY	NYD980507677	Sidney Landfill	1989	
NY	NYD980535215	Sinclair Refinery Site		
IN Y	NYD980421176	Solvent Savers		
IN Y	NYD980780878	Suffern Wellfield Site		
IN Y	NYD0000511360	Syosset Landfill		
IN Y NIV	IN Y DUU2039317	Ironic Plating		
IN Y NIV	IN I D980309376	Volney Wollivill Wollfield		
IN I NIV	IN I D980333490	Walikili Wellield Wenwiel Londfill Site		
IN I NV	IN I D960500079 NVD000511722	Warwick Lanuini Site		
IN I DD	DDD000/16122	TOTK OII Clear Ambient Service	1084	
ГЛ DD	PRD090410152	Frontera Creak	1904	
ГЛ DD	PDD000909757	CE Wiring	1904	
ГЛ DD	PRD090202737 DD4170097383	Mayal Socurity Croup Activity Sabana Soc	1080	
	PRD980301151	Unlohn	1303	
PR	PRD980763775	Vera Alta		
1 10	11000000000000	vega Alta		
Fede	eral Region 3			
LCut				
DF	DFD980494496	Army Creek I andfill	1984	
DE DE	DED980494496 DED980714141	Army Creek Landfill Chem-Soly, Inc.	1984	
DE DE	DED980494496 DED980714141	Army Creek Landfill Chem-Solv, Inc.	1984 Report	
DE DE State	DED980494496 DED980714141 Cerclis	Army Creek Landfill Chem-Solv, Inc. Site Name	1984 Report Date	PNRS
DE DE State	DED980494496 DED980714141 e Cerclis	Army Creek Landfill Chem-Solv, Inc. Site Name	1984 Report Date	PNRS
DE DE State	DED980494496 DED980714141 e Cerclis eral Region 3, cont	Army Creek Landfill Chem-Solv, Inc. Site Name	1984 Report Date	PNRS
DE DE State Fede DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860	Army Creek Landfill Chem-Solv, Inc. Site Name t. Cokers Sanitation Services Landfills	1984 Report Date	PNRS 1990
DE DE State Fede DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC	1984 Report Date 1986 1984	PNRS 1990
DE DE State Fede DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill	1984 Report Date 1986 1984 1984	PNRS 1990
DE DE State Fede DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010	Army Creek Landfill Chem-Solv, Inc. Site Name t. Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base	1984 Report Date 1986 1984 1984 1984 1987	PNRS 1990 1989
DE DE State Fede DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company	1984 Report Date 1986 1984 1984 1987 1987	PNRS 1990 1989
DE DE State Fede DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980555122	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill	1984 Report Date 1986 1984 1984 1987 1987 1987	PNRS 1990 1989 1990
DE DE State DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980555122 DED980830954	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company	1984 Report Date 1986 1984 1984 1987 1987 1987 1987 1986	PNRS 1990 1989 1990 1990
DE DE State DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980555122 DED980830954 DED980713093	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum	1984 Report Date 1986 1984 1984 1987 1987 1987 1986	PNRS 1990 1989 1990 1990
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980555122 DED980830954 DED980713093 DED980705727	Army Creek Landfill Chem-Solv, Inc. Site Name Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill	1984 Report Date 1986 1984 1984 1987 1987 1987 1987 1986 1989	PNRS 1990 1989 1990 1990
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980830954 DED980713093 DED980705727 DED980552244	Army Creek Landfill Chem-Solv, Inc. Site Name Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site	1984 Report Date 1986 1984 1984 1987 1987 1987 1987 1987 1986 1989 1990	PNRS 1990 1989 1990 1990
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980830954 DED980713093 DED980705727 DED980552244 DED043958388	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site National Cash Register Corp.	1984 Report Date 1986 1984 1987 1987 1987 1987 1987 1987 1986 1989 1990 1986	PNRS 1990 1989 1990 1990
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980555122 DED980830954 DED980713093 DED980705727 DED980552244 DED043958388 DED058980442	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site National Cash Register Corp. New Castle Spill Site	1984 Report Date 1986 1984 1987 1987 1987 1987 1987 1986 1989 1990 1986 1984	PNRS 1990 1989 1990 1989
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980555122 DED980830954 DED980713093 DED980713093 DED980752244 DED980552244 DED043958388 DED058980442 DED980705255	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site National Cash Register Corp. New Castle Spill Site New Castle Steel	1984 Report Date 1986 1984 1987 1987 1987 1987 1987 1986 1989 1990 1986 1984 1984	PNRS 1990 1989 1990 1990
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980755122 DED980755122 DED980705727 DED980705727 DED980552244 DED043958388 DED058980442 DED058980442 DED980705255 DED980704894	Army Creek Landfill Chem-Solv, Inc. Site Name Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site National Cash Register Corp. New Castle Spill Site New Castle Steel Old Brine Sludge	1984 Report Date 1986 1984 1987 1987 1987 1987 1987 1987 1986 1989 1990 1986 1984 1984 1984	PNRS 1990 1989 1990 1989 1989
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980693550 DED98070522 DED980705727 DED9807052244 DED043958388 DED058980442 DED980705255 DED980704894 DED980704894 DED980494603	Army Creek Landfill Chem-Solv, Inc. Site Name Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site National Cash Register Corp. New Castle Spill Site New Castle Steel Old Brine Sludge Pigeon Point Landfill	1984 Report Date 1986 1984 1987 1987 1987 1987 1986 1989 1990 1986 1984 1984 1984 1984 1987	PNRS 1990 1989 1990 1989
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980693550 DED980705727 DED980705727 DED9807052244 DED043958388 DED058980442 DED980705255 DED980704894 DED980704894 DED980494603 DED981035520	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site National Cash Register Corp. New Castle Spill Site New Castle Steel Old Brine Sludge Pigeon Point Landfill Sealand	1984 Report Date 1986 1984 1987 1987 1987 1987 1986 1989 1990 1986 1984 1984 1984 1984 1987 1987 1987	PNRS 1990 1989 1990 1989
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980693550 DED980705727 DED980705727 DED980705727 DED9807052244 DED043958388 DED058980442 DED980705255 DED980704894 DED980704894 DED980704894 DED981035520 DED981035520 DED981035520	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site National Cash Register Corp. New Castle Spill Site New Castle Steel Old Brine Sludge Pigeon Point Landfill Sealand Standard Chlorine of Delaware, Inc.	1984 Report Date 1986 1984 1987 1987 1987 1987 1987 1986 1989 1980 1984 1984 1984 1984 1987 1989 1986	PNRS 1990 1989 1989 1989
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3 , cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980555122 DED980830954 DED980713093 DED980705727 DED980552244 DED980705727 DED980552244 DED043958388 DED058980442 DED980705255 DED980704894 DED980704894 DED980494603 DED981035520 DED981035520	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site National Cash Register Corp. New Castle Spill Site New Castle Steel Old Brine Sludge Pigeon Point Landfill Sealand Standard Chlorine of Delaware, Inc. Sussex Co. Landfill	1984 Report Date 1986 1984 1987 1987 1987 1987 1987 1986 1989 1990 1986 1984 1984 1984 1987 1987 1987 1986 1989 1986 1989	PNRS 1990 1989 1989 1989
DE DE State DE DE DE DE DE DE DE DE DE DE DE DE DE	DED980494496 DED980714141 e Cerclis eral Region 3, cont DED980704860 DED980551667 DED000605972 DE8570024010 DED980693550 DED980693550 DED980555122 DED980830954 DED980713093 DED980705727 DED980752244 DED980752244 DED043958388 DED058980442 DED980705255 DED980704894 DED980704894 DED981035520 DED981035520 DED980494637 DED980494637 DED000606079	Army Creek Landfill Chem-Solv, Inc. Site Name Cokers Sanitation Services Landfills Delaware City PVC Delaware Sand & Gravel Landfill Dover Air Force Base Dover Gas and Light Company Du Pont Newport Landfill Halby Chemical Company Harvey & Knott Drum Kent Co. Landfill Koppers Company Facilities site National Cash Register Corp. New Castle Spill Site New Castle Spill Site New Castle Steel Old Brine Sludge Pigeon Point Landfill Sealand Standard Chlorine of Delaware, Inc. Sussex Co. Landfill Tybouts Corner Landfill	1984 Report Date 1986 1984 1987 1987 1987 1987 1987 1987 1986 1989 1986 1984 1984 1984 1987 1989 1986 1989 1986 1989 1986	PNRS 1990 1989 1990 1989 1989

DE	DED980704951	Wildcat Landfill	1984	
MD	MD2210020036	Aberdeen Proving Ground	1986	
MD	MDD980504187	Aberdeen, Michaelsville Landfill	1986	
MD	MDD980705057	Anne Arundel County Landfill	1989	
MD	MDD980504195	Bush Valley Landfill	1989	
MD	MDD030321178	Joy Reclamation Co.	1984	
MD	MDD980705164	Maryland Sand/Gravel/Stone	1984	1990
MD	MDD064882889	Mid-Atlantic Wood		
MD	MDD980704852	Southern Maryland Wood	1987	
MD	MDD980504344	Woodlawn Co Landfill	1987	
PA	PAD004351003	A.I.W. Frank/Mid-County Mustang		
PA	PAD000436436	Ambler Asbestos Piles		
PA	PAD009224981	American Electronics		
PA	PAD980693048	AMP, Inc.		
PA	PAD061105128	Bally Township		
PA	PAD980705107	Bell Landfill		
PA	PAD003047974	Bendix Flight Systems Site		
PA	PAD980538649	Berkley Products Dump		
PA	PAD000651810	Berks Landfill		
PA	PAD047726161	Boarhead Farms	1989	
PA	PAD980508402	Bridesburg Dump	1984	
PA	PAD980831812	Brown's Battery		1990
PA	PAD980508451	Butler Mine Tunnel	1987	
PA	PAD981034705	Butz Landfill		
PA	PAD093730174	Commodore Semiconductor Group		
PA	PAD981035009	Crovdon TCE	1986	
PA	PAD981038052	Delta Quarries/Stotler		
PA	PAD002384865	Douglassville Disposal Site	1987	
PA	PAD003058047	Drake		
PA	PAD980830533	Eastern Diversified		
PA	PAD980539712	Elizabethtown Landfill	1989	
PA	PAD980552913	Enterprise Avenue	1984	
PA	PAD002338010	Havertown PCP		
PA	PAD980829329	Hebelka Auto Salvage		
		0	Report	
State	e Cerclis	Site Name	Date	PNRS
Stut	e cerens	Site Pullic	Dute	111105
Fed	eral Region 3,	cont.		
PA	PAD002390748	Hellertown Manufacturing Company	1987	
PA	PAD009862939	Henderson Road	1989	
PA	PAD980829493	Jacks Creek/Sitkin Smelting & Refining	1989	
PA	PAD981036049	Keyser Ave. Borehole	1989	
PA	PAD980508667	Lackawanna Refuse		
PA	PA2210090054	Letterkenny-Property Disposal Area		
PA	PA6213820503	Letterkenny-Southeast Industrial Area		
PA	PAD046557096	Metal Bank of America	1984	1990
PA	PAD980538763	Middletown Air Field		
PA	PA6170024545	Naval Air Develop.		
PA	PAD096834494	North Penn		
PA	PAD980229298	Occidental Chemical/Firestone	1989	
PA	PAD002395887	Palmerton Zinc Pile		
PA	PAD980692594	Paoli Railyard	1987	1990
D۸	PAD063766828	Picco Resins		

PA	PAD981939200	Publicker Industries	1990	
PA	PAD039017694	Raymark		
PA	PAD002353969	Recticon/Allied Steel	1989	
PA	PAD980829261	Reeser's		
PA	PAD051395499	Revere Chemical Company	1986	
PA	PAD091637975	Rohm and Haas Landfill	1986	
PA	PAD980692487	Saegertown Industrial Area	1000	
ΡΔ	PAD000002407	Spra-Fin Inc		
ΡΔ	PAD002400002	Strashurg Landfill		
ΡΛ	1 AD00041337	Textron-I vcoming		
ΡΛ	DA61/3515//7	Tinicum National Environmental Center	1086	
	DA D072612662	Topolli Corp	1500	
	PAD073013003	Tursons Dump	1095	
	PAD900092024	Tysons Dump Wode (ADM) Site	1903	
	PAD980339407	Wade (ADM) Sile	1984	
	PAD980829527	Weish/Barkman Landfill		
PA	PAD980537773	William Dick Lagoons	1000	
VA	VAD980551683	Abex Corp.	1989	
VA	VAD042916361	Arrowhead Assoc/Scovill Corp	1989	1000
VA	VAD990710410	Atlantic Wood Industries	1987	1990
VA	VAD049957913	C&R Battery Co., Inc.	1987	
VA	VAD980712913	Chisman Creek	1984	
VA	VA3971520751	Defence General Supply Center		
VA	VAD003125374	Greenwood Chemical Site		
VA	VAD980539878	H & H Inc.		
VA	VAD007972482	L.A. Clarke		
VA	VAD071040752	Rentokil Inc.		
VA	VAD980831796	Rhinehart tire fire		
VA	VAD003127578	Saltville		
VA	VAD003117389	Saunders Supply Co.	1987	
VA	VAD980917983	Suffolk City Landfill		
VA	VAD980705404	U.S. Titanium		
WV	WVD004336749	Follansbee		
AL	ALD001221902	Ciba-Geigy Corp	1990	
AL	ALD008188708	Olin Corp. McIntosh Plant	1990	
AL	ALD980844385	Redwing Carriers Inc./Sara.	1989	
AL	ALD095688875	Stauffer Chemical Co. Cold Creek Plt.		1990
AL	ALD008161176	Stauffer Chemical Co. Lemovne Plant		1990
FL	FLD980728877	62nd Street Dump	1984	1989
FL	FLD980221857	Agrico Chemical Site	1989	
		8	Report	
Stat	a Carolis	Sita Nama	Date	PNIRS
Stat	e cerciis	Site Ivanie	Date	11105
Fede	eral Region 4, co	nt.		
FL.	FLD008161994	American Creosote Works	1984	1989
FL.	FLD088783865	Bay Drum/Tampa		
FL.	FLD980494660	Beulah Landfill		
FI	FI 5170022474	Cecil Field Naval Air Station	1990	
FI	FI D080174409	Chem-Form Inc	1990	
FI	FI D080174402	Chemform Inc	1000	
FI	FI D050429951	Florida Steel Cornoration		
EI L.F	T LD000402201	Cardiniar Inc		
EI L.F	T LL000021420	Harris Cornoration / Conoral Dovelopment I	1096	1000
L L L L	T LD000002334	Hinns Road Landfill	1300	1330
гг	L L D 300 / 0300%	Tupps toad Landin		

FL	FLD004119681	Hollingsworth Solderless Terminal Co.		
FL	FL7570024037	Homestead AFB		
FL	FL6170024412	Jacksonville Naval Air Station	1990	
FL	FLD980727820	Kassouf-Kimerling	1984	1989
FL	FLD084535442	Munisport Landfill	1984	
FL	FL9170024567	Naval Air Station Pensacola	1990	
FL	FLD004091807	Peak Oil Co.		
FL.	FLD980556351	Pickettville Landfill	1984	1990
FL.	FLD004054284	Piper Aircraft Corp Vero Beach	1001	1000
FL	FLD000824888	Reeves SE Corp		
FI	FI D980602882	Sann Battery Salvage		1989
FI	FI D062794003	Schuvlkill Metal Corp		1000
FI	FI D00/126520	Standard Auto Bumper Corp	1080	
FI	FLD004120520	Stauffor Chomical Co	1000	
L L	FLD010550015	Sudney Mine Sludge Donde	1090	1090
L L	FLD000048033	Woodbury Chamical Co	1000	1305
ГL ГI	FLD004140340	Volumy Water Dead	1969	
		I enow water Road		
GA	GAD980330900	Hercules 009 Landfill		
GA	GAD099303182	LUP Chemicais - Georgia, Inc.		
GA	GA15/0024330	Robins Air Force Base		
GA	GAD003269578	Woolfolk Chemical Works, Inc.	1000	
MS	MSD098596489	Gautier Oil Co. Inc.	1989	
NC	NCD024644494	ABC One Hour Cleaners	1989	
NC	NCD981475932	FCX Washington Dist. Inc.	1989	
NC	NC1170027261	MCAS, Cherry Point		
NC	NCD981021157	New Hanover Cty Airport Burn Pit	1989	
NC	NCD981023260	Potter's Septic Tank Ser. Pits	1989	
NC	NC6170022580	USMC Camp Lejuene, Site 21	1989	
SC	SCD980844260	Beaufort County Landfill		
SC	SCD980711279	Geiger (C&M Oil)	1984	
SC	SCD058753971	Helena Chemical Co.	1989	
SC	SCD055915086	International Paper/Sampit River		
SC	SCD980310239	Koppers Ashley River		
SC	SC1890008989	Savannah River Plant	1990	
SC	SCD037405362	WamChem	1984	
_	_			
Fed	eral Region 6			
LA	LAD980745632	Bayou Bonfouca		
LA	LAD980745541	Bayou Sorrell	1984	
LA	LAD980501423	Calcasieu Lake		
LA	LAD057482713	Petro-Processors of Louisiana, Inc.		
ΤХ	TXD980864649	Bailey Waste Disposal	1985	1989
ΤX	TXD980625453	Brio Refining , Inc.	1989	1989
ΤX	TXD990707010	Crystal Chemical Company	1989	1989
		5 1 5	Report	
Stat	e Cerclis	Site Name	Date	PNRS
Stat	c critis	Site Maine	Date	IIIII
Fed	eral Region 6. c	cont.		
TX	TXD089793046	Dixie Oil Processors	1989	1989
TX	TXD980514814	French Limited	1989	1989
TX	TXD980748453	Geneva Industries/Fuhrmann Energy Corp	1000	1000
TX	TXD980745589	Harris (Farley Street)		
TY	TXD990745302	Highlands Acid Pit	1080	
111	171000014000		1000	

ТΧ	TXD008123168	Lavaca Bay		
ТΧ	TXD980629851	Motco Corp.	1984	
ΤХ	TXD980873343	North Cavalcade		
ΤХ	TXD980873350	Petro-Chemical Systems, Inc.		
ΤХ	TXD980513956	Sikes Disposal Pits	1989	
ΤX	TXD980873327	Sol Lynn/Industrial Transf		
ΤХ	TXD980810386	South Cavalcade		
ΤX	TXD062113329	Tex-Tin Corporation	1989	
ΤX	TXD055143705	Triangle Chemical Company		
		8		
Fod	oral Rogion 9			
		Tanutimu Form Tutuilo Iol	109/	
AS CA	C \ 9170099996	Alamada Naval Air Station	1904	
	CA2170023230	Aldifieua Naval All Station	1969	
	CAD032384021	Brown & Bryant, Inc. (Arvin Plant)	1000	
	CA2170023533	Camp Pendleton Marine Corps Base	1990	
CA	CAD009114919	Chevron USA Richmond Refinery	1004	
CA	CAD063015887	Coast Wood Preserving	1984	
CA	CAD980498455	Crazy Horse Sanitary Landfill		
CA	CAD009212838	CTS Printex, Inc.	1989	
CA	CAD000626176	Del Norte County Pesticide Storage Area	1984	
CA	CA6170023208	El Toro Marine Corps Air Station	1989	
CA	CAD981159585	Farallon Islands Radioactive Waste Dumps		1990
CA	CAD980636914	Fresno Municipal Sanitary Landfill		
CA	CA7210020676	Fort Ord	1990	
CA	CAD980498562	GBF and Pittsburg Dumps	1989	
CA	CA3570024288	Hamilton Air Force Base		
CA	CAD980884209	Hewlett-Packard (620-40 Page Mill Rd)	1989	
CA	CAD058783952	Hexcel Corp Livermore		
CA	CA1170090087	Hunters Point Annex	1989	1989
CA	CAD041472341	Intersil Inc./Siemens Components	1989	
CA	CAD980498612	Iron Mountain Mine	1989	1989
CA	CAD000625731	J.H. Baxter		
CA	CAD009103318	Jasco Chemical Corp.	1989	
CA	CAD008274938	Kaiser Steel Corp. (Fontana Plant)		
CA	CAD981429715	Kearney - KPF		
CA	CAD981436363	Levin Richmond Terminal Corp.		
CA	CAT000646208	Liquid Gold	1984	
CA	CAD000074120	MGM Brakes	1984	
CA	CAD982463812	Middlefield-Ellis-Whisman		
CA	CAD981997752	Modesto Ground Water Contamination		
CA	CA2170090078	Moffett Field Naval Air Station	1986	
CA	CAD008242711	Montrose Chemical Corp.	1985	
CA	CA7170024528	Naval Weapons Station, Concord	1989	1990
CA	CAD981434517	Newmark Ground Water Contamination	1000	1000
CA	CAD980636781	Pacific Coast Pipelines	1989	
CA	CA9170027271	Pacific Missile Test Center	1000	
CA	CA1170090236	Point Loma Naval Complex		
CA	CAD982462343	Redwood Shore Landfill		
CA	CAT000611350	Rhone-Poulenc Inc - Zoecon	1985	
~ .	~~ * * * * * * * * * * * * * * * * * *		1000	

			Report	
State	e Cerclis	Site Name	Date	PNRS
Fod	aral Region 9 con	nt		
	CA 7910090750	Diverbank Army Ammunition Dent	1000	
	CA7210020739	Shell Oil Co. Martinaz Manufaat Complex	1969	
	CAD009104021	Simpson Papar		
	CAD900037402	Sola Optical USA Inc	1080	
	CAD901171323	Solvent Service Inc	1303	
	CAD033434310	South Bay Ashestos Area - Alviso	1985	
	CAD000034003	Spectra-Physics Inc	1505	
CA	CAD980893275	Sulphur Bank Mercury Mine		
CA	CAD990832735	Synertek Inc - Building 1		
CA	CA5570024575	Travis Air Force Base	1990	
CA	CAD009159088	TRW Microwave Inc Building 825	1000	
GU	GU7170027323	Naval Station Guam		
HI	HID980497184	Kailua Landfill		
НІ	HID980497226	Kakaako Landfill/Kewalo Incinerator		
HI	HI6170022762	Kanehoe MCAS, Skeet Range		
HI	HID980497176	Kapaa Landfill		
HI		Kapalama Canal/Honolulu Harbor		
HI	HID980585178	Pearl City LDFL	1984	
ΗI	HID982400475	Waiakea Pond/Hawaiian Cane Products		1990
Fede	eral Region 10			
AK	AK8570028649	Elmendorf AFB	1990	1990
AK	AKD980978787	Standard Steel	1990	1990
OR	ORD009051442	Allied Plating	1987	1988
OR	ORD095003687	Gould Inc.	1984	1988
OR	ORD052221025	Martin Marietta Corp	1987	1988
OR	ORD009025347	Stauffer Chemical Co	1984	
OR	ORD050955848	Teledyne Wah Chang Albany	1985	1988
OR	ORD009049412	Union Pacific, The Dalles	1990	1990
WA	WAD009045279	ALCOA- Vancouver	1989	1989
WA	WAD057311094	American Crossarm & Conduit Co.	1989	1988
WA	WA5170090059	Ault Field - NAS Whidbey Is U.S. Navy	1986	1989
WA	WA7170027265	Bangor Ordnance Disposal(Site A)		1990
WA	WA1891406349	BPA Ross	1990	1990
WA	WAD980836662	Centralia Landfill	1989	1989
WA	WAD980726301	Commencement Bay - South Tacoma Channel	1984	
WA	WAD980726368	Commencement Bay Nearshore/Tideflats	1984	1988
WA	WA5210890096	Hamilton Island		
WA	WA7890008967	Hanford	1989	1988
WA	WAD980722839	Harbor Island	1984	1989
WA	WA4170090001	Indian IsNUWES-USNavy	1989	
WA	WAD980639462	Kent Highlands Landfill	1989	1988
WA	WA1170023419	Keyport- NUWES-USNavy		
WA	WA2170023426	Manchester Naval Supply Center		
WA	WAD027315621	NW Transformer - Harkness	1989	1988
WA	WAD980639215	Quendall Terminals	1985	1000
WA	WA6170090058	Seaplane Base, NAS Whidbey Is., USNAVY	1986	1989
WA	WA5170027291	Subase Bangor	1990	
WA	WAD009487513	Western Processing	1984	

1986

Table 2.Acronyms and abbreviations used in Coastal Hazardous Waste Site
Reviews

Acronyms

CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CERCLIS	Comprehensive Environmental Response, Compensation, and Liability
	Information System
CRC	Coastal Resource Coordinator
DOD	U.S. Department of Defense
DOI	U.S. Department of the Interior
EPA	U.S. Environmental Protection Agency
HRS	Hazard Ranking System
IRM	Immediate Removal Measure
NATO	North Atlantic Treaty Organization
NOAA	National Oceanic and Atmospheric Administration
NPDES	National Pollutant Discharge Elimination System
NPL	National Priorities List
OU	Operable Unit
PRP	Potential Responsible Party
RCRA	Resource Conservation and Recovery Act
RD/RA	Remedial Design/Remedial Action
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
SARA	Superfund Amendments and Reauthorization Act
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
	-

Abbreviations

µg∕g	micrograms per gram
µg∕l	micrograms per liter
mg/kg	milligrams per kilogram
mg/l	milligrams per liter
mR/hr	milliroentgens per hour
PCB	polychlorinated biphenyl
pCi/l	pico Curies per liter (1 pico Curie=10 ⁻¹² Curie)
PCP	pentachlorophenol
PNA, PAH	polynuclear aromatic hydrocarbon
ppb	parts per billion
ppm	parts per million
ppt	parts per thousand
PVC	polyvinyl chloride
TPH	total petroleum hydrocarbons
VOC	volatile organic compound

	Naval Construction Battalion Center
Site Exposure Potential, cont.	Allen Harbor landfill, on the western shore of Allen Harbor. Much of the NCBC-Davisville site is contiguous with Narra- gansett Bay. The site contains several low-lying marshy areas and is transected by several streams that discharge to the bay, including Mill Creek and Hall Creek. Local groundwater is unconfined and the water table is often within 0 to 3 m of the ground surface. The flow of groundwater reflects surface topography and is from the higher lands in the west towards Narragansett Bay. Locally, groundwater may flow downgradient to the nearest surface water drainage, but all surface water on the site ultimately discharges to Narragansett Bay. Groundwater is a significant source of recharge for local streams, contributing approximately 50 percent of the average annual stream flow (TRC 1988).
	Both surface water and groundwater transport are potential pathways of contamination to NOAA resources.
Site-Related Contamination	An initial assessment of the site identified 14 potentially con- taminated areas. Following agency review, ten of those areas were judged to represent a potential threat to human health or the environment and a verification study was conducted (TRC 1988). With the exception of the Allen Harbor landfill, most sites were found to pose a minimal risk to aquatic resources. An additional investigation of the levels of contamination in various media was performed as part of a detailed risk assess- ment for this area (EPA 1988a; EPA 1988b). Contaminants detected in soil, sediment, surface water, and biota included total petroleum hydrocarbons (TPH), PCBs, DDT, and inor- ganic substances. Maximum concentrations of contaminants in various matrices sampled are presented in Table 1 (EPA 1988a; EPA 1988b; TRC 1988) with available screening levels. Concentrations of inorganic substances were high in surface water and sediment collected from Allen Harbor. Copper, lead, mercury, and zinc exceeded their screening criteria for
	 ad, mercury, and zinc exceeded their screening criteria for sediments; lead, mercury, silver, and zinc exceeded their AWQC. All inorganic substances shown in Table 1 were above background levels in soil collected from the landfill. DDT and PCBs were elevated in sediment and soil from this same area. Most of these substances were present in tissues of quahog

Naval Construction Battalion Center

Site-Related Contamination,

cont.

collected from Allen Harbor.

Additional measures of sediment toxicity were made as part of the 1988 risk assessment (EPA 1988a). Amphipod bioassays using sediment from the Allen Harbor landfill resulted in mortalities ranging from 22.7 to 97.3 percent. Histopathological examinations of clam tissues showed an incidence of neoplasms in softshell clams that ranged from 8 to 23 percent. Results from an index of physiological response for mussels placed in Allen Harbor indicated that the mussels were experi-

Table 1.								
Maximum		W	ater	-	Soil	Sedin	nent	Tissue
concentrations of		Surface Water	AWQC ¹ Marine	Soil	Average ² U.S. Soil	Sediment	ER-L ³	Tissue
contaminants of		μg/l	μg/l	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
concern at the site	INORGANIC S	SUBSTANCE	S					
concern at the site.	arsenic	ND	36	21	5	4.1	33	
	cadmium	8.4	9.3	26	0.06	2.2	5	1.9
	chromium	9.1	50	100	100	62	80	4.5
	copper		2.9	1300	30	97	70	56
	moreury	12.7	0.025	34000	10	07	35	2.0
	nickel	.23 ND	0.025	250	40	30	30	13
	silver	100	80.0	7.5	0.05	14	1	12
	zino	180	~2.3 86	3000	50	210	120	24
	ZINC	160	00	3000	50	210	120	34
	ORGANIC CC	MPOUNDS						
	DDT	ND	0.001	690	NA	0.007	0.001	ND
	DDE	ND	a ₁₄	39	NA	0.036	0.002	0.006
	DDD	ND	NA	55	NA	0.006	0.002	0.004
	PCBs	NT	0.03	1.3	NA	0.498	0.050	0.204
	TPH ⁴	800	NA	7800	NA	4020	NA	NT
	1: Ambier	nt water qual	ity criteria fo	r the protect	ion of aquatic	life, marine chr	onic criteria	a presented
	(EPA 1	986).	·, · · · ·			-,		
	2: Lindsay	y (1979).						
	3: Effectiv	ve range-low;	the concen	tration repres	senting the lov	vest 10 percen	tile value fo	or the
	data in	which effects	s were obse	rved or predi	cted in studies	compiled by L	ong and M	organ
	(1990).							
	4: Total P	etroleum Hyd	drocarbons					
	a AWQC	marine acut	e criteria, no	chronic crite	eria available (EPA 1986).		
	NA: Screen	ning level not	available					
	ND: Not de	tected at me	thod detection	on limit				
	NI: Not an	alyzed						
	ancing sou	no type	ofstro	<u>ss</u> noss	sibly role	atad to n	oor wa	tor
	enting sol	ne type	or site	ss, poss		ited to p		
NOAA Trust	quality. A	An addi	tional s	ource o	of contan	nination	to Alle	en Har-
	hor is hor	t traffic	from to	wo mar	inac in t	ha harba	r (M111	nnc
Habitats and	DOI 15 DUA	t trainc	nomt	wo mai	mas m t		n (mu	.1115
Species	personal c	commui	nicatior	ı 1990).				
opeoles	I			,				
		-				-		. -
	Habitats c	of conce	rn to N	OAA ii	n the vic	initv of I	NCBC	include
	Allon Har	hor try	o on cit	- or or or	a that m	n into A	llon U	arbor
	Апен наг	DOI', IW	0 011-51	le creek	s mai ru	in into A	пепп	ai DOF,
	and the ne	earshor	e areas	of Narr	aganset	t Bay noi	rth and	l south
	of the her	hon N	nnoder	aatt Dar	in the	vioinity	fthee	ito
	of the har	DOL: 109	urragan	sell Day	y m me v	vicinity (л ше s	ne

Species, cont.	1989; Munns pers	onal communication	1990). Al	len Hart	or is a
ble 2.		Species		Habitat	
ecies and			- ·		Adult
bitat use in		Scientific Name	Spawning	Nursery	Forage
rragansett	ANADROMOUS/CAT	ADROMOUS FISH			
ncluding	American shad	Alosa sapidissma		♦	•
larbor.	alewile striped bass	Morone savatilis		•	•
	stiped bass	Morone saxallis		•	•
	MARINE/ESTUARINE				
	<u>Fish</u>				
	Atlantic menhaden	Brevoortia tyrannus		•	•
	Atlantic herring	Clupea harengus			•
	Atlantic tomcod	Microgadus tomcod		•	•
	butterfish	Peprilus triacanthus			•
	bluefish	, Pomatomus saltatrix		•	•
	winter flounder	Pseudopleuronectes		•	•
		americanus		-	
	windowpane	Scophthalmus aquosus			•
	scup	Stenotomus chrysops			•
	Invortobratoa				
	hlue arab	Callinaataa aanidua			
	American oyster		•	•	•
		Geukensia dennissa Homorius omoriospus	•	•	•
	American lobster	nomarus americanus			•
	quanog	Mercenaria mercenaria	♦	•	♦
	softshell clam	Mya arenaria	•	♦	•

cause of contaminants detected in quahog tissue. This closure

	Naval Construction Battalion Center
NOAA Trust Habitats and Species, cont. References	will be reevaluated after review of the results of ongoing investigations by the Navy. Quahog and softshell clams are harvested in areas outside of and to the north of Allen Harbor. To the south, the Quonset Point area and Wickford Harbor are closed for shellfish harvesting because of high levels of fecal coliform bacteria (Johnston et al. 1989; Migliori personal com- munication 1990). Information on fish resources in Allen Harbor and the on-site creeks is limited, but several marine species use the area sea- sonally, including winter flounder, bluefish, striped bass, and alewife. It is possible that alewife may spawn in the creeks (Munns personal communication 1990).
	Johnston, R.K., P.E. Woods, G.G. Pesch, and W.R. Munns, Jr. 1989. Assessing the impact of hazardous waste disposal sites on the environment: Case studies of ecological risk assess- ments at selected Navy hazardous waste disposal sites. <u>Pro- ceedings of the 14th Annual Army Environmental R&D Sym- posium</u> , Williamsburg, Virginia, November 14-16, 1989.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R., and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA-52. Seattle: Coastal and Estuarine Assessment Branch, NOAA. 175 pp.+ Appendices.
	Migliori, J., Senior Environmental Scientist, Department of Water Resources, Rhode Island Department of Environmental Management, Providence, personal communication, July 12, 1990.
	Munns, W., U.S. Environmental Protection Agency, Environ- mental Research Laboratory, Narragansett, Rhode Island, personal communication, July 12, 1990.
	Oviatt, C.A. and S.W. Nixon. 1973. The demersal fish of

	Naval Construction Battalion Center
References, cont.	Narragansett Bay: an analysis of community structure, distribu- tion and abundance. <u>Estuar. and Coastal Mar. Sci 1</u> : 361-378.
	 TRC Environmental Consultants. 1988. U.S. Department of Navy Installation Restoration Program. RI/FS Work Plan. Na- val Construction Battalion Center. Davisville, Rhode Island. Philadelphia: Northern Division Naval Facilities, Engineering Command. U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003.
	U.S. Environmental Protection Agency. 1988a. Progress report. Risk assessment pilot study, Naval Construction Battalion Cen- ter, Davisville, Rhode Island. San Diego: Marine Environmental Support Office of the Naval Ocean Systems Center.
	U.S. Environmental Protection Agency. 1988b. Final interim report. Risk assessment pilot study, Phase I, Naval Construc- tion Battalion Center, Davisville, Rhode Island. San Diego: Ma- rine Environmental Support Office of the Naval Ocean Systems Center.

	Naval Education Training Center
Site Exposure Potential, cont.	generated at the site were disposed in two landfills: McAllister Point landfill and Melville North landfill. McAllister Point landfill has received all wastes generated at the facility since 1955. In addition, fuels and oils have been stored in five areas at the site (TRC 1989).
	The NETC lies within the Narragansett drainage basin and includes 14.5 km of beach. Surface water on the site includes Normans, Lawton, and Gomes brooks, and several ponds and reservoirs. Most of this surface water discharges to Narragan- sett Bay. Surface runoff during storms tends to infiltrate the soil or run directly to the bay before reaching any other surface water body. Soil on the site is primarily unconsolidated glacial tills and is moderately permeable. Groundwater tends to be shallow (within 3 m of the surface) and generally flows from east to west.
	Because of the site's characteristics and local hydrogeological features, there is a high potential for surface water transport of contaminants. Groundwater transport may also contribute to the migration of contaminants to habitats and species of con- cern to NOAA, but data to evaluate the significance of this pathway are limited.
Site-Related Contamination	Previous investigations (TRC 1989) at the site focused on con- taminant levels in sediment and tissue. Groundwater, leachate, and soil samples were collected as part of an investi- gation of the landfills. No surface water samples were col- lected. Most samples were analyzed for inorganic substances and a limited number of organic compounds, including PCBs and total petroleum hydrocarbons. The maximum concentra- tions of contaminants found in the various matrices are sum- marized in Table 1 (TRC 1989), along with applicable screening levels.
	Inorganic substances were present in groundwater, landfill leachate, sediment, and mussel tissue. Concentrations of chromium, copper, lead, mercury, nickel, and zinc were el- evated in groundwater near the McAllister Point landfill and in sediment along the beach adjacent to the site. It should be noted that fill materials were used to extend McAllister Point

Naval Education Training Center

Site-Related Contamination,

cont.

landfill into the bay. Concentrations of inorganic substances were below average U.S. soil levels (Lindsay 1979) in the few soil samples collected, but only capping material from the top of the landfill was sampled. Total petroleum hydrocarbons

Maximum concentrations of contaminants of concern at the NETC site.Landfill Leachate uptAWOC must uptSedment mg/kgEn-L2 mg/kgMussed mg/kgINORGANIC SUBSTANCES cadmium79.3115ND startof concern at the NETC site.ND copped cadmium802205.644003.5copped eradie87016005.644003.520copped eradie87016005.644003.520mercury nickelND inckel3008.31300301NDZincND reperindND inckel0.032.030.050.38TPHPND inckel12300ND0.032.030.050.38TPHPND inckel12300ND1001001.002Effective range-low; the concentration representing the lowest 10 percentile value for the dat in which effects were observed or predicted in studies compiled by Long and Morgan (1990).3Total Peroleum Hydroartons NA:Screening level not availableND:NDND1.001.001:Mith effective at availableND:ND1.001.002:Teroleum Hydroartons in which effective at available2:ND:ND1.003:Total Peroleum Hydroartons in which effective at available3:ND:ND1.004:ND:ND4:N	Table 1.			Water		Sedin	nent	Tissue
concentrations of contaminants of concern at the NETC site.Leachate μg/lGroundwater μg/lMarinel μg/lServer mg/kgTissue mg/kgTissue mg/kgTissue mg/kgINORGANIC SUBSTANCES of concern at the NETC site.10579.3115NDcommun322205032200803.03.0ibad composition870103115NDNDcomposition87010311520compositionND1002.02.030.052.03compositionND5008.31300100NDnockelND5008.31300NDNDPOBsND0.032.030.050.38TPHAND12300NA1100NAND11Ambient water quality criteria for the protection of aquatic organisms. Marine chronic criteria presented (EPA 1986).2:Effective range-low, the concentration representing the lowest 10 percentile value for the dat in which effects were observed or predicted in studies compiled by Long and Morgan (1990).3:Total Petroleum Hydrocarbons NA:Screening level not available ND: ND: ND: ND: ND: ND: ND: ND:NOAATrust Hcibitchs and SpeciesNarragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt an	Maximum		Landfill		AWQC			Mussel
Of contaminants of concern at the NETC site.pg/l pg/lpg/l pg/lpg/l pg/lmg/kg mg/kgmg/kg mg/kgmg/kg mg/kgiNORGANIC SUBSTANCES copper79.315NO 2200803.5contaminants of concern at the NETC site.5879.315NO 2200803.5copperND10002.9250007028copperND16005.644003520mercuryND3008.313003070ickelND3008.313003070ickelND3008.313003070ickelND3008.313003070ickelND1200NA1100NANDickelND1200NA1100NDNDickelND1200NA1100NDNDickelND1200NA1100NDNDickelND1100NA1100NDNDickelNDND1200NA1100NDickelNDND1200NA1100NDickelNDND1200NA1100NDickelNDND1200NA1100NDickelNDND1200NDNDNDickelNDND<	concentrations		Leachate	Groundwater	Marine ¹	Sediment	ER-L ²	Tissue
Understand contaminants of concern at the NETC site.IND RGANIC SUBSTANCES cadmium115ND stand copperND stand stand stand stand standND stand stand stand standND stand stand stand standND stand stand stand stand standND stand stand stand stand standND stand stand stand stand stand stand standND stand stand stand stand stand standND stand stand stand stand stand standND stand stand stand stand stand stand stand standND stand stand stand stand stand stand standND stand stand stand stand stand stand stand stand stand standND stand stand stand stand stand stand stand stand stand standND stand stand stand stand stand stand stand stand stand stand stand standND stand stand stand stand stand stand stand stand standND stand stand stand stand stand stand stand stand standND stand stand stand stand stand stand stand standND stand stand stand stand stand stand stand standND stand stand stand stand stand stand standND stand stand stand stand stand standND stand stand stand stand stand standND stand stand stand stand stand stand standND stand stand stand stand stand standND stand stand stand stand stand stand sta	of		µg/l	µg/l	µg/l	mg/kg	mg/kg	mg/kg
contaminants of concern at the NETC site.cadimium58 23 copper7 ND9.3 1111 S 200011 20005 200011 2000ND 2.9 28000ND 28000ND 28 2000ND 28 2000ND 200	01	INORGANIC SU	BSTANCES	_			_	
of concern at the NETC site.Compering Comparing Comparing Relation Not the NETC site.Compering Not the Net State Not Net State Not the Net State Not N	contaminants	cadmium	58	7	9.3	11	5	ND
the NETC site.Cyanide Cyanide leadTo ND100 16001.2 5.6ND NDND NDND 1.2 0.025ND NDND 0.15ND ND NDORGANIC COMPOUNDS PCBsNDND ND0.032.03 1000.050.38 NDTPHPND12300NA1100NA NDND1:Ambient water quality criteria for the protection of aquatic organisms. Marine chronic criteria presented (EPA 1986).2:Effective range-low; the concentration representing the lowest 10 percentile value for the dat in which effects were observed or predicted in studies compiled by Long and Morgan (1990). 3: Total Petroleum Hydrocarbons NA: Screening level not available ND: No totelected at method detection limit NT: Not analyzedNOAA Trust Hobitats and SpeciesNarragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990).Fish populations in Narragansett Bay vary seasonally. Com- to the other part of Narragansett Bay vary seasonally. Com-	of concern at	conner	S∠ ND	1000	29	2200	80 70	3.5 28
NOAA Trust Hobitats and SpeciesNO120 120.025 0.0254400 ND35 0.1520 ND ND200 ND 	the NETC site.	cvanide	870	13	1	ND	NĂ	NT
NOAA Trust Habitats and SpeciesND1.20.025 1300ND0.015 1300ND 7 NDNOAA Trust Habitats and SpeciesND1.2ND0.03 1001.00NAND NDNOAA Trust Habitats and SpeciesNO detected at method detection limit NTND0.03 1001.00NAND NDNOAA Trust Habitats and SpeciesNO detected at method detection limit NTND0.03 1001.00NAND NDNOAA Trust Habitats and SpeciesNO detected at method detection limit NTNDND ND0.03 100NAND NANOAA Trust Habitats and SpeciesNO detected at method detection limit NTND NDND NDND NDND NDND NDNOAA Trust Habitats and SpeciesNa detected at method detection limit NTND ND ND detected at method detection limit NTNOAA Trust Habitats and SpeciesNarragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990).Fish populations in Narragansett Bay vary seasonally. Com-		lead	ND	1600	5.6	4400	35	20
NOAA Trust Hobitats and SpeciesND3008.3 500130030 24007 120NDND500862400120NDPCBsND1200NA1100NA0.050.38TPH\$ND1200NA1100NAND0.38TPH\$Ambient water quality criteria for the protection of aquatic organisms. Marine chronic criteria presented (EPA 1986). 2: 2: Effective range-low; the concentration representing the lowest 10 percentile value for the dat in which effects were observed or predicted in studies compiled by Long and Morgan (1990). 3: Total Petroleum Hydrocarbons NA: Screening level not available ND: Not detected at method detection limit NT: Not analyzedNOAA Trust Habitats and SpeciesNatragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990).Fish populations in Narragansett Bay vary seasonally. Com-Fish populations in Narragansett Bay vary seasonally. Com-		mercury	ND	1.2	0.025	ND	0.15	ND
ZincND500862400120NDORGANIC COMPOUNDS PCBsNDND0.032.030.050.38PFP3ND12300NA1100NAND1:Ambient water quality criteria for the protection of aquatic organisms. Marine chronic criteria presented (PAP 1986).2:Effective range-low, the concentration representing the lowest 10 percentile value for the dat in which effects were observed or predicted in studies compiled by Long and Morgan (1990).3:Total Petroleum Hydrocarbons NA:NA:Screening level not available ND:ND:Not detected at method detection limit NT:NT:Not detected at method detection limit NT:NT:Not analyzedWere present at high levels in some groundwater and sedi- ment samples collected from the site.Concentrations of PCBs were moderately high in beach sediment and mussels col- lected at the same sites.NOAA Trust Habitats and SpeciesNarragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990).Fish populations in Narragansett Bay vary seasonally. Com- definition in Narragansett Bay vary seasonally. Com-		nickel	ND	300	8.3	1300	30	7
NOAA Trust Habitats and Species Narragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and nivertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay vary seasonally. Com- tion the southern part of Narragansett Bay vary seasonally. Com- tion 1990).		zinc	ND	500	86	2400	120	ND
PCBsNDND0.031200NA1100NAND11Ambient water quality criteria for the protection of aquatic organisms. Marine chronic criteria presented (EPA 1986).2:Effective range-low; the concentration representing the lowest 10 percentile value for the dat in which effects were observed or predicted in studies compiled by Long and Morgan (1990).3:Total Petroleum Hydrocarbons NA: Screening level not available ND: Not detected at method detection limit NT: Not analyzedWere present at high levels in some groundwater and sedi- ment samples collected from the site. Concentrations of PCBs were moderately high in beach sediment and mussels col- lected at the same sites.NOAA Trust Habitats and SpeciesNarragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990).Fish populations in Narragansett Bay vary seasonally. Com- in 10 for height in harragansett Bay vary seasonally. Com-		ORGANIC COM	IPOUNDS					
TPH3ND12300NA1100NAND1:Ambient water quality criteria for the protection of aquatic organisms. Marine chronic criteria presented (EPA 1986).2:Effective range-low; the concentration representing the lowest 10 percentile value for the dat in which effects were observed or predicted in studies compiled by Long and Morgan (1990).3:Total Petroleum Hydrocarbons NA:Screening level not available ND: Not detected at method detection limit NT:ND:Not analyzedWere present at high levels in some groundwater and sedi- ment samples collected from the site. Concentrations of PCBs were moderately high in beach sediment and mussels col- lected at the same sites.NOAA Trust Habitats and SpeciesNarragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990).Fish populations in Narragansett Bay vary seasonally. Com- in the state of the st		PCBs	ND	ND	0.03	2.03	0.05	0.38
 Ambient water quality criteria for the protection of aquatic organisms. Marine chronic criteria presented (EPA 1986). Effective range-low, the concentration representing the lowest 10 percentile value for the dat in which effects were observed or predicted in studies compiled by Long and Morgan (1990). Total Petroleum Hydrocarbons NA: Screening level not available ND: Not detected at method detection limit NT: Not analyzed were present at high levels in some groundwater and sediment samples collected from the site. Concentrations of PCBs were moderately high in beach sediment and mussels collected at the same sites. NOAA Trust Habitats and Species Narragansett Bay provides habitat for several species of bottom-fish, pelagic fish, and invertebrates and supports commercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck islands in the southern part of Narragansett Bay includes eel-grass beds that are important for lobster and fish habitat (Sisson personal communication 1990). Fish populations in Narragansett Bay vary seasonally. Com- 		TPH ³	ND	12300	NA	1100	NA	ND
 Presented (EPA 1986). 2: Effective range-low; the concentration representing the lowest 10 percentile value for the dat in which effects were observed or predicted in studies compiled by Long and Morgan (1990). 3: Total Petroleum Hydrocarbons NA: Screening level not available ND: Not detected at method detection limit NT: Not analyzed were present at high levels in some groundwater and sedi- ment samples collected from the site. Concentrations of PCBs were moderately high in beach sediment and mussels col- lected at the same sites. NOAA Trust Narragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990). Fish populations in Narragansett Bay vary seasonally. Com- 		1: Ambient	water quality	criteria for the p	rotection of a	quatic organism	s. Marine ch	ronic criteria
 NOAA Trust Habitatis and Species Narragansett Bay provides habitat for several species of bottom-fish, pelagic fish, and invertebrates and supports commercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990). Fish populations in Narragansett Bay vary seasonally. Com- tion of the site of the site of the site of the site of the second second second second second second communication 1990). 		presented 2: Effective	d (EPA 1986 range-low: tl). he concentration	renresenting	the lowest 10 n	ercentile valu	e for the data
 3: Total Petroleum Hydrocarbons NA: Screening level not available ND: Not detected at method detection limit NT: Not analyzed Were present at high levels in some groundwater and sediment samples collected from the site. Concentrations of PCBs were moderately high in beach sediment and mussels collected at the same sites. NOAA Trust Habitats and Species Narragansett Bay provides habitat for several species of bottom-fish, pelagic fish, and invertebrates and supports commercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck islands in the southern part of Narragansett Bay includes eelgrass beds that are important for lobster and fish habitat (Sisson personal communication 1990). Fish populations in Narragansett Bay vary seasonally. Com- 		in which e	effects were	observed or pred	licted in studi	es compiled by	Long and Mo	organ (1990).
NA:Screening level not available ND:ND:Not detected at method detection limitNT:Not analyzedwere present at high levels in some groundwater and sedi- ment samples collected from the site. Concentrations of PCBs were moderately high in beach sediment and mussels col- lected at the same sites.NOAA Trust Habitats and SpeciesNarragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990).Fish populations in Narragansett Bay vary seasonally. Com- to the base state		3: Total Pet	roleum Hydr	ocarbons			-	
ND: Not detected at method detection limit NT: Not analyzed were present at high levels in some groundwater and sediment samples collected from the site. Concentrations of PCBs were moderately high in beach sediment and mussels collected at the same sites. NOAA Trust Habitats and Species Narragansett Bay provides habitat for several species of bottom-fish, pelagic fish, and invertebrates and supports commercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck islands in the southern part of Narragansett Bay includes eel-grass beds that are important for lobster and fish habitat (Sisson personal communication 1990). Fish populations in Narragansett Bay vary seasonally. Com-		NA: Screening	g level not a	vailable				
NOAA Trust Habitats and SpeciesNoragansett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990).Fish populations in Narragansett Bay vary seasonally. Com-		ND: Not detec	cted at metho	od detection limit				
 were present at high levels in some groundwater and sediment samples collected from the site. Concentrations of PCBs were moderately high in beach sediment and mussels collected at the same sites. NOAA Trust Habitat for several species of bottom-fish, pelagic fish, and invertebrates and supports commercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck islands in the southern part of Narragansett Bay includes eelgrass beds that are important for lobster and fish habitat (Sisson personal communication 1990). Fish populations in Narragansett Bay vary seasonally. Com- 		INT. NOLAHAIY	260					
NOAA hust Habitats and SpeciesNoaragaisett Bay provides habitat for several species of bot- tom-fish, pelagic fish, and invertebrates and supports com- mercial and sport fisheries valued at several million dollars (Table 2; Oviatt and Nixon 1973; TRC 1989; Sisson personal communication 1990). The site's 14.5 km of shoreline along the eastern passage between Conanicut and Aquidneck is- lands in the southern part of Narragansett Bay includes eel- grass beds that are important for lobster and fish habitat (Sisson personal communication 1990).Fish populations in Narragansett Bay vary seasonally. Com-		were prese ment samp were mode lected at th	nt at hig les colle rately h e same	gh levels ir ected from iigh in bea sites.	n some g the site ch sedin	groundwa . Concent nent and 1	ter and trations mussels	sedi- of PCBs col-
NETC catch herring, bay anchovy, bluefish, menhaden, silver	Habitats and Species	tom-fish, p mercial and (Table 2; C communica the eastern lands in the grass beds (Sisson per Fish popula mercial fish NETC catcl	elagic fi d sport i oviatt ar ation 19 passage southe that are sonal co ations in heries th h herrin	ish, and in fisheries vand Nixon 1 90). The size between ern part of important ommunication n Narragan nat operate ing, bay anc	vertebra alued at 973; TR ite's 14.5 Conanic Narraga t for loba tion 1999 nsett Bay e seasona hovy, bl	ites and su several m C 1989; Si i km of sh cut and A ansett Bay ster and f 0). y vary sea ally in the luefish, m	species upports nillion d sson per oreline quidnec include ish habi sonally. vicinity enhade	com- ollars rsonal along k is- es eel- tat Com- y of n, silver

	Naval Education Training Center
Table 2. Species and habitat use in the eastern passage of Narragansett Bay in the vicinity of the NETC.	
	Table available in hardcopy
NOAA Trust Habitats and Species, cont.	hake, and scup (Oviatt and Nixon 1973; Sisson personal com- munication 1990). Winter flounder, a commercially fished species, pass through the area to spawning grounds north of the site. Recreational fisheries for striped bass, bluefish, weak fish, tautog, and summer flounder occur in the area (Sisson personal communication 1990).
	Invertebrate resources in Narragansett Bay are extensive and commercially and recreationally valuable. Quahog is the most valuable commercial shellfish resource in the bay, though populations along the NETC shoreline are not as great as other areas of the bay, due to the greater depths there. Lobsters are caught in the Coddington Cove area, at the south end of the site. A small squid fishery takes place in Narragansett Bay, with traps located in Coddington Cove (TRC 1989; Sisson,

	Naval Education Training Center
References	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R., and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA-52. Seattle: Coastal and Estuarine Assessment Branch, NOAA. 175 pp.+ Appendices.
	Oviatt, C.A. and S.W. Nixon. 1973. The demersal fish of Narragansett Bay: an analysis of community structure, distri- bution and abundance. <u>Estuar. and Coastal Mar. Sci 1</u> : 361- 378.
	Sisson, R., Supervisory Marine Biologist, Division of Fish and Wildlife, Rhode Island Department of Environmental Manage- ment, Newport, Rhode Island, personal communication, June 28, 1990.
	TRC Environmental Consultants, Inc. 1989. Installation resto- ration program. RI/FS workplan. Naval Education Training Center. Newport, Rhode Island. Philadelphia: U.S. Depart- ment of Navy, Northern Division, Naval Facilities Engineering Command.
	U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87- 003.

	New London Naval Submarine Base
Site Exposure Potential, cont.	Atlantic Naval Submarine Fleet. The Subase includes housing, training facilities, administrative offices, a hospital, submarine maintenance, repair and overhaul facilities, and torpedo as- sembly and overhaul shops (Atlantic Environmental Services 1989).
	Activities at the base generated a variety of wastes, including waste oils, solvents, contaminated fuels, construction debris, acids, PCBs, and pesticides. The site served as a landfill and burning ground from 1950 to 1969 and waste and cover materi- als were used to fill the shoreline. Until the early 1970s, most of these materials were disposed of in on-site landfills. Al- though some liquid materials were stored in drums or under- ground tanks for off-site reprocessing or disposal, some liquid wastes may have been disposed of in drain fields or storm drain systems. The Area A landfill was used for disposal of all non-recyclable materials from all Subase operations from 1957 to 1973. In addition, drums, transformers, and electrical switches are stored on-site on a concrete pad. Cover material for this landfill consisted of highly porous gravels. The wet- land area was used for upland disposal of dredge spoils from the Thames River.
	Surface geology at the Subase is characterized by a thin layer of unconsolidated glacial tills overlying bedrock. Outcrop- pings of bedrock have been mapped throughout the site. The water table is inferred to be close to the soil surface because of the presence of wetlands in several areas of the Subase. Sev- eral surface drainages are present at the site, including ponds and streams. Surface water discharges to the Thames at four points along the shoreline; two outlets are located near the northern boundary, one outlet is at Pier 26, and the major outlet is at Goss Cove. Surface water runoff also discharges to the Thames River.
	Several potentially contaminated sites are located in shoreline areas, making surface water runoff or groundwater discharge a likely pathway for transport of contaminants. Surface water transport is an important pathway for several major upland sites because they are located near or in wetlands and streams that discharge to the Thames River.

New London Naval Submarine Base

Site-Related Contamination

Preliminary data presented in the Installation Restoration Study (IRS) plan of action (Atlantic Environmental Services 1989) indicated that trace elements, PAHs, pesticides, and some volatile organic compounds were present in soil, surface water, and sediment at elevated levels on the Subase. Activities on the Subase and past disposal practices may have contributed to groundwater contamination, but no data on groundwater were presented in the IRS plan of action. Maximum concentrations of contaminants detected in these matri-

Table 1. Maximum concentrations of contaminants at site compared with applicable screening levels.

	Water		Soil		Sediment	
	Surface Water	AWQC ¹	Soil	Average U.S. Soil ²	Sediment	ER-L ³
INORGANIC SUBSTA	NCES	μ9/1	iiig/itg	iiig/itg	ing/kg	ing/itg
antimony	400	1600*	13	1	36	2
cadmium	30	1 1+	44	0.06	25	5
copper	120	12+	1000	30	33	70
cvanide	175	52	0 10	NA	25	NA
lead	ND	3.2+	750	10	5960	35
mercury	ND	0.012	ND	0.03	0.28	0.15
nickel	80	160+	130	40	32	30
zinc	152	110+	1100	50	170	120
OBGANIC COMPOU	NDS					
benzo(a)anthracene	NT	NA	5.6	NA	1.2	0.23
benzo(a)pyrene	NT	NA	2.6	NA	0.75	0.40
fluoranthene	NT	NA	12	NA	1.85	0.60
phenanthrene	NT	NA	18	NA	0.75	0.225
pyrene	NT	NA	9.3	NA	1.35	0.35
DDD	NT	NA	ND	NA	79	0.002
DDE	NT	NA	ND	NA	7.4	0.002
DDT	NT	0.001	ND	NA	59	0.001
1: Ambient water quality criteria for the protection of aquatic life, freshwater chronic criteria presented						
(EPA 1986). 2: Lindsay (1979)	. <u>.</u>					

Eindsay (1979).
 Effective range-low; the concentration representing the lowest 10 percentile value for the data in which effects were observed or predicted in studies compiled by Long and Morgan (1990).

+ Hardness-dependent criteria; 100 mg/l CaCO₃ used.

* Insufficient data to develop criteria. Value presented is the Lowest Observed effect Level (LOEL).

ND: Not detected at method detection limit; detection limit not reported NT: Not analyzed

NA: Screening level not available

ces are presented in Table 1 (Atlantic Environmental Services 1989) along with applicable screening levels for determining concentrations of concern to NOAA.

Copper, lead, nickel, and zinc were extremely elevated in soils from the Defense Property Disposal Office (DPDO) area next to the Thames River. Additional trace elements were also present at high concentrations. PAHs were measured in soil at levels shown to have toxic effects in other studies (Long and Morgan 1990).

	New London Naval Submarine Base
Site-Related Contamina- tion, cont.	Surface water samples in the vicinity of the Area A Landfill and the associated wetland in the northern Subase had high concen- trations of cadmium, copper, zinc, cyanide, and several phtha- late esters. Sediment from these same areas had extremely high levels of lead, DDT, other trace elements, and PAHs. Surface waters and groundwater from this area discharge into several streams that flow past other sites under investigation and enter the Thames River at the DPDO site.
Table 2. Species and habitat use in the lower Thames River near the site.	
	Table available in hardcopy
NOAA Trust Habitats and Species	The lower Thames River is an important estuarine habitat used by anadromous and marine species for spawning, nursery grounds, and adult forage (Table 2; Minta personal communi- cation 1990). Commercial and recreational fisheries are active in the area.

	New London Naval Submarine Base
NOAA Trust Habitats and Species, cont.	The Thames River is a major corridor for anadromous species, including sea-run brown trout, American shad, hickory shad, alewife, striped bass, and blueback herring. Blueback herring, alewife, and American shad spawn approximately 24 km upstream of the site. The Connecticut Department of Environ- mental Protection is attempting to restore the historical Atlan- tic salmon run in the Thames River watershed. Currently, eggs are stocked in upstream tributaries, and fish passage- ways are being planned for several upstream dams (Minta personal communication 1990).
	The section of the river near the Subase is used as a spawning ground for winter flounder, and as a seasonal nursery ground for bluefish and young striped bass. Major recreational fisher- ies in the area include those for striped bass, bluefish, and eel (Minta personal communication 1990).
	Invertebrate resources include quahog, blue crab, and lobster; quahog and lobster are fished commercially and blue crab recreationally. Commercial harvests of quahog must undergo depuration before sale, and recreational harvesting of bivalves is restricted because of unsafe levels of fecal coliform in tissue.
References	Atlantic Environmental Services, Inc. 1989. Plan of Action, Installation restoration study, Naval Submarine Base-New London, Groton, Connecticut. Philadelphia: U.S. Navy, Northern Division, Naval Facilities Engineering Command.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R. and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum. NOS OMA-52. Seattle: Coastal and Estuarine Assessment Branch, NOAA. 175 pp + Appendices.
	Minta, P., Supervisory Fisheries Biologist, Marine Fisheries Division, Connecticut Department of Environmental Protec- tion, Waterford, Connecticut, personal communication, July 11, 1990.

	New London Naval Submarine Base
References, cont.	U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003.

	Pease Air Force Base
Site Exposure Potential, cont.	drain into Great Bay. Pickering Brook and Railway Ditch enter Flagstone Brook, which discharges to Little Bay near its confluence with the Piscataqua River. Newfields and Grafton ditches and Harveys Creek enter Hodgson Brook, which flows into the North Mill Pond and, ultimately, the Piscataqua River. Pauls Brook drains directly to the Piscataqua River.
	Regional groundwater hydrology is also defined by the maxi- mum land elevation. Hydraulic low points are represented by Great Bay, Little Bay, and the Piscataqua River. Groundwater movement on the site reflects surface topography and flows towards the nearest downgradient surface water.
	Based on site characteristics and historical practices, both surface water and groundwater movement represent potential pathways of contamination to NOAA resources and associated habitats.
Site-Related Contamina- tion	Surface water, groundwater, soil, and sediment were analyzed during Stages I and II of the Installation Restoration Program (Weston 1989). Trace elements, cyanide, PAHs, DDT and its metabolites, total petroleum hydrocarbons, and some volatile organic compounds were detected in the matrices sampled. Contaminants found in surface water and groundwater that were considered a risk to NOAA resources are presented in Table 1 with applicable screening criteria (Weston 1989).
	Trace elements were the major contaminants found in surface water samples. Copper, lead, mercury, nickel, and zinc concen- trations exceeded their AWQC (EPA 1986) in all three major drainage areas. The highest levels of trace elements occurred in Harveys Creek and Newfields Ditch; cyanide levels were ex- tremely high. Organic compounds were detected in few surface water samples with the exception of samples from Newfields Ditch. Concentrations of several semi-volatile organic com- pounds in these samples were measured at levels exceeding the lowest observed effect level. Bis(2-ethylhexyl)phthalate was also measured at high concentrations in samples from Newfields Ditch. DDT, DDD, and other pesticides were detected in surface water samples from the Little Bay and Piscataqua drainage areas
	water samples from the Little Bay and Piscataqua drainage areas at concentrations shown to be toxic in other studies.

Pease Air Force Base

Site-Related Contamination,

cont.

Table 1. Maximum concentrations of major contaminants in surface water and groundwater samples from drainage areas on the site.

		Surface W	/ater		Groundw	ater	Criteria
	Great	Little	Piscataqua	Great	Little	Piscataqua	AWQC ¹
	Bay	Bay	River	Bay	Bay	River	Marine
	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l	µg/l
INORGANIC S	UBSTANC	ES					
arsenic	5.4	<5	<5	180	NR	500	36
copper	<30	34	79	63	NR	NR	2.9
cyanide	<20	<20	440	NR	NR	NR	1
lead	<5	400	19	NR	NR	NR	5.6
mercury	0.3	<1	<1	0.3	<0.2	NR	0.025
nickel	29	150	220	72	45	33	8.3
zinc	110	130	180	220	100	170	86
ORGANIC CO	MPOUNDS	S					
benzene	NR	NR	2,800	NR	NR	1,100	700
ethylbenzene	NR	NR	480	1,400	NR	600	430
xylenes	NR	NR	2,600	5,500	NR	600	NA
bis(2-ethyl	NR	NR	360	150	NR	1,300	NA
hexyl)							
phthalate							-
trichloro-	NR	NR	NR	NR	NR	10,000	^a 2,000*
ethylene							
toluene	NR	NR	4,300	NR	NR	NR	2,130*
DDD	NR	0.13	0.19	NR	NR	NR	NA
DDT	NR	0.14	<0.10	NR	NR	NR	0.001
lindane	NR	NR	0.25	NR	NR	NR	^a 0.16
chlordane	NR	NR	0.12	NR	NR	NR	0.004
1: Ambi	ent water of	quality crite	eria for the pro	tection of a	quatic or	ganisms.	
marir	ne chronic	criteria pre	esented (EPA	1986).			
a: AWC	C marine	acute crite	ria, no chronic	criteria ava	ailable (El	PA 1986).	
*: Insuf	ficient data	a to develo	p criteria. Valı	ue presente	ed is the L	owest Observ	ed Effect
Leve	I (LOEL).						
NR: Resu	Its not rep	orted					
NA: Crite	ria not ava	ilable					

Arsenic, copper, and mercury concentrations measured in groundwater samples were high. These substances are of concern because groundwater discharges to habitats supporting NOAA resources. Copper, lead, mercury, nickel, and zinc in surface water exceeded their respective AWQC. Ethylbenzene, xylenes, bis-(2-ethylhexyl)phthalate, and trichloroethylene were detected in groundwater at levels greater than those measured in surface water.

Contaminants of concern occurring in sediments and soils are presented together with applicable comparison values in Table 2 (Weston 1989). Cadmium, mercury, and zinc were detected in soil at concentrations exceeding background levels in U.S. soil (Lindsay 1979). Organic compounds were also detected in on-site soil samples. PAHs and other semi-volatile organic compounds were above background levels in soil samples from the Piscataqua drainage area.

Pease Air Force Base

Site-Related Contamination, *cont.* Several inorganic substances, including arsenic, cadmium, mercury, nickel, and zinc, were measured in stream sediments at levels shown to be associated with deleterious biological effects (Long and Morgan 1990). Elevated concentrations of PAHs and several semi-volatile organic compounds were also found in sediment samples. Concentrations of DDT and its metabolites were high in sediment from all areas sampled.

T.11.0			Soil			Sedime	ent	
Maximum		Little Bay	Piscataqua River	Average ¹ U.S. Soil	Great Bay	Little Bay	Piscataqua River	ER-L ² Levels
concentrations of		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
contami-nants in	INORGANIC S	UBSTANC	ES					
soil and	antimony	NR	NR	1	NR	35	NR	2
	arsenic	NR	NR	5	15	56	16	33
sediment from	cadmium	5.2	8.7	0.06	NR	NR	<26	5
drainage areas at	mercury	2.5		0.03	NR FO		<0.18	0.15
the site. (No	Tickel	140	NR	40 50	52 100	120	202	120
results were	21110	140		50	130	120	200	120
	ORGANIC CO	MPOUNDS						
reported for soli	4,4 DDT	NR	NR	ND	4.2	0.09	<1.8	0.001
in Great Bay	4,4 DDE	NR	NR	ND	<0.05	0.12	<1.8	0.002
drainage).	4,4 DDD	NR	0.02	ND	0.10	0.21	NR	0.002
0 /	1: Lindsa	y (1979).						
	2: Effectiv	e range-lov	w; the concent	ration represe	nting the lo	owest 10 p	ercentile value	for the
	(1000)	which effec	ts were observ	ved or predicte	ea in stuaie	es complie	a by Long and	worgan
	NB: Bosults	not report	be					
	ND: Not det	ected at the	e method deter	ction limit				
NOAA Trust	The marine	and es	tuarine h	abitats s	urrour	nding t	the site h	arbor
	numorous	nacios	of finfich	and inv	ortobr	atos (T	abla 2. N	0117
Habitats and	numerous s	pecies			ertebra	ates (1	able 5, IN	ew
Species	Hampshire	Fish a	nd Game	1981). F	'ifty-tw	o spec	cies of ma	arine
op 0 0100	finfish were	e identi	fied in th	e Great i	Bay est	tuarv ł	ov the Ne	W
	Lampshire	Donom	tmont of	Fich and	Como	inclu	ding nori	danta
	напряше	Depar	iment of	FISH and	Game	, inciu	aing resi	uents,
	anadromou	s speci	es, and n	nigrants.	Of the	ese, the	e most ab	oun-
	dant specie	s were	Atlantic	silversid	e rain	how sr	nelt killi	fish
					c, ram	1 1		11511, M
	river herrin	ig, Atla	ntic tomo	cod, whit	te perc	h, and	smooth	tloun-
	der (New H	Iampsh	nire Fish a	and Gam	e 1981). Gre	at Bav is	а
	nlannad Na	tional	Ectuaring	Decorry	(Four	oott no	rconal ao	mmu
	plaineu Na	llional	Estualine	e neserve	e (raw	tett pe	i sonai cu	IIIIIu-
	nication 199	90).						
	TI ! . 1!		· · · · · · · · · · · · · · · · · · ·	1 (2 - 1 - 2	·			
	i nere is fin	mea co	mmercia	insning	in the	area I	or river h	ler-
	ring, eel, sn	nelt, an	d sea sca	llop. Str	iped b	ass, sn	nelt, wint	er
	flounder a	owifo	and coho	salmon	aroim	nortar	nt rocrost	ional
						pula		ional
	fisheries. 'I	he Gre	at Bay ar	ea also c	ontain	s valua	able inve	rte-
	brate resou	rces. L	obster an	nd rock c	rab are	e harve	ested com	ımer-

	Pease Air Force Base
NOAA Trust Habitats and Species, cont.	cially, and soft-shell clams, mussels, and oysters are harvested in recreational fisheries. Major oyster beds are found in Great Bay, the Oyster River, the Bellamy River, and the Piscataqua River (Weston 1989).
Table 3. Species and habitat use in the Piscataqua River, Great Bay, and Little Bay.	
	Table available in hardcopy
References	Fawcett, B., Fisheries Biologist, New Hampshire Department of Fish and Game, Marine Division, Durham, New Hamp- shire, personal communication, January 2, 1990.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R., and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA 052. 175 pp.+ Appendices.

	Pease Air Force Base
References , <i>cont</i> .	New Hampshire Fish and Game Department. 1981. Finfish col- lected throughout the Great Bay estuary by the New Hampshire Department of Fish and Game during July 1980 to October 1981. Concord, New Hampshire: New Hampshire Fish and Game Department Headquarters.
	Roy F. Weston, Inc. 1989. Installation Restoration Program For Pease Air Force Base New Hampshire. Stage 2. Offutt Air Force Base, Nebraska: Headquarters Strategic Air Command.
	U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003.

	Brookhaven National Laboratory
Site Exposure Potential,	flows east-southeast towards the Peconic River and its tribu- taries.
cont.	Areas of actual and potential soil, surface water, and ground- water contamination at BNL include active and inactive dis- posal areas, cesspools, abandoned drum sites, and areas with stained soil. Sources of contamination include the Hazardous Waste Management Area (HWMA), the central receiving and storage area for BNL hazardous, radioactive, mixed, and PCB wastes; landfills that have received hazardous and radioactive substances; and the former incinerator ash disposal area.
	Other areas of concern include the Meadow Marsh Study Area/Uplands Recharge Experiment where sewage effluent was disposed by land application; sewage treatment plant and sludge beds; an area where radionuclide-contaminated groundwater was pumped to a surface drainage course; an area where unidentified chemical containers were found; underground oil tanks; a detonation/burn area formerly used for burning and detonating highly explosive and reactive chemicals; underground radioactive wastewater storage tanks; and an oil and solvent spill area.
	BNL is at the headwaters of the Peconic River watershed. Wetlands north and east of BNL drain to the tributaries of the Peconic River. The Peconic River flows to Flanders Bay, part of Great Peconic Bay in the New York Bight, approximately 27 km below the site.
	Groundwater discharge to surface water and surface water runoff are the primary pathways of contaminant transport.
Site-Related Contamination	Soil, sediment, and surface water were not routinely moni- tored at BNL for chemical contaminants when the referenced reports were prepared. Trace elements detected in the groundwater and sewage effluent are presented in Table 1 (U.S. Department of Energy 1988; Burns and Roe 1989) along with AWQC.
	Organic compounds were found at low levels in groundwater at BNL. Chloroethane, 1,1-dichloroethane, benzene, toluene,

Brookhaven National Laboratory

Site-Related Contamination, and ethylbenzene were detected at the HWMA area. Contaminants found in building cesspools included 1,1,1trichloroethane, tetrachloroethane, toluene, and methyl chloride (U.S. Department of Energy 1988).

Radionuclides have been detected in both soil and groundwater at the BNL site. As a result of the Upland Recharge Experiment at the Meadow Marsh Study Area, groundwater was

	Groundwater	Sewage Treatment Plant Effluent	AWQC ¹
	µg/I	µg/I	µg/I
INORGANIC SUBSTANCE			
cadmium	25.6	NT	1.1+
chromium	24	NT	11
copper	125	400	12+
iron	131,500	600	1,000
lead	520	67	3.2+
mercury	< 0.2	NT	0.012
silver	10	50	0.12
zinc	8,150	300	110+
1: Ambient water quality	criteria for the prote	ction of aquatic orga	nisms. Freshwater
chronic criteria prese	nted (EPA 1986)	1 0	
+ Hardness-dependent	criteria: 100 mg/l Ca	CO3 used.	
NT Not analyzed	. 0	0	

contaminated with tritium (U.S. Department of Energy 1988). Maximum radionuclide concentrations found in wells near the landfills in the west-central part of the site are presented as follows: Gross alpha: 19,460 pCi/l; cesium 137: 9,300 pCi/l; tritium: 49,000 pCi/l (Burns and Roe 1989). Radionuclide data reported in soil, sediment, vegetation, and

fish are shown in Table 2 (U.S. Energy Research and De-

Plants (unspecified) Sedi- ment Fish (catfish) Plants (grass) Soil Fis (Pone (Pone (Pone) es Year Collected 1973 1973 1973 1985 1985 1985 1985 es pCi/kg pCi/kg<	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $;h
Alson Year Collected 1973 1973 1973 1985	ds)^
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35
Radionuclide NR NR 2,030 740 NR nd fish Co-60 274 < 50 < 50 NR NR NR in the Sr-90 703 166 NR NR NR 3,326 Cs-137 1,109 1,907 1,355 111 924 587	/kg
soil, nd fish in the Be-7 879 NR NR 2,030 740 N soil, nd fish in the Co-60 274 < 50 < 50 NR NR NR soil, in the Sr-90 703 166 NR NR NR 3,326 (Ss-137) 1,109 1,907 1,355 111 924 58'	
nd fish Co-60 274 < 50	R
in the Sr-90 703 166 NR NR NR 3,328 Cs-137 1,109 1,907 1,355 111 924 58	R
1.109 Cs-137 1.109 1.907 1.355 111 924 58	8
	1
ernear U-238 NR 812 NR NR NR N	R
Th-232 NR 446 NR NR NR N	R
K-40 NR NR NR 4,960 6,100 N	R
Th-228 NR NR NR 72 873 N	R
Ra-226 NR NR NR NR 657 N	R
Hg-203 NR NR NR NR 70 N	R
Tritium NR NR NR NR NR 1,742	2
NR: Not reported	
* Brown bullhead and yellow perch were sampled	

Table 1. Maximum concentrations of major contaminants in groundwater and the sewage treatment plant effluent at the site.

Table 2.

Maximum concentrations of radionuclides found in vegetation, soil, sediment, and fish on-site and in the Peconic River near the site.

	Brookhaven National Laboratory
NOAA Trust Habitats and Species	velopment Administration 1977; U.S. Department of Energy 1988). Although no criteria for the protection of aquatic or- ganisms are available for radionuclides, sublethal effects have been established at levels ranging from 100 pCi/l to 1,000,000 pCi/l (Blaylock and Trablaka 1978).
	Habitats with species of concern to NOAA include the Peconic River, Flanders Bay at the mouth of the Peconic River, and Great Peconic Bay (Table 3; Energy Research and Develop- ment Administration 1977; Weber personal communication 1990; Young personal communication 1990). Anadromous
Table 3. Species and habitat use in the Peconic River near the mouth and in Flanders Bay.	
	Table available in hardcopy
	species, with the exception of the American eel, cannot mi- grate upstream in the Peconic River because of a low-level dam located at Riverhead, approximately 1.6 km upstream from the river mouth. A remnant of an alewife run still spawns at the base of the dam. Numerous estuarine and marine species occur in Flanders Bay near the mouth of the Peconic River and in Great Peconic Bay.

	Brookhaven National Laboratory
NOAA Habitats	Flanders Bay is a nursery area for many species of recreational
and Species, cont.	and commercial importance, including winter flounder, tau- tog, scup, weakfish, Atlantic mackerel, bluefish, and butterfish (Weber personal communication 1990). Alewife, juvenile bluefish, and white perch are fished commercially at the mouth of the Peconic River.
	The New York State Department of Environmental Conserva- tion is considering the possibility of restoring the alewife run in the Peconic River. Freshwater species that have been sampled in streams on the site include catfish, little pickerel, largemouth bass, bluegill sunfish, and banded sunfish.
References	Blaylock, B.G., and J.R. Trabalka. 1978. Evaluating the effects of ionizing radiation on aquatic organisms. In: <u>Advances in</u> <u>Radiation Biology</u> . J.T. Lett and H. Adler, eds. New York: Academic Press.
	Burns and Roe. 1989. Draft RI/FS work plan, Brookhaven National Laboratory, Landfill Remedial Action Project. Brookhaven, New York: Associated Universities Incorpo- rated, Safety and Environmental Protection Division.
	U.S. Department of Energy. 1988. The Department of Energy, Brookhaven National Laboratory, Environmental Survey Preliminary Report. Upton, New York: U.S. Department of Energy Environment, Safety and Health Office of Environ- mental Audit.
	U.S. Energy Research and Development Administration. 1977. Final Environmental Impact Statement, Brookhaven National Laboratory. Washington D.C.
	U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003.
	Weber, A., Marine Finfish, Division of Marine Resources, New York State Department of Environmental Conservation, New York, New York, personal communication, August 6, 1990.

	Brookhaven National Laboratory
References, cont.	Young, B., Division of Marine Resources, New York State Department of Environmental Conservation, Stony Brook, New York, personal communication, August 1, 1990.

Chemical Insecticide Corporation

Edison Township, New Jersey Region 2 NJD980484653

Site Exposure Potential Chemical Insecticide Corporation (CIC) is an abandoned, 2.3hectare pesticide manufacturing facility in Edison Township, New Jersey (Figure 1). From 1958 to 1970, CIC produced insecticides, fungicides, rodenticides, and herbicides, including 2,4,5-trichlorophenoxy-acetic acid (2,4,5-T), noted for being contaminated with dioxins and related compounds. Improper manufacturing and product handling resulted in numerous complaints and citations against the company during the period of operation. The company went bankrupt in 1970 and in 1975 all buildings were demolished, leaving only concrete building pads, residual roadways, buried drums, and debris on the site (Ebasco 1990).

On-site surface water includes small amounts of standing water and numerous erosional drainage channels. The erosion channels flow eastward and discharge into a drainage ditch adjacent to the eastern site boundary. The ditch leads to a subsurface storm drain system that discharges to an unnamed creek. This unnamed creek flows for about 450 m before

	Chemical Insecticide Corporation
Site Exposure Potential,	discharging into Mill Brook, which enters the Raritan River 3.5 km downstream.
cont.	The CIC site is underlain by several aquifers. Measurements from both on-site and nearby wells have indicated that groundwater in both shallow and deep aquifers generally flows to the east.
	Surface drainage, remnant floor drains, and exposed sewer lines suggest the presence of an on-site sewer system. Chemi- cals used on the site may have been disposed of into this system.
	Based on site characteristics and historical practices, surface water transport through the storm water collection system that discharged into the unnamed creek is the major pathway of contamination to NOAA resources. Groundwater in the shallow aquifer may contribute some contaminants if it enters the surface drainage to the east of the site (unnamed tribu- tary). Contaminated sediment and soil represent secondary sources of contamination and may be transported off-site by surface or subsurface drainages.
Site-Related Contamination	Results from the RI (Ebasco 1990) confirmed that surface water, groundwater, soil, and sediment from the CIC site and nearby areas are contaminated with a variety of chemicals, including inorganic substances, pesticides, PCBs, and dioxin/ furans. Low concentrations of numerous volatile and semi- volatile organic compounds were detected at the site. Tables 1 and 2 (Ebasco 1990) show contaminant concentrations that are of major concern to NOAA.
	On-site groundwater was contaminated with eight trace ele- ments, with arsenic and mercury present at exceptionally high levels. Concentrations of these substances were substantially lower in off-site groundwater. Maximum concentrations of inorganic contaminants in surface water were substantially lower than the concentrations in groundwater. Arsenic, cad- mium, copper, nickel, and zinc exceeded their respective chronic AWQC in on-site surface water while only chromium,

Chemical Insecticide Corporation

Site-Related Contamination,

cont.

copper, and zinc exceeded their respective AWQC in surface water off-site.

Polychlorinated dibenzodioxins (dioxins) and related compounds were measured in groundwater, surface water, sediment, and soil at the CIC site. The maximum concentration of

Table 1. Maximum concentrations $(\mu g/l)$ of contaminants of concern at the Chemical Insecticide site.

Groundwater		Surface Water		AWQC ¹ Marine	
	On Site	Off Site	On Site	Off Site	Chronic
INORGANIC S	UBSTANCES				
arsenic	89200	63	1680	6.4	36
cadmium	1840	13	10	3	9.3
chromium	855	277	31	90	50
copper	2600	117	19	11	2.9
lead	543	136	<6.7	NR	5.6
mercury	47	ND	ND	NR	0.025
nickel	1560	414	46	NR	8.3
zinc	3890	1420	287	428	86
ORGANIC COI <u>Pesticides</u> alpha BHC gamma BHC dieldrin	MPOUNDS 3400 1400 55 230	0.2 NR NR ND	<1.8 <0.3	0.2 <0.1	NA 0.16** 0.0019 0.0022
	2100	0.3	25	<0.1	0.0025
chlordane	88	ND	ND	ND	0.004
Total Dioxins	.0004	ND	ND	ND	NA
1: Ambien criteria ** Marine ND: Not dete NB: Not rep	t water quality crite presented (EPA 19 acute criteria prese ected at method de orted	eria for the prote 986). ented, no chroni etection limit.	ction of aquatic o	organisms. Mar e.	ine chronic
NA: Screenling level not available.					

total dioxins in groundwater on-site was 0.0004 μ g/l, 40 times greater than the chronic freshwater AWQC (there are no marine AWQC). No dioxins were detected in off-site groundwater samples. Total polychlorinated dibenzofurans (furans) were detected in one on-site surface water sample at 0.00024 μ g/l. No dioxins or furans were detected in off-site surface water but were detected in on-site sediment and soil at very high levels.

Contaminants in the soil showed a pattern similar to the contamination in the sediment with both on-site and off-site concentrations exceeding the average levels observed in U.S. soil. Chromium was the only element that was present in soil at higher concentrations off-site than on-site.

Chemical Insecticide Corporation

Site-Related Contamination,

cont.

Table 2. Maximum concentrations (mg/kg) of contaminants in sediment and soil from the CIC site.

	-	Soil			Sediment	
			Average			
	On-Site	Off-Site	U.S. Soil ¹	On -Site	Off-Site	ER-L ²
INORGANIC SU	JBSTANCES					
arsenic	8010	24	5	2660	79	33
cadmium	177	6	0.06	21	9.4	5
chromium	128	196	100	39	133	80
copper	4410	83	30	150	216	70
lead	1980	80	10	1170	1130	35
mercury	72	0.6	0.03	0.7	0.2	0.15
nickel	119	108	40	143	38	30
zinc	1040	226	50	552	1840	120
ORGANIC CON	IPOUNDS					
alpha BHC	45000	0.031	NA	590	.012	NA
gamma BHC	23000		NA	0.25	ND	NA
dieldrin	17.0	ND	NA	1.9	0.063	0.0004
DDT	6900	0.240	NA	820	0.074	3
chlordane	39	ND	NA	ND	ND	NA
PCBs	ND	ND	NA	0.42	10	50
Total Dioxins	0.0073	0.000022	NA	0.00079	ND	NA
TCDD	0.0018	ND	NA	0.00076	ND	NA
Total Furans	0.079	ND	NA	0.0091	ND	NA
1: Lindsay	(1979).					
2: Effective	2: Effective range-low; the concentration representing the lowest 10 percentile value for the					
data in v	data in which effects were observed or predicted in studies compiled by Long and Morgan					
(1990)						
NO: Not dete	ected at metho	d detection lim	nit			

Trace elements were detected in sediment on- and off the site at concentrations above ER-L values (Long and Morgan 1990). Arsenic concentrations were greatly elevated on-site. Arsenic (15 mg/kg), cadmium (1.5 mg/kg), and lead (59 mg/kg) were detected in sediment from Mill Brook. Concentrations of other trace elements were not reported for Mill Brook sediment. Chromium, copper, and zinc had higher concentrations off-site than on-site.

Elevated concentrations of several pesticides were observed in groundwater on-site (Table 2). Pesticides were reported to be substantially lower in off-site groundwater samples, although results were not presented for all pesticides. Pesticide concentrations in surface water were reported to be less than the detection limits. However, the detection limits used for dieldrin, endrin, and DDT were much higher than their chronic marine AWQC. Pesticides were measured at high concentrations in sediment on site, particularly for a-BHC, dieldrin, and DDT, but sediment cores were lower off-site (Table 2). Pesticide concentrations were also high in soil on the site, but were

	Chemical Insecticide Corporation
Site-Related Contamination, cont. NOAA Trust Habitats and Species	lower in off-site soil. PCBs were not detected in surface water or groundwater samples from the CIC site or adjacent areas. Mill Brook is in a heavily industrialized area and has had chronic pollution problems. The New Jersey Department of Environmental Protection has not surveyed the stream since 1980; it is not known whether pollution abatement efforts have since restored anadromous species use of the stream. Blueback herring, alewife, blue crab, silverside, American eel, and mumnichog may have used the stream, especially in the lower reaches near its confluence with the Raritan River (Stuart personal communication 1990).
Table 3. Species and habitat use in the lower Raritan River.	Table available in hardcopy
	The Raritan River serves as habitat for migratory and estua- rine-dependent marine fish (Table 3; Boriek personal commu- nication 1990; Stuart personal communication 1990). The Raritan River is a major crabbing and fishing area, though

	Chemical Insecticide Corporation
NOAA Trust Habitats and Species, cont.	only blue crab are harvested commercially. Recreational fisheries exist for blue crab, bluefish, striped bass, American shad, American eel, white perch, and summer flounder. American shad have been stocked in the upper Raritan River to encourage the restoration of a fishery upriver, but spawn- ing has yet to occur (Boriek personal communication 1990).
	Fishing advisories are in effect in the Raritan River for Ameri- can shad, striped bass, bluefish, and white perch due to high levels of PCB contamination (Boriek personal communication 1990).
References	Boriek, M., New Jersey Bureau of Freshwater Fisheries, Divi- sion of Fish, Game, and Wildlife, Lebanon, New Jersey, per- sonal communication, January 16, 1990.
	Ebasco Services, Inc. 1990. Remedial Investigation report. Chemical Insecticide Corporation. Edison Township, New Jersey. Draft Final Report. Volumes 1 and 2. Philadelphia: U.S. Environmental Protection Agency, Region 3.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R., and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA-52. 175 pp.+ Appendices.
	Stuart, Robert, Principal Fisheries Biologist, New Jersey Bu- reau of Freshwater Fisheries, Lebanon, New Jersey, personal communication, June 20, 1990.
	U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87- 003.

FAA Technical Center Atlantic City Airport

Absecon, New Jersey Region 2 NJ9690510020

Site Exposure Potential

The Federal Aviation Administration (FAA) Technical Center site covers 2,023 hectares and is approximately 13 km northwest of Atlantic City in southeastern New Jersey (Figure 1). There are several major installations on the site, including the Atlantic City International Airport, New Jersey Air National Guard, and the National Aviation Facilities Experimental Center (NAFEC). The site was constructed as a naval air station in 1942. The NAFEC was added in 1957, and administration of all facilities was transferred to the FAA in 1958. Activities on the site have involved use and storage of toxic materials, including jet fuels, solvents, pesticides, and photoprocessing chemicals. Improper storage, handling, and disposal practices contributed to contamination of on-site groundwater and soils (TRC 1988).

The FAA site is within the Absecon Creek drainage area. Both the north and south branches of Doughty's Mill Stream flow across the site into the Atlantic City Reservoir, formed by damming the south branch of the stream. This reservoir flows into another reservoir off the site, eventually becoming Absecon Creek, which discharges to Absecon Bay approxi-

	FAA Technical Center Atlantic City Airport
Site Exposure Potential, cont.	mately 4 km downstream of the outlet of the lower Atlantic City reservoir. The water table in the area of the FAA site is extremely shal- low and may be within 1 m of the surface at different times of the year. The water table lies within a sand aquifer that is defined by a deeper, discontinuous clay layer. Groundwater typically follows topographical features, with the majority of the groundwater flowing towards the streams or reservoirs (TRC 1988).
	Based on site characteristics and historical practices, surface water transport is considered a major pathway of contamina- tion to NOAA resources. Groundwater in the shallow aquifer may contribute some contaminants as it enters the surface drainages. Contaminated sediments and soils represent sec- ondary sources of contamination and may be transported off- site.
Site-Related Contamination	During an investigation of groundwater quality in Atlantic City municipal wells, Weston (1984) identified five major areas on the FAA site that may have contributed contaminants to the Atlantic City municipal water supply. A remedial investigation/feasibility study (RI/FS) was conducted at the five sites to characterize the type and extent of contamination at the FAA Technical Center. Preliminary sampling of surface water, groundwater, soils, and sediments was also conducted at 17 additional sites.
	Results from the RI/FS report (TRC 1988) indicated that most matrices were contaminated with inorganic substances, PCBs, and DDT. The maximum concentrations of contaminants that were observed are summarized in Table 1, along with appli- cable screening levels (TRC 1988).
	Levels of contamination varied among the sites investigated. Trace elements, found in most groundwater samples, were more than ten times the AWQC for the protection of aquatic life. The highest concentrations of copper and zinc occurred in drinking water supply wells on-site. Trace element levels in soils often exceeded average levels found in uncontami-

FAA Technical Center Atlantic City Airport

Site-Related Contamination,

cont.

Table 1. Maximum concentrations of contaminants of concern at the FAA Technical Center.

	Water		Soil		Sediment		
	Ground-	Surface		Surface	Average ²	Codimont	3
	water	water	AWQC	501	U.S. Soil	Sediment	ER-L ³
	µg/l	µg/l	µg/l	mg/kg	mg/kg	mg/kg	mg/kg
INORGANIC S	SUBSTANCES						
cadmium	40	ND	1.1+	4.2	0.06	1.7	5
chromium	406	ND	11	21	100	16.5	80
copper	227	ND	12+	30.9	30	14	70
lead	204	11.7	3.2+	99	10	45.1	35
mercury	3.2	ND	0.012	0.3	0.03	2.2	0.15
zinc	4190	35	110+	75	50	33.8	120
ORGANIC CO	MPOUNDS						
DDT	0.9	0.15	0.001	56	NA	0.16	0.001
PCBs	0.83	ND	0.014	49	NA	1.04	0.05
TPH ⁴	8000	ND	NA	43900	NA	ND	NA
ethyl-							
benzene	1,800,000	ND	a ₃₂₀₀₀	0.16	NA	ND	NA
benzene	1,800,000	ND	a ₅₃₀₀	0.16	NA	0.067	NA
toluene	6,000,000	ND	^a 17500	0.15	NA	ND	NA
1: Ambier	1: Ambient water quality criteria for the protection of aquatic organisms. Freshwater chronic						
criteria	presented (El	PA, 1986)					

2: Lindsay (1979).

 Effective range-low; the concentration representing the lowest 10 percentile value for the data in which effects were observed or predicted in studies compiled by Long and Morgan (1990).
 Total Petroleum Hydrocarbons

+ Hardness-dependent criteria; 100 mg/l CaCO₃ used.

a Freshwater acute criteria, no chronic criteria available

NA Screening level not available

ND Not detected at method detection limit

nated soils in the United States. The concentrations of the trace elements in sediments were compared to Effective Range-Low (ER-L) values of Long and Morgan (1990). Only lead and mercury in sediments exceeded their ER-L values.

In areas where jet fuels were stored or burned, soils and groundwater had elevated concentrations of volatile organic compounds. Several of these sites were near surface drainages and there was some evidence that fuel had migrated to the adjacent surface water.

PCBs were detected at high concentrations in groundwater, soils, and sediments. The highest concentrations were measured in soil samples from the salvage yard and the transformer storage area. DDT was detected in all media sampled, including surface waters draining areas of the FAA site. DDT concentrations in soils were high at three of the five major sites.

	FAA Technical Center Atlantic City Airport
NOAA Trust Habitats and Species	Surface water and sediment samples were taken largely from the south branch of Mill Stream with a few samples from the north branch. No sampling was done in the Atlantic City reser- voirs, so it is not known if contamination is migrating below the reservoirs into Absecon Creek. Anadromous and marine species use the tidally influenced portion of Absecon Creek up to the impassable dam at the base of the Lower Atlantic City Reservoir (Table 2; Boriek personal communication 1990; McClain personal communication 1990). There was once a spawning ground for alewife near the base of
Table 2. Species and habitat use in the tidally influenced portion of Absecon Creek up to the lower Atlantic City Reservoir dam.	Table available in hardcopy
	 the dam, but studies in the early 1970s found no evidence of spawning fish (Boriek personal communication 1990). Anadromous species may also be able to access Jarrets Run or the unnamed stream southeast of the site (TRC 1988). The New Jersey Department of Fish, Game, and Wildlife has no restoration plans that would allow anadromous species access to areas above the dam. A number of marine and estuarine species use the lower portions of Absecon Creek for foraging, including blue crab. Men-

	FAA Technical Center Atlantic City Airport
NOAA Trust Habitats and Species, cont.	haden, alewife, herring, and spot are fished commercially along the coast. Bluefish are an important offshore recre- ational fishery.
References	Boriek, M., New Jersey Bureau of Freshwater Fisheries, Divi- sion of Fish, Game and Wildlife, Lebanon, New Jersey, per- sonal communication, June 26, 1990. Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R., and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA-52. 175 pp.+ Appendices.
	McClain, J., New Jersey Bureau of Marine Fisheries, Division of Fish, Game, and Wildlife, Atlantic City, New Jersey, personal communication, June 26, 1990.
	Roy F. Weston. 1984. Assessment of potential pollution sources near the proposed Atlantic City Wellfield. Atlantic City, New Jersey: Municipal Utilities Authority. Unpub- lished.
	TRC Environmental Consultants. 1988. Environmental inves- tigation/feasibility study. FAA Technical Center. Atlantic City Airport, New Jersey. Volumes I-III. Atlantic City, New Jersey: Federal Aviation Administration.
	U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87- 003.

	Koppers Company	Facilities			
Site Exposure Potential, cont.	boundary of the site River 1 km downstro Run. From its conflu River flows north alo continues 15 km dow Soil in the vicinity of 1980). The groundw face. Groundwater is and the associated w drawal from water s	. White Cla eam of the p uence with ong a tidall wnstream to f the site is vater exists movement vetlands, bu upply well	ay Creek enter river's conflue White Clay Cr y influenced v o join the Dela primarily sand within 3 m of tends to be tow it high grounce s may alter thi	s the Christina nce with Hersey reek, the Christi vetlands area an ware River. d and gravel (Le the ground sur- ward the stream lwater with- is pattern.	y na id ee
	Based on existing da Koppers site to the a tion of surface water deposition.	ita, contam idjacent sur runoff and	inant transpor face waters is l associated sc	t from the primarily a fun il erosion and	. C -
Site-Related Contamination	Surface water, soil, a only four locations of 1980. PAHs were de sediment collected. waters. Maximum c are shown in Table 1 soil values were ava 1979)).	and sedime luring a site etected at el No contam oncentratic (Glenn an ilable for th	nt samples we e inspection co levated levels inants were do ons of PAHs do d Lee 1980). (P nese compound	re collected from onducted in May in the soil and etected in surface etected at the sit No average U.S. ds (Lindsay	m y ce te
ጥ- Ll- 1		Soil	Sedin	nent	
Maximum concentrations of		Soil ma/ka	Sediment ma/ka	ER-L ¹ mg/ka	
PAHs in surface water, soil, and sediment collected at the site.	ORGANIC COMPOUNDS benzo(a)anthracene anthracene benzo(a)pyrene pyrene benzo(b)fluoranthene fluoranthene fluorene phenanthrene chrysene Total PAH 1: Effective range-low; percentile value for to predicted in studies NA Screening level not	42 25 63 76 91 76 ND 11 55 440 the concentrat the data in whic compiled by Lo available	3.9 7.4 11.0 1.8 8.5 1.9 0.9 2.5 6.3 44.0 ion representing the ch effects were obse ong and Morgan (19	0.230 0.085 0.400 0.350 NA 0.600 0.035 0.225 0.400 4.0 Plowest 10 prved or 190).	

	Koppers Company Facilities
Site-Related Contamination, <i>cont</i> .	The highest concentrations of individual PAHs were found in soil sampled from the old wastewater treatment pond. The maximum total PAH concentrations in soil exceeded 400 mg/ kg. PAHs were elevated in sediment collected from areas upstream and downstream from the Koppers site, at levels approximately one tenth those found in soil. Based on the limited sampling conducted, PAH contamination of sediment may not be solely due to past wood-treating operations at the site.
NOAA Trust Habitats and Species	The Christina River supports a wide variety of anadromous, catadromous, and estuarine species (Table 2; Miller personal communication 1990; Saveikis personal communication 1990; Shirey personal communication 1990). Blueback herring, alewife, white perch, striped bass, American eel, Atlantic menhaden, bay anchovy, and spot are species of particular interest to NOAA in the Christina and Delaware rivers due to their commercial importance or abundance. Alewife, blueback herring, and white perch spawn in the Christina River, and striped bass use it as a nursery area (Miller personal commu- nication 1990).
Table 2. Species and habitat use in the Christina River near the site.	Table available in hardcopy
	Juvenile life stages of estuarine-dependent species such as Atlantic menhaden, bay anchovy, and spot use the Christina River seasonally. The catadromous American eel is present throughout the entire Delaware basin, and uses a variety of habitats as adult foraging grounds (Shirey personal communi- cation 1990). Blue crab are common in the Christina and Delaware rivers

	Koppers Company Facilities
NOAA Trust Habitats and Species, cont.	Blue crab, American shad, and striped bass are fished commer- cially in the Delaware River near its confluence with the Chris- tina River. Important recreational fisheries for blue crab, American shad, striped bass, and white perch occur in the Christina River and in the lower reaches of the Delaware River (Miller personal communication 1990). In addition, large fresh- water fisheries on both rivers harvest channel catfish, large- mouth bass, yellow perch, black crappie, and sunfish.
References	Glenn, G. and C. K. Lee. 1980. Koppers/DuPont Inspection, 30 May 1980 Memorandum. Dover, Delaware: Ecology and Envi- ronment.
	Lee, C. K. 1980. Resample Koppers Hazardous Waste Site, 22 September 1980 Memorandum. Dover, Delaware: Ecology and Environment.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R., and L.G. Morgan. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA-52. 175 pp.+ Appendices.
	Miller, R., Delaware Department of Natural Resources, Division of Fish and Wildlife, Little Creek, Delaware, personal communi- cation, February 28, 1990.
	Saveikis, D., Delaware Department of Natural Resources, Divi- sion of Water Resources, Dover, Delaware, personal communi- cation, February 28, 1990.
	Shirey, C. Delaware Department of Natural Resources, Division of Fish and Wildlife, Little Creek, Delaware, personal communi- cation, February 28, 1990.
	Silar, T. 1987. A hazard ranking system for Koppers Company facilities site. Washington, D.C.: U.S. Environmental Protection Agency, Hazardous Site Control Division.

	Publicker Industries
Site Exposure Potential, cont.	aquifer and a deep, confined aquifer occur beneath the site. The shallow aquifer is recharged by surface infiltration and leakage from sewer and water lines. The recharge area for the deep aquifer is west of the Publicker site. Groundwater in the shallow aquifer flows radially to the north, south, and east from an area of high elevation near the center of the site.
	Both surface water and groundwater discharge represent potential pathways of contamination from the site to NOAA resources and associated habitats. Contaminated sediments represent a secondary source of contamination for aquatic biota.
Site-Related Contamination	In 1986, Dames and Moore collected groundwater and soil samples as part of an environmental evaluation of the site. Results indicated the presence of several volatile and semi- volatile organic compounds and inorganic substances in these matrices at elevated concentrations. Most organic and inor- ganic compounds detected in soil exceeded background con- centrations established for eastern U.S. soil. Toluene was present in groundwater at concentrations 10 times greater than ambient water quality criteria for the protection of fresh- water or marine organisms (Dames and Moore 1986; EPA 1986).
	In 1988, the Pennsylvania Department of Environmental Re- sources conducted additional, limited sampling of soil, groundwater, surface water, and sediment to evaluate risks to human health and the environment (Table 1; Tetra Tech 1990). Study results, similar to the 1986 Dames and Moore evalua- tion, confirmed the patchy distribution of contaminants at the Publicker site. The levels of toluene and lead in groundwater were very high. PAHs, PCBs (Aroclor 1254), and other or- ganic compounds were detected in soil and sediment at con- centrations exceeding background or low effect range values

Publicker Industries

Site-Related C

Site-Related		1	Water		S	Soil	Sedim	ent
ontamination,		Ground water	Surface Water	AWQC ¹	Soil	Average ²	Storm Drain Sediment	ER-L ³
cont.		µg/l	µg/l	µg/l	mg/kg	mg/kg	mg/kg	mg/kg
	INORGANIC SL	JBSTANCES					0 0	
Table 1	cadmium	ND	ND	1.1+	10.4	0.06	2.3	5
Maximum	chromium	40	ND	11	176	100	60	80
concentrations	copper	27	38	12+	3070	30	880	70
of contaminants	lead	45,000	205	3.2+	655	10	370	35
of concorp at the	mercury	ND 110	ND 120	0.012	5.3	0.03	1.2	0.15
Publicker site.			120	110'	091	50	390	120
	toluene	120000	ND	a _{17500*}	110	NA	350	NA
	benzo(a)	ND	ND	NA	3500	NA	1400	0.4
	naphthalene	ND	ND	620*	110	NA	230	0.34
	anthracene	ND	ND	NA	350	NA	420	0.15
	fluoranthene	ND	ND	^a 3,980*	1700	NA	2300	0.60
	phenanthrene	ND	ND	NA	630	NA	1500	0.225
	pyrene	ND	ND	NA	1500	NA	1800	0.35
	anthracene	ND	ND	NA	1300	NA	1300	0.23
	chrysene	ND	ND	NA	1600	NA	1500	0.40
	PCBs	ND	ND	0.014	1800	NA	ND	0.05
	(1990). + Hardnes * Insufficie Level (L a AWQC f NA Compar ND Not dete (ER-L) for t sediment v exceeded th	es-dependent ont data to de OEL) reshwater ac ison value no ected at meth these su alues fo heir scre	e criteria; 10 evelop crite oute criteria ot available <u>ood detectio</u> bstanc r copp eening	00 mg/l Ca0 pria, value p on limit es (Lon er, leac values.	203 used resented is c criteria ava ng and 1 d, mercu	the Lowest (ailable (EPA Morgan ury, and	Observed Effect 1986). 1990). S d zinc gree	oil and eatly
NOAA Trust Habitats and Species	The Delaw, several ana (Table 2; D personal co shortnose s years and r grounds. Species of s cial import American s tic and sho	are Rive dromou elaware ommuni sturgeor nigrates special i ance or shad, ale	er near us, cata e River cation a, forag throu nterest abund ewife, l	the site adromo Basin 1989). ges in tl gh the t to NO ance in herring	e provie us, and Commi An enc ne regic area to AA bec the are , ancho	des seas estuari ssion 19 langere on durin its upst cause of ea inclu vy, whi	sonal hab ine specie 988; Kauf d species ng its juv tream spa tream spa their con de stripe ite perch,	itat for es ffman s, the enile awning mmer- d bass, Atlan-

	Publicker Industries					
NOAA Trust Habitats and Species, cont. Table 2. Habitat and species use in	American shad, alewife, herring, and striped bass are commer- cially fished on the Atlantic coast and are currently managed by the National Marine Fisheries Service. There are also local sport					
the Delaware River near the site.	Table available in hardcopy					
	fisheries for several of these species, although an advisory is in effect for human consumption of white perch, blue crab, and channel catfish in this section of the river due to high levels of PCBs (Delaware River Basin Commission 1988; Kauffman per- sonal communication 1989).					
References	Dames and Moore. 1986. Preliminary Environmental Evalua- tion Report. Former Publicker Industries Refinery. Fairfax, Virginia: Tetra Tech, Inc.					
	Delaware River Basin Commission. 1988. Fish Health and Contamination Study. West Trenton, New Jersey: Pennsylvania Coastal Zone Management Program, Delaware Estuary Use Attainability Project. DEL USA Project Element 10.					
	Kauffman, M., Area Fisheries Manager, lower Delaware drain- age and lower Susquehanna drainage, Pennsylvania Fish Com- mission, Revere, Pennsylvania, personal communications, Octo- ber 2 and 16, 1989.					
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.					

	Publicker Industries
References , cont.	Long, E.R. and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA-52. 175 pp.+ Appendices.
	Tetra Tech, Inc. 1990. Remedial Investigation and Feasibility Study. Revised Draft Work Plan. Publicker Industries site. Philadelphia: U.S. Environmental Protection Agency, Region III. 105 pp. + Attachments
	U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5- 87-003.

Naval Air Station Cecil Field

Jacksonville, Florida Region 4 FL5170022474

Site Exposure Potential The Naval Air Station (NAS) Cecil Field occupies 8,094 hectares, approximately 22 km southwest of Jacksonville, Florida (Figure 1). NAS Cecil Field was constructed in 1941 and currently supports the operation and maintenance of naval weapons and aircraft under the command of the Sea Strike Wings Atlantic. The site comprises four separate facilities: the main station (Cecil Field), the Outlying Field Whitehouse, and the Yellow Water Weapons Department and the Pinecastle Warfare Range, which are outside the area shown in Figure 1. The area surrounding these facilities is rural and land use is primarily for forestry and agriculture (Brown and Caldwell 1989).

	Naval Air Station Cecil Field
Sito Exposuro	A variaty of wastes have been generated as a result of activities
Potential, cont.	A variety of wastes have been generated as a result of activities at NAS Cecil Field. Oils, fuels, solvents, paints and thinners, pesticides, and sewage sludge have been buried or burned at two on-site landfills and fourteen disposal areas. In addition, three sites have been used for ordnance disposal. Handling, storage, and disposal practices of these materials have contrib- uted to contamination of groundwater, soil, and sediment at NAS Cecil Field.
	Surface water runoff from the site is conveyed to local streams, including Yellow Water Creek, Rowell Creek, and Sal Taylor Creek, by a system of storm sewers and unlined ditches. The confluence of Rowell and Sal Taylor creeks lies on the western edge of the main station boundary. Sal Taylor continues southwest for 3 km before meeting Yellow Water Creek, the receiving stream of all surface waters leaving the site. Yellow Water Creek flows south from the Sal Taylor Creek tributary for 13 km to join Black Creek. Black Creek then flows south- east for 27 km to the St. Johns River, which drains to the Atlan- tic Ocean. The distance from the NAS Cecil Field to the St. Johns River is about 40 km.
	Three groundwater aquifers underlie the Cecil Field site: the surficial aquifer, the secondary artesian aquifer, and the Floridan aquifer. The surficial aquifer is very shallow and exists in unconsolidated sand. This aquifer discharges to surface water bodies and is the primary source of base flow for many streams in the area. The other aquifers are much deeper and are isolated from the surficial aquifer by low permeability geological features.
	Both surface water and groundwater movement represent potential pathways of contamination from NAS Cecil Field to nearby streams. The majority of the contaminated areas identi- fied at Cecil Field are close to Rowell Creek and Lake Fretwell. Both of these surface waters serve as the receiving points for groundwater discharge and surface water flow emanating from the sites. Known sites of contamination are also situated along the other creeks.
Site-Related Contamination	Only contaminants at the main station of NAS Cecil Field and the Yellow Water Weapons Department have been investi-
Naval Air Station Cecil Field

Site-Related Contamination,

cont.

gated to date and are addressed here (Brown and Caldwell 1989). Preliminary data indicate contaminated groundwater, surface water, soil, and sediment (Table 1; Brown and Caldwell 1989). The major contaminants of concern are cadmium, chromium, lead, and mercury, which were detected in groundwater at high concentrations. Groundwater from the landfills had some of the highest concentrations, and the most frequent occurrences of trace elements. Surface water collected from a rubble disposal area had high concentrations of mercury. Soil and sediment from a number of areas showed elevated concentrations of cadmium and lead. Low levels of

Table 1.
Maximum
concentrations of
major contaminants
in the vicinity of the
site compared with
applicable screening
levels.

	Water			0,	Soil	Sedim	ient
	Ground- water μg/l	Surface Water µg/l	AWQC ¹ µg/l	Soil mg/kg	Average ² U.S. Soil mg/kg	Sediment mg/kg	ER-L ³ mg/kg
INORGANIC	SUBSTANCE	S					
cadmium	12	ND	1.1+	17	0.06	20	5
chromium	425	ND	11	16	100	9	80
lead	573	ND	3.2+	599	10	14	35
mercury	0.8	0.3	0.012	NT	0.03	NT	0.15
ORGANIC C PCBs	OMPOUNDS NT	NT	0.014	0.58	NA	ND	0.05
1: Ambi criter 2: Linds	ent water quali ia presented (E ay (1979)	ty criteria fo PA 1986).	r the protect	tion of aqua	tic organisms	5. Freshwater	chronic
3: Effective range-low; the concentration representing the lowest 10 percentile value for the data in which effects were observed or predicted in studies compiled by Long and Morgan (1990).							
+ Hard	ness-depender	nt criteria; 10	00 mg/l CaC	O ₃ used.			
NT Not a	nalyzed						
		بالمحاجات المحاد	ere Direction allocates	سائمه المسائلة			

volatile organic and semi-volatile organic compounds were detected in groundwater and soil sampled from a number of areas.

NOAA Trust
Habitats and
SpeciesBlack Creek and the St. Johns River support numerous habi-
tats for marine, estuarine, and anadromous fish and inverte-
brates, including several commercially important species and
one endangered species (Table 2; Brown and Caldwell 1989;
Wodall personal communication 1990). It is not known to
what extent these species utilize the tributary streams leading
from the site to Black Creek. Striped bass and blue crab
spawn throughout Black Creek. The West Indian manatee, a

	Naval Air Station Cecil Field
NOAA Trust Habitats and Species, cont.	federally endangered species, occurs in the St. Johns River and has been reported in Black Creek on several occasions, as far upstream as Middleburg, 16 km upstream of the site.
Table 2. Species and habitat use of Black Creek and the lower St. Johns River estuary.	Table available in hardcopy
	 Black Creek is a very popular area for recreational fisheries and water-related sports, including swimming, boating, and water skiing. Recreational fisheries in the creek include those for blue crab, striped bass, and red drum. Blue crab are also fished commercially in Black Creek and eels are fished commercially in its lower reaches near the St. Johns River. The lower St. Johns River near the confluence of Black Creek is tidally influenced and provides estuarine habitat for many marine and estuarine species, including nursery grounds for shrimp, spotted seatrout, weakfish, spot, Atlantic croaker, and red drum (Brown and Caldwell 1989; Wodall personal communication 1990).

	Naval Air Station Cecil Field
References	Brown and Caldwell. 1989. Naval Air Station, Cecil Field, Jacksonville, Florida. Draft Final RI/FS Work Plan. Charles- ton, South Carolina: Department of the Navy, Southern Divi- sion, Naval Facilities Engineering Command.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R., and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA-52. Seattle: Coastal and Estuarine Assessment Branch, NOAA. 175 pp.+ Appendices.
	U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5- 86-001.
	Wodall, S., Environmental Investigator, Lake City Regional Office, Florida Fish and Game Commission, Lake City, Florida, personal communication, June 28, 1990.

	Chem-Form, Inc.				
Site Exposure Potential, cont.	ary. Cypress Cree way approximate Groundwater disc primary pathway sources.	ek Canal flo ly 7 km froi charge to ne of contami	ows into tl m the site earby cana nant migr	he Intraco als and w ration to I	oastal Water aterways is NOAA re-
Site-Related Contamina- tion	Results from preli groundwater indi media (NUS 1986) ing PCBs, were fo survey. Maximur matrices sampled cable screening le	iminary sur cate the pre). Low leve und in soils n concentra are present vels (NUS 1	veys of co esence of t ls of orga s in one an tions of c ted in Tab 1986; Wes	ontaminat trace elem nic comp rea of the ontamina de 1 along tinghouse	tion in soil a nents in the ounds, inclusite site in the 1 ants in the g with appli e 1990).
Tabla 1		W	/ater	S	oil
Maximum		Ground-			Average ²
concentrations of		water		Soil ma/ka	U.S. Soil ma/ka
major	INORGANIC SUB	STANCES	μ9/1	iiig/itg	iiig/itg
contaminants dotoctod in	antimony	ND	1600*	181	1
groundwater and	cadmium	40 725	1.1+	/1 23/00	100
soil collected at	cobalt	280	NA	36000	8
son concelle at	· · · · · · · · · · · · · · · · · · ·				
the Chem-Form	copper	269	12+	955	30
the Chem-Form site.	copper cyanide lead	269 15 ND	12+ 5.2	955 1100 782	30 NA 10
the Chem-Form site.	copper cyanide lead mercury	269 15 ND 6.7	12+ 5.2 3.2+ 0.012	955 1100 782 195	30 NA 10 0.03
the Chem-Form site.	copper cyanide lead mercury nickel	269 15 ND 6.7 550	12 ⁺ 5.2 3.2 ⁺ 0.012 160 ⁺	955 1100 782 195 49500	30 NA 10 0.03 40
the Chem-Form site.	copper cyanide lead mercury nickel silver	269 15 ND 6.7 550 7	12 ⁺ 5.2 3.2 ⁺ 0.012 160 ⁺ 0.12	955 1100 782 195 49500 12	30 NA 10 0.03 40 0.05
the Chem-Form site.	copper cyanide lead mercury nickel silver	269 15 ND 6.7 550 7 OUNDS	12+ 5.2 3.2+ 0.012 160+ 0.12	955 1100 782 195 49500 12	30 NA 10 0.03 40 0.05
the Chem-Form site.	copper cyanide lead mercury nickel silver ORGANIC COMP PCBs	269 15 ND 6.7 550 7 OUNDS ND	12+ 5.2 3.2+ 0.012 160+ 0.12	955 1100 782 195 49500 12 4.6	30 NA 10 0.03 40 0.05 NA
the Chem-Form site.	copper cyanide lead mercury nickel silver ORGANIC COMPO PCBs 2,4-dinitro phenol 2-methvl-4.6-	269 15 ND 6.7 550 7 OUNDS ND ND	12+ 5.2 3.2+ 0.012 160+ 0.12 0.014 NA	955 1100 782 195 49500 12 4.6 100	30 NA 10 0.03 40 0.05 NA NA
the Chem-Form site.	copper cyanide lead mercury nickel silver ORGANIC COMPO PCBs 2,4-dinitro phenol 2-methyl-4,6- dinitrophenol	269 15 ND 6.7 550 7 OUNDS ND ND ND	12+ 5.2 3.2+ 0.012 160+ 0.12 0.014 NA	955 1100 782 195 49500 12 4.6 100 100	30 NA 10 0.03 40 0.05 NA NA NA
the Chem-Form site.	copper cyanide lead mercury nickel silver ORGANIC COMP PCBs 2,4-dinitro phenol 2-methyl-4,6- dinitrophenol pentachlorophenol	269 15 ND 6.7 550 7 OUNDS ND ND ND	12+ 5.2 3.2+ 0.012 160+ 0.12 0.014 NA NA	955 1100 782 195 49500 12 4.6 100 100 100	30 NA 10 0.03 40 0.05 NA NA NA NA
the Chem-Form site.	copper cyanide lead mercury nickel silver ORGANIC COMPO PCBs 2,4-dinitro phenol 2-methyl-4,6- dinitrophenol pentachlorophenol 4-nitrophenol 1: Ambient wa	269 15 ND 6.7 550 7 OUNDS ND ND I ND ND I ND ND	12+ 5.2 3.2+ 0.012 160+ 0.12 0.014 NA NA NA NA	955 1100 782 195 49500 12 4.6 100 100 100 100 100 100	30 NA 10 0.03 40 0.05 NA NA NA NA NA NA NA NA NA NA
the Chem-Form site.	copper cyanide lead mercury nickel silver ORGANIC COMP PCBs 2,4-dinitro phenol 2-methyl-4,6- dinitrophenol pentachlorophenol 4-nitrophenol 1: Ambient wa organisms.	269 15 ND 6.7 550 7 OUNDS ND ND I ND ND I ND ND tter quality criter Freshwater chr	12+ 5.2 3.2+ 0.012 160+ 0.12 0.014 NA NA NA NA NA ia for the pro- ronic criteria p	955 1100 782 195 49500 12 4.6 100 100 100 100 tection of aquoresented (El	30 NA 10 0.03 40 0.05 NA NA NA NA NA NA NA NA NA NA NA NA NA
the Chem-Form site.	copper cyanide lead mercury nickel silver ORGANIC COMP PCBs 2,4-dinitro phenol 2-methyl-4,6- dinitrophenol pentachlorophenol 4-nitrophenol 1: Ambient wa organisms. 2: Lindsay (19 ND: Not detecte available	269 15 ND 6.7 550 7 OUNDS ND ND ND I ND I ND I ND I ND I ND I Ereshwater chr 179). d at method det	12+ 5.2 3.2+ 0.012 160+ 0.12 0.014 NA NA NA NA ia for the pro- ronic criteria p	955 1100 782 195 49500 12 4.6 100 100 100 100 100 tection of aqu oresented (El	30 NA 10 0.03 40 0.05 NA NA NA NA NA NA NA A attic PA 1986).
the Chem-Form site.	copper cyanide lead mercury nickel silver ORGANIC COMP PCBs 2,4-dinitro phenol 2-methyl-4,6- dinitrophenol pentachlorophenol 4-nitrophenol 1: Ambient wa organisms. 2: Lindsay (19 ND: Not detecte available * Insufficient	269 15 ND 6.7 550 7 OUNDS ND ND ND ND ND ter quality criter Freshwater chr 179). d at method det	12+ 5.2 3.2+ 0.012 160+ 0.12 0.014 NA NA NA NA ia for the pro- ronic criteria pro- ronic criteria pro- ronic criteria pro- ronic criteria pro- ronic criteria pro-	955 1100 782 195 49500 12 4.6 100 100 100 100 tection of aquoresented (El letection limit	30 NA 10 0.03 40 0.05 NA NA NA NA NA NA NA NA NA NA NA NA SA SA SA SA SA SA SA SA SA SA SA SA SA
the Chem-Form site.	copper cyanide lead mercury nickel silver ORGANIC COMP PCBs 2,4-dinitro phenol 2-methyl-4,6- dinitrophenol pentachlorophenol 4-nitrophenol 1: Ambient wa organisms. 2: Lindsay (19 ND: Not detecte available * Insufficient Lowest Obs	269 15 ND 6.7 550 7 OUNDS ND ND ND ND iter quality criter Freshwater chr 179). d at method det data to develop served Effect Le enendent criteri	12+ 5.2 3.2+ 0.012 160+ 0.12 0.014 NA NA NA NA ia for the pro- ronic criteria p rection limit, c criteria. Valu vel (LOEL). a: 100 mg/ C	955 1100 782 195 49500 12 4.6 100 100 100 100 100 tection of aqu presented (El letection limit ue presented	30 NA 10 0.03 40 0.05 NA NA NA NA NA PA 1986).

	Chem-Form, Inc.
Site-Related Contamination, cont.	Mercury was present at very high concentrations in ground- water samples from the Chem-Form site. Elevated concentra- tions of cadmium, chromium, copper, nickel, silver, and cya- nide were also measured in groundwater samples collected at the site. No organic compounds were found in groundwater. Trace elements were also detected at elevated levels in soils collected from the Chem-Form site. Chromium and nickel were present in most samples at very high concentrations. Antimony, cadmium, cobalt, copper, lead, mercury, and cya- nide were also measured at elevated levels. Several phenolic compounds and PCBs were also detected in soils at elevated levels.
NOAA Trust Habitats and Species	The habitats of potential interest to NOAA are the Cypress Creek Canal and the Intracoastal Waterway. The canal is essentially fresh water at its closest point to the site (less than one kilometer). Canals in this region have been heavily im- pacted by water management practices, and no commercial or recreational fisheries are present in the canal (Conklin per- sonal communication 1990). No anadromous fish are known to occur in the canal. Some freshwater species have been observed, including catfish, mosquito fish, and freshwater bass (Conklin personal communication 1990; Ferril personal communication 1990). At this time, there are insufficient data on contamination to indicate a direct pathway to the Intrac- oastal Waterway.
References	 Conklin, E., Director Office of Programs and Planning, Florida Department of Natural Resources, Tallahassee, personal com- munication, July 10, 1990. Ferril, D., Biologist, U.S. Fish and Wildlife Service, Vero Beach, Florida, personal communication, August6, 1990. Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u>. New York: John Wiley & Sons. 449pp.
References	 Conklin, E., Director Office of Programs and Planning, Florida Department of Natural Resources, Tallahassee, personal com- munication, July 10, 1990. Ferril, D., Biologist, U.S. Fish and Wildlife Service, Vero Beach, Florida, personal communication, August6, 1990. Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u>. New York: John Wiley & Sons. 449pp.

	Chem-Form, Inc.
References, cont.	NUS Corporation. 1986. Site screening investigation report, Chem-Form, Inc./Wilson Concepts, Inc. site, Pompano Beach, Florida. Atlanta: U.S. Environmental Protection Agency, Re- gion 4. Appendices.
	U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003.
	Westinghouse. 1990. Remedial investigation and feasibility study workplan, Chem-Form site. Atlanta: U.S. Environmental Protection Agency, Region 4.

	Ciba-Gei	gy Coi	porati	on				
Site Exposure Potential, cont.	streams, l to the sou lished tha aquifer (U Surface w represent from the G a seconda	akes, an theast. t the de JSFWS rater ru the pri Ciba-Ge ry sour	nd mars Hydro eeper ac 1986). noff or mary p eigy site ce of to	shes. (ogeolog quifer discha athway e. Con oxic cho	Ground gic inve is isolat rge and ys of co tamina emicals	water f stigatio ed fron I groun ntamin ted sed	low is go ons have n the sha dwater t ant trans iments r	enerally estab- allow transport sport nay act a
Site-Related Contamination	Past studi contamina soil, and s mum valu Although characteri	es indi ated wi sedimen ies repo few da	cate tha th pest nt were orted an ta were undwat	at soil a icides. analyz ce prese e prese er qual	and gro Contai zed as p ented in nted in lity cor	undwa minants oart of t n Table the fins rective	ter at the s in surfa he RI/F 1 (BCM al report actions	e site are ace water S; maxi- 1990). as to are being
	characteri	ze grot	inuwai	ei qua	iity, toi	lettive	actions	are being
Table 1.			Matar	-	6	oil	Sodin	aont
			water		3		Seuii	lent
Maximum		Oneveral	owner		3	Average	Sedin	
Maximum concentrations of		Ground- water	Surface Water	AWQC ¹	Soil	Average U.S.	Sediment	
Maximum concentrations of major		Ground- water µg/l	Surface Water µg/l	AWQC ¹ µg/l	Soil mg/kg	Average U.S. Soil ² mg/kg	Sediment mg/kg	ER-L ³ mg/kg
Maximum concentrations of major contaminants		Ground- water µg/l SUBSTANC	Surface Water µg/I CES	AWQC ¹ µg/l	Soil mg/kg	Average U.S. Soil ² mg/kg	Sediment mg/kg	ER-L ³ mg/kg
Maximum concentrations of major contaminants found in	INORGANIC S chromium	Ground- water µg/l SUBSTANC <18	Surface Water µg/I CES 40	AWQC ¹ /I 	Soil mg/kg 1500	Average U.S. Soil ² mg/kg	Sediment mg/kg 78	ER-L ³ mg/kg
Maximum concentrations of major contaminants found in groundwater,	INORGANIC S chromium copper lead	Ground- water µg/l SUBSTANC <18 <12 ND	Surface Water µg/I CES 40 29 27	AWQC ¹ <u>µg/l</u> 11 12 ⁺ 2.0 ⁺	Soil mg/kg 1500 131000 920	Average U.S. Soil ² mg/kg 100 30	Sediment mg/kg 78 30 23	ER-L ³ mg/kg 80 70
Maximum concentrations of major contaminants found in groundwater, surface water, soil,	INORGANIC S chromium copper lead mercury	Ground- water µg/l SUBSTANO <18 <12 ND ND	Water Surface Water µg/I CES 40 29 27 ND	AWQC ¹ µg/l 11 12 ⁺ 3.2 ⁺ 0.012	Soil mg/kg 1500 131000 920 3.9	Average U.S. Soil ² mg/kg 100 30 10 0.03	Sediment mg/kg 78 30 23 0.31	ER-L ³ mg/kg 80 70 35 0.15
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment	INORGANIC S chromium copper lead mercury nickel	Ground- water µg/l SUBSTANO <18 <12 ND ND 23	Water Surface Water µg/l CES 40 29 27 ND 37	AWQC ¹ µg/l 11 12 ⁺ 3.2 ⁺ 0.012 160 ⁺	Soil mg/kg 1500 131000 920 3.9 670	Average U.S. Soil ² mg/kg 100 30 10 0.03 40	Sediment mg/kg 78 30 23 0.31 32	ER-L ³ mg/kg 80 70 35 0.15 30
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc	Ground- water µg/l SUBSTANG <18 <12 ND ND 23 91	Water Surface Water µg/l DES 40 29 27 ND 37 250	AWQC ¹ µg/l 11 12 ⁺ 3.2 ⁺ 0.012 160 ⁺ 110 ⁺	Soil mg/kg 1500 131000 920 3.9 670 130	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50	Sediment mg/kg 78 30 23 0.31 32 140	ER-L ³ mg/kg 80 70 35 0.15 30 120
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91	Water Surface Water µg/I DES 40 29 27 ND 37 250	AWQC ¹ µg/l 11 12+ 3.2+ 0.012 160+ 110+	Soil mg/kg 1500 131000 920 3.9 670 130	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50	Sediment mg/kg 78 30 23 0.31 32 140	ER-L ³ mg/kg 80 70 35 0.15 30 120
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91 91 MPOUND NT	Water Surface Water µg/l CES 40 29 27 ND 37 250 S ND	AWQC ¹ <u>µg/l</u> 11 12+ 3.2+ 0.012 160+ 110+ NA	Soil mg/kg 1500 131000 920 3.9 670 130 26000	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50	Sediment mg/kg 78 30 23 0.31 32 140 40	ER-L ³ mg/kg 80 70 35 0.15 30 120
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91 0MPOUND NT NT	Water Surface Water µg/l CES 40 29 27 ND 37 250 S ND ND	AWQC ¹ µg/l 11 12+ 3.2+ 0.012 160+ 110+ NA NA	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91 MPOUND- NT NT NT NT	Water Water Water UES 40 29 27 ND 37 250 S ND ND ND ND ND	AWQC ¹ µg/l 11 12 ⁺ 3.2 ⁺ 0.012 160 ⁺ 110 ⁺ NA NA 0.001	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 24000	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 26	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC α-BHC	Ground- water µg/l SUBSTANC <18 <12 ND 23 91 23 91 MPOUND NT NT NT NT	Water Surface Water µg/I CES 40 29 27 ND 37 250 S ND ND ND ND	AWQC ¹ µg/l 11 12+ 3.2+ 0.012 160+ 110+ NA NA 0.001 NA	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1 8	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC β-BHC δ DUO	Ground- water µg/l SUBSTANC <18 <12 ND 23 91 0MPOUND NT NT NT NT NT NT	Water Surface Water µg/l DES 40 29 27 ND 37 250 S ND ND ND ND ND	AWQC ¹ µg/l 11 12+ 3.2+ 0.012 160+ 110+ NA NA 0.001 NA NA NA	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC δ-BHC δ-BHC lindane	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91 MPOUND NT NT NT NT NT NT NT	Water Surface Water <u>µg/l</u> DES 40 29 27 ND 37 250 S ND ND ND ND ND ND ND ND	AWQC ¹ µg/l 11 12 ⁺ 3.2 ⁺ 0.012 160 ⁺ 110 ⁺ NA NA 0.001 NA NA NA 0.08	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000 63000	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52 1 2	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA NA NA
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC β-BHC δ-BHC lindane endrin	Ground- water µg/l SUBSTANC <18 <12 ND 23 91 MPOUND NT NT NT NT NT NT NT NT NT	Water Surface Water µg/I CES 40 29 27 ND 37 250 S ND ND ND ND ND ND ND ND ND ND	AWQC ¹ µg/l 11 12+ 3.2+ 0.012 160+ 110+ NA NA 0.001 NA NA NA 0.08 0.002	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000 63000 ND	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52 1.2 0.03	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA NA NA NA NA NA 0.00002
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC β-BHC δ-BHC lindane endrin chloroform	Ground- water µg/l SUBSTANC <18 <12 ND 23 91 MPOUND NT NT NT NT NT NT NT NT NT NT NT 240	Water Water Water UP 29 27 ND 37 250 S ND ND ND ND ND ND ND ND ND ND ND ND ND	AWQC ¹ µg/l 11 12 ⁺ 3.2 ⁺ 0.012 160 ⁺ 110 ⁺ NA NA 0.001 NA NA NA 0.08 0.002 NA	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000 63000 ND 17000	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA NA NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52 1.2 0.03 0.007	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA NA NA NA NA NA NA NA
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC δ-BHC δ-BHC lindane endrin chloroform chloro- benzene	Ground- water µg/l SUBSTANC <18 <12 ND 23 91 MPOUND NT NT NT NT NT NT NT NT NT NT 240 590	Water Surface Water µg/l DES 40 29 27 ND 37 250 S ND ND ND ND ND ND ND ND ND ND ND ND ND	AWQC ¹ µg/l 11 12+ 3.2+ 0.012 160+ 110+ NA NA 0.001 NA NA NA 0.002 NA 50	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000 63000 ND 17000 12000	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52 1.2 0.03 0.007 0.22	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA NA NA NA NA NA NA NA NA
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC β-BHC lindane endrin chloroform chloro- benzene 1:	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91 MPOUND NT NT NT NT NT NT NT NT NT NT 240 590 water qualit	Water Surface Water µg/I ZES 40 29 27 ND 37 250 S ND ND ND ND ND ND ND ND ND ND ND ND ND	AWQC ¹ µg/l 11 12 ⁺ 3.2 ⁺ 0.012 160 ⁺ 110 ⁺ NA NA 0.001 NA NA 0.002 NA 50 The protect	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000 63000 ND 17000 12000 ion of aquat	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA NA NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52 1.2 0.03 0.007 0.22 5. Freshwater	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA NA NA NA NA NA NA NA NA NA NA NA
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC δ-BHC lindane endrin chloroform chloro- benzene 1: Ambient criteria p 2: Lindsav	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91 MPOUND NT NT NT NT NT NT NT NT NT NT NT 240 590 water qualit (1979).	Water Surface Water µg/I CES 40 29 27 ND 37 250 S ND ND ND ND ND ND ND ND ND ND ND ND ND	AWQC ¹ µg/l 11 12+ 3.2+ 0.012 160+ 110+ NA NA 0.001 NA NA 0.001 NA NA 0.08 0.002 NA 50 the protect	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000 63000 ND 17000 12000 ion of aquat	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA NA NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52 1.2 0.03 0.007 0.22 5. Freshwater	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA NA NA NA NA NA NA NA NA NA NA Chronic
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC β-BHC δ-BHC lindane endrin chloroform chloro- benzene 1: Ambient criteria p 2: Lindsay 3: Effective data in w (1990).	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91 MPOUND NT NT NT NT NT NT NT NT NT NT NT NT NT	Water Surface Water µg/I DES 40 29 27 ND 37 250 S ND ND ND ND ND ND ND ND ND ND ND ND ND	AWQC ¹ µg/I 11 12 ⁺ 3.2 ⁺ 0.012 160 ⁺ 110 ⁺ NA NA 0.001 NA NA 0.001 NA NA 0.002 NA 50 the protect ration repre- red or predi	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000 63000 ND 17000 12000 ion of aquat	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA NA NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52 1.2 0.03 0.007 0.22 3. Freshwater ercentile value by Long and	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA NA NA NA NA NA 0.00002 NA NA Chronic for the Morgan
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT α-BHC β-BHC δ-BHC lindane endrin chloroform chloro- benzene 1: Ambient criteria p 2: Lindsay 3: Effective data in w (1990). + Hardness	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91 MPOUND NT NT NT NT NT NT NT NT NT NT NT 240 590 water qualit (1979). e range-low; thich effects ss-dependen ng level not	Water Surface Water µg/I CES 40 29 27 ND 37 250 S ND ND ND ND ND ND ND ND ND ND ND ND ND	AWQC ¹ <u>µg/l</u> 11 12 ⁺ 3.2 ⁺ 0.012 160 ⁺ 110 ⁺ NA NA 0.001 NA NA 0.001 NA NA 0.002 NA 50 the protect ration repre- ved or predit 0 mg/l CaC	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000 63000 ND 17000 12000 ion of aquat esenting the cted in studi O ₃ used.	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA NA NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52 1.2 0.03 0.007 0.22 3. Freshwater by Long and	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA NA NA NA NA NA NA Chronic for the Morgan
Maximum concentrations of major contaminants found in groundwater, surface water, soil, and sediment collected at the site.	INORGANIC S chromium copper lead mercury nickel zinc ORGANIC CC DDD DDE DDT \$\alpha\$-BHC \$\alpha\$-BHC \$\alpha\$-BHC lindane endrin chloroform chloroform chlorosene 1: Ambient criteria p 2: Lindsay 3: Effective data in w (1990). + Hardness NA Screenii NT Not ana	Ground- water µg/l SUBSTANC <18 <12 ND ND 23 91 MPOUND NT NT NT NT NT NT NT NT NT NT NT S1 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Water Surface Water µg/I CES 40 29 27 ND 37 250 S ND ND ND ND ND ND ND ND ND ND	AWQC ¹ <u>µg/l</u> 11 12 ⁺ 3.2 ⁺ 0.012 160 ⁺ 110 ⁺ NA 0.001 NA NA 0.001 NA NA 0.002 NA 50 The protect ration repre- red or predi 0 mg/l CaC	Soil mg/kg 1500 131000 920 3.9 670 130 26000 30000 24000 910000 140000 15000 63000 ND 17000 12000 ion of aquati esenting the cted in studi O ₃ used.	Average U.S. Soil ² mg/kg 100 30 10 0.03 40 50 NA NA NA NA NA NA NA NA NA NA NA NA NA	Sediment mg/kg 78 30 23 0.31 32 140 40 26 40 7.0 1.8 0.52 1.2 0.03 0.007 0.22 5. Freshwater ercentile value by Long and	ER-L ³ mg/kg 80 70 35 0.15 30 120 NA 0.002 0.001 NA NA NA NA NA NA NA Chronic for the Morgan

	Ciba-Geigy	Corporati	on		
Site-Related Contamination, <i>cont</i> .	conducted to The majority DDT and its its metabolite tions in soils	treat group of the pest metabolites and were e	ndwater cor icides conta s and s-triaz asured at ex elevated in s	ntamination minating the ine herbicid tremely higl ediments ab	at the site. e site were es. DDT and h concentra- ove levels
	found to be a organisms (L	ssociated v ong and M	vith deleteri organ 1990)	ous effects i	n aquatic
	Other contan trace elemen elevated in se ponds. Sever their freshwa lead, and zin	ninants pre ts and volat oils in areas ral metals n ater chronic c.	sent at the C tile organic s associated neasured in a AWQC, inc	Ciba-Geigy s compounds with landfil surface wat cluding chro	ite include that were ls or effluent ers exceeded mium, copper,
	Herbicidal co trations in so evated in oth available for resources by tions of biolo surface wate (BCM 1990). water, values (CIS 1986) ar	ompounds ils through er matrices evaluation this class o gical signif r, soils, and To provide s from the C e presented	were presen out the site, of the poter f herbicide. ficance, leve sediments some comp Chemical Inf l. This data	t at extreme but were no a or screenin tial impacts To determi ls of these h are presente parison valu formation Sy base has con	ly high concen- ot highly el- ng levels are to aquatic ne concentra- erbicides in d in Table 2 es for surface vstem database npiled current
T 11 0				- Soil	Codimont
Table 2. Herbicides and		Surface water	Effects	3011	Gediment
insecticides at the			µg/l	mg/kg	mg/kg
site, and the lowest	ametryn	35.5	1.000	68,000	4.7
concentrations of	atrazine	8.4	5,700	86,000	15.7
these chemicals	chlorobenzilate	5.5 ND	2,000 550	1,200	0.22
reported by CIS to	chloropropylate	91.7	NA	520	1.52
result in either	diazinon	58.1	0.3 13 200	37,000	0.4
acute or chronic	methidathion	ND	14	47	ND
loxicity to aquatic	metolachlor	ND 14 8	NA 12.000	960 750	26.7 107
organisms.	prometryn	14.0	1,000	4,300	0.13
	propazine	12.7 5 1	NA 10	120,000	ND 27 1
	simetryn	12.9	5,000	850	7.6
	terbumeton	10.6 8 3	14,000 NA	8,700 40,000	33
	terbutylazine	90.5	NA	12,000	5.2
	tolban	105	NA	15,000	37.2
	ND Not detected	at method detection	on limit, detection lin	nit not available	

	Ciba-Geigy Corporation
NOAA Trust Habitats and Species	studies for particular compounds, and provides values for acute or chronic toxicity to aquatic organisms. No comparison values were available for soil or sediment. The habitat of primary interest to NOAA is the Tombigbee River, which provides essential habitat for many freshwater and anadromous species (Table 3; USFWS 1986; Mettee et al. 1987; Mettee personal communication 1990). The site is ap- proximately 96 km upstream from the river mouth. Although the river is usually freshwater at this point, during periods of
Table 3. Species and habitat use in the Tombigbee River near the site.	
	Table available in hardcopy
	low flow (August through September), saltwater intrusion along the river bottom may extend at least as far as the site (Mettee personal communication 1990).
	The Tombigbee River near the site is within the Mobile River delta zone and historically has served as habitat for at least four anadromous or catadromous species: Atlantic sturgeon, Alabama shad, American eel, and striped bass. Alabama shad were common in the 1940s, but have not been observed inland in the Mobile River system since the early 1970s (Mettee per- sonal communication 1990). Sturgeon also used the river for spawning and nursery habitat, but have not been observed in

	Ciba-Geigy Corporation
NOAA Habitats and Species, <i>cont</i> .	upstream areas of the river in decades, although dead speci- mens have been found at the mouth of the Mobile River within the last year (Mettee personal communication 1990). Striped bass have been observed upstream of the mouth of the Mobile, but it is unclear whether they currently occur near the site. The Alabama Department of Natural Resources stocks the Mobile River with approximately 20,000 bass each year, below its confluence with the Tombigbee.
	Estuarine species, such as the bay anchovy, have been ob- served in the Tombigbee near the site. The inland occurrence record for bay anchovy (434 km) was set in the Mobile system, and suggests a reproductive, freshwater stock somewhere within the system (Mettee personal communication 1990). Blue crab support a recreational fishery. Saltwater species have been reported by locals during periods of low river flow, including southern flounder, hogchoker, and Atlantic needle- fish.
	Several freshwater fish species have been sampled near the site, including largemouth bass, rock bass, bluegill, freshwater mullet, and channel catfish (USFWS 1986). Channel catfish is the most important commercial species in the lower Tombigbee. An extremely rare, as yet undescribed, freshwater species of shovelnose sturgeon has been sampled within the Mobile River system (Mettee personal communication 1990).
References	BCM Engineers, Inc. 1990. Remedial investigation and feasi- bility study reports, Ciba-Geigy Corporation, McIntosh, Ala- bama. McIntosh, Alabama: Ciba-Geigy Corporation. Chemical Information System, Inc. 1986. Baltimore, Mary- land.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.

	Ciba-Geigy Corporation
References, cont.	 Long, E.R., and L.G. Morgan. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA52. 175 pp.+ Appendices. Mettee, M.F., T.E. O'Neil, R. D. Sutthus, and J. Pearson. 1987. Fishes of the lower Tombigbee River system in Alabama and Mississippi. Tuscaloosa, Alabama: Alabama Geological Services. Bulletin 107. 186pp.
	Mettee, Scott, Biologist, Alabama State Geological Service, personal communication, July 26, 1990.
	U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5- 87-003.
	U.S. Fish and Wildlife Service. 1986. Preliminary natural resource survey, Olin Corporation, McIntosh, Alabama. Daphne, Alabama: Ecological Services Field Office.

	Naval Air Station Jacksonville
Site Exposure Potential, cont.	solvents and other contaminants; storage areas where chemical leaks and spills have occurred; a disposal site for lead-acid batteries; a disposal site for radium waste paint; a former fire- fighting training area; an old landfill; areas used for overflow of oil and fuel tanks; and an oil disposal pond. Before 1981, spent glass beads used for removal of paint from aircraft were disposed of along the St. Johns River. Currently, one wastewa- ter treatment plant at the NAS discharges to the St. Johns River, and receives both domestic and industrial wastes not designated for off-site disposal. Industrial wastes have been pre-treated since 1981.
	There is a shallow aquifer less than 3 m below most of the disposal sites at the NAS. The Hawthorne Formation, an impermeable barrier between aquifers, is a confining bed to the deeper Floridan aquifer and prevents downward percolation of contaminants from the shallow aquifer systems. Contamina-tion of the shallow aquifer is a primary concern at NAS. Highly permeable sandy soil allows contaminants to migrate rapidly to groundwater, and from there to the tidally influenced rivers. The area is subject to yearly tropical storms and occasional hurricanes. Under flood conditions, hazardous materials stored or disposed of in low areas near the St. Johns River would migrate to surrounding areas.
	At least two cleanup actions have been taken at the site. Shal- low trenches intercept and treat leachate from an abandoned solvent and petroleum waste pit, and approximately 300 drums of PCB-contaminated soil were taken from an area formerly used to store transformers.
	Primary pathways of contaminant transport to habitats of concern to NOAA are surface water runoff and groundwater discharge to the St. Johns River.
Site-Related Contamination	Maximum concentrations for groundwater, soil, and sediment samples collected throughout the NAS site are shown in Table 1, along with applicable screening levels (Geraghty & Miller, Inc. 1985; 1986a,b; 1988). Concentrations from sediment samples are limited to those from the waste pile for spent glass

Naval Air Station Jacksonville

Site -Related Contamination,

cont.

Table 1.
Maximum
concentrations of
major
contaminants in
groundwater, soil
and sediment
collected at the
NAS site.

-							
Water		Soil		Sediment			
		Ground- water	AWQC ¹	Soil	Average ² U.S. Soil	Sediment	ER-L ³
		µg/l	µg/l	mg/kg	mg/kg	mg/kg	mg/kg
INOR	GANIC S	UBSTANCE	S				
cadmi	um	< 2.0	9.3	NT	0.06	35	5
chrom	nium	425	50	NT	100	50	80
coppe	er	23	2.9	NT	30	320	70
lead		573	5.6	NT	10	570	35
mercu	iry	0.8	0.025	NT	0.03	0.2	0.15
zinc		66	86	NT	50	200	120
ORG/	ANIC COI	MPOUNDS		400		N.T.	0.05
PCBs		< 1	0.03	103	NA	NI	0.05
1:	1: Ambient water quality criteria for the protection of aquatic organisms. Marine chronic criteria presented (EPA 1986).						
2:	Lindsay	/ (1979)					
3:	3: Effective range-low; the concentration representing the lowest 10 percentile			centile			
	value for the data in which effects were observed or predicted in studies			ies			
compiled by Long and Morgan (1990)							
NT	NT Not analyzed or analysis not usable for comparison						
NA	Screen	ing level not	available.				

beads, since soil and other sediment samples were analyzed in a non-standard manner.

Groundwater sample analyses at the NARF also indicate a maximum total of volatile organic compounds of 242,780 μ g/l, including 155,300 μ g/l trichloroethene and 25,500 μ g/l 1,1,1-trichloroethane. Vinyl chloride was reported at a maximum level of 700,000 μ g/l in groundwater. Elevated levels of barium were also found in both groundwater and soil samples. High levels of PCBS were detected in soil.

Radionuclides were found in NAS groundwater at maximum levels of 54 ± 7 piC/l gross alpha and 35 ± 9 piC/l gross beta. Radium 226 was reported at 6 ± 2 piC/l. Pesticides were below detection limits in groundwater, but detection limits were well above screening levels for water quality (0.01 µg/l for DDT compared with freshwater AWQC for DDT of 0.001 µg/l).

NOAA Trust Habitats and Species

The St. Johns River is a tidal estuary near the site and provides habitat for marine, estuarine, and anadromous fish and invertebrates, including several endangered species (Table 2; Fred C. Hart 1983; Irby personal communication 1990; Snider personal communication 1990). The estuary is also an important nursery ground for numerous species of marine fish and invertebrates.

	Naval Air Station Jacksonville
NOAA Trust Habitats and Species, cont.	The lower portion of the St. Johns River has been severely im- pacted by both the diversion of freshwater upstream and by various industries in the Jacksonville area, including several paper mills (Irby personal communication 1990). Shrimp, blue crab, striped mullet, croaker, seatrout, and American shad are caught commercially. Blue crab, redfish, striped bass and spot- ted seatrout are fished recreationally.
Table 2. Species and habitat use in the lower St. Johns River estuary near the site.	
	Table available in hardcopy
	Federally endangered species in the area include the West In- dian manatee, the shortnose sturgeon, and the Kemp©ridley sea turtle.

	Naval Air Station Jacksonville
References	Fred C. Hart Associates, Inc. 1983. Initial Assessment Study, Naval Air Station and Naval Fuel Depot, Jacksonville, Florida. Port Hueneme, California: Navy Assessment and Control of Installation Pollutants Department, Naval Energy and Envi- ronmental Support Activity.
	Geraghty & Miller, Inc. 1985. Verification Study, Assessment of Potential Ground-Water Pollution at Naval Air Station- Jacksonville, Jacksonville, Florida. Charleston, South Caro- lina: Naval Facilities Engineering Command, Southern Divi- sion.
	Geraghty & Miller, Inc. 1986a. Assessment of Ground-Water Contamination at Naval Air Station, Jacksonville, Florida. Charleston, South Carolina: Naval Facilities Engineering Command, Southern Division.
	Geraghty & Miller, Inc. 1986b. Naval Assessment and Control of Installation Pollutants Review Workshop, NAS-Jackson- ville, Verification Study, Characterization Study. Charleston, South Carolina: Naval Facilities Engineering Command, Southern Division.
	Geraghty & Miller, Inc. 1988. Findings From the Subsurface Investigation at the Wright Street Naval Air Station-Jackson- ville, Jacksonville, Florida. Charleston, South Carolina: Naval Facilities Engineering Command, Southern Division.
	Irby, Ed, Bureau of Fish Management, Florida Department of Natural Resources, Tallahassee, personal communication, August 1, 1990.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R., and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA-52. 175 pp.+ Appendices.

	Naval Air Station Jacksonville
References, cont.	 Snider, Lawson, Fisheries Biologist, Florida Fish and Game Commission, DeLeon Spring, Florida, personal communication, July 31, 1990. U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003.

	Olin Chemical Corp	oratio	n			
Site Exposure Potential, cont.	surface drainages flo the Tombigbee River The site contains two Miocene. The shallo recharged by infiltra marshes. The groun	w west : o separa w, allu tion fro dwater	tward to ate aqui vial aqu om rainf general) Bilbo (fers, on ifer is s all, stre ly flow	Creek or e alluvia emi-conf ams, lak s toward	eastward to l and one fined and is es, and s the south
	east. Hydrogeologic deeper aquifer is isol 1986).	investi lated fr	igations om the s	have es shallow	stablishe ⁄ aquifer	d that the (USFWS
	Surface water runoff mary pathways of co Contaminated sedim chemicals.	and gr ontamir ent ma	oundwa ant trar y act as	ater trai isport t a secor	nsport ar o NOAA 1dary sou	e the pri- resources. ırce of toxio
Site-Related Contamination	Past studies indicate sediment are contam 1989). The primary o and chlorinated benz present.	that gr inated contam zenes, v	oundwa at the O inants a vith chlo	ater, sur llin site re merc orinated	rface wat (Table 1 curic com d pesticio	er, soil, and ; ERM pounds les also
Table 1.			Water		Sedir	ment
Maximum concentrations of major contaminants		Ground- water	Surface Water	AWQC ¹	Sediment	ER-L ²
in groundwater,	INORGANIC SUBSTANCE	S 260	<u> </u>	0.012	60 5	0.15
surface water, soll, and sediment at the site.	ORGANIC COMPOUNDS lindane endosulfan DDD DDE DDT endrin 1: Ambient water quality of Freshwater chronic crit 2: Effective range-low; the value for the data in wh by Long and Morgan (* NR Not reported NA Screening level not av	NR NR NR NR NR NR criteria for t e concentra nich effects 1990). ailable	0.6 0.4 <0.1 <0.1 <0.1 <0.1 he protection nted (EPA 19 ation represent were observed	NA NA NA NA 0.001 NA n of aquatic 086). enting the lo	0.32 0.11 0.15 0.25 0.03 corganisms. west 10 percenticted in studie	NA NA 0.002 0.002 0.001 0.00002 entile s compiled

	Olin Chemical Corporation
Site-Related Contamination, cont.	Between 1984 and 1985, several remedial programs were implemented at the Olin site, including sediment stabilization, capping, and excavation and disposal. This has removed some areas at the Olin site from acting as sources of contami- nants but other areas continue to contribute contaminants to the groundwater, surface water, and sediment.
	Groundwater beneath surface water impoundments on the site was contaminated with chromium, lead, and mercury. Groundwater in the historical landfill areas contained a vari- ety of chlorinated aromatic compounds, including elevated levels of chloroform, benzene, chlorobenzene, and dichloro- benzene. Surface water samples contained high levels of mercury (USFWS 1986).
	Olin Basin sediment had elevated concentrations of mercury. Studies conducted by the U.S. Fish and Wildlife Service (1986) found low levels of mercury in sediment from the Tombigbee River adjacent to the Olin site. However, largemouth bass tissue from the same area had elevated levels of mercury, ranging from 0.20 μ g/g to 0.95 μ g/g.
	Limited data were presented for groundwater and soil at the Olin site (ERM 1989). Volatile organic compounds (chloro- form, benzene, and several chlorinated benzenes) and mercury were the main contaminants reported at elevated levels in these matrices, but only values for mercury were presented in the ERM report.
NOAA Trust Habitats and Species	The Tombigbee River, the habitat of primary interest to NOAA, provides essential habitat for many freshwater and anadromous species (Table 2; USFWS 1986; Mettee et al. 1987; Mettee personal communication 1990). The site is approxi- mately 100 km upstream from the river mouth, and the river is usually fresh water at this point. However, during periods of low flow (August through September), saltwater intrusion along the river bottom may extend at least as far as the site (Mettee personal communication 1990).
	The Tombigbee River in the vicinity of the site is within the Mobile River delta zone and historically has served as habitat

	Olin Chemical Corporation
NOAA Trust Habitats and Species, cont.	 species have been reported during periods of low river flow during summer, including southern flounder, hogchoker, and Atlantic needlefish. Several predatory freshwater fish species have been sampled near the site, including largemouth bass, rock bass, and bluegill. Freshwater mullet and channel catfish have also been sampled from the Tombigbee River for mercury content (USFWS 1986). Channel catfish is the most important commercial species in the lower Tombigbee. An extremely rare, as yet undescribed, freshwater species of shovelnose sturgeon has been sampled within the Mobile River system (Mettee personal communication 1990). ERM-Southeast, Inc. 1989. Remedial investigation and risk assessment for Olin Corporation, McIntosh, Alabama: Olin Corporation.
References	 Long, E.R., and L.G. Morgan. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA-52. Seattle: Coastal and Estuarine Assessment Branch, NOAA. 175 pp.+ Appendices. Mettee, M.F., T.E. O'Neil, R. D. Sutthus, and J. Pearson. 1987. Fishes of the lower Tombigbee River system in Alabama and Mississippi Tuscaloosa Alabama: Alabama Geological Ser-
	 Mississippi. Tuscaloosa, Alabama: Alabama Geological Services. Alabama Geological Service Bulletin 107. 186p. Mettee, Scott, Biologist, Alabama State Geological Service, Tuscaloosa, Alabama, personal communication, July 26, 1990. U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003. U.S Fish and Wildlife Service. 1986. Preliminary Natural Resource Survey, Olin Corporation, McIintosh, Alabama. Daphne, Alabama: Ecological Services Field Office. 10pp.

	Naval Air Station Pensacola	
Site Exposure Potential,	portion of the base and extends into the subtidal zone of Pensacola Bay.	
cont.	Geology at the site is characterized by fine- to medium-g quartz sand soil. The water table is generally shallow, b varies between 1.5 m and 4.5 m over much of the site. G water flow is influenced by tides and storms, but there w insufficient data to determine its direction in most areas the northern part of the NAS, groundwater moves prima the north and northwest toward Bayou Grande. Other s have suggested that there is a slight gradient to the sout (Ecology and Environment 1989).	grained ut round- vere . In arily to tudies h
	for transport of contaminants to Pensacola Bay, Bayou G and the coastal wetlands.	rande,
Site-Related Contamination	The limited contaminant data for the site are summarize Table 1 with applicable screening levels (Ecology and Er ment 1989). Groundwater samples had low concentration number of substances. Leachate from an inactive landfil	d in iviron- ons of a ll
Table 1.	Water Soil Sediment	1
Maximum concentrations of major contami-	Ground- Leach- water ate AWQC ¹ Soil Sediment ER-L ² μg/l μg/l μg/l mg/kg mg/kg mg/kg	
nants in ground- water, leachate, soil, and sediment at the site.	INORGANIC SUBSTANCES ND 140 5 cadmium 10 2,300 9.3 ND 140 5 chromium 5 1,900 50 ND 8,900 80 cyanide ND 4,560 1 NT NT NA lead 69 51,000 5.6 ND 650 35 mercury 27 200 0.025 ND 2 0.15 nickel 9 4,000 8.3 ND 27 30 zinc 365 25,100 86 ND 103 120	
	PESTICIDES p,p'-DDE ND NA 1.2 NT 0.002 p,p'-DDD ND ND NA 0.03 NT 0.002 p,p'-DDT ND ND 0.001 1.2 NT 0.001 dieldrin ND ND 0.0019 0.44 NT 0.0002 chlordane ND ND NA 21.0 NT 0.0005 1 Ambient water quality criteria for the protection of aquatic organisms. Marine chronic criteria presented (EPA 1986). 2: Effective range-low; the concentration representing the lowest 10 percentile value for the data in which effects were observed or predicted in studies compiled by Long and Morgan (1990). NT Not analyzed NA Screening level not available. ND Not detected at method detection limit; detection limit not given	

	Naval Air Station Pensacola
Site-Related Contamination, cont.	adjacent to Bayou Grande contained cadmium, chromium, lead, mercury, nickel, and zinc at levels exceeding their re- spective AWQC (EPA 1986). Leachate has also been detected in groundwater and surface water adjacent to this landfill. Elevated levels of pesticides were found in soil at the pesticide mixing facility. Elevated levels of radium radiation were also found in soil (1.2 mR/hr compared to a normal background level of 0.02 mR/hr) in addition to methylene chloride and cyanide. Sediment sampled below the storm drain outfalls contained levels of metals that are associated with toxic effects in studies compiled by Long and Morgan (1990).
NOAA Trust Habitats and Species	The habitats of primary interest to NOAA, Pensacola Bay and Bayou Grande, include an estimated 253 hectares of estuarine wetlands, including intertidal and shallow areas and eelgrass beds (USFWS 1987). These environments are part of the Pensacola estuary and serve as estuarine nurseries and adult habitat for numerous marine species. Pensacola Bay is is partially sheltered by barrier islands to the south. Bayou Grande is a shallow protected inlet of Pensacola Bay. Little is known about the aquatic habitats in this embayment, but its physical characteristics are similar to the sheltered, lower- salinity nursery areas in the upper reaches of the Pensacola estuary. Significant amounts of eelgrass habitat have been lost within Bayou Grande since the 1970s (Brown personal com- munication 1990).
	Shallow estuarine environments play an important role in the recruitment of numerous fish species to the Gulf of Mexico. Several species, such as ladyfish, sheepshead, members of the drum family (drums and seatrout), and mullet are dependent upon estuaries during their early life history (Beccasio et al. 1982). Fisheries data collected by Cooley (1978) found high abundances of adult fish in Pensacola Bay, including 180 species (Table 2; Beccasio et al. 1982; RPI 1984; Ecology and Environment 1989). Some of the most abundant were spot, pinfish, Atlantic croaker, gulf menhaden, bay anchovy, longspine porgy, silver perch, southern hake, inshore lizardfish, gafftopsail catfish, sand seatrout, and spotted hake (Ecology and Environment 1989).

	Naval Air Station Pensacola
NOAA Trust Habitats and Species, cont.	Southern and spotted hake, ladyfish, red drum, sheepshead, and Atlantic croaker are among the economically important species common in the bay. Recreational and commercial fisheries are present throughout the Pensacola estuary; pri- mary species caught include Spanish mackerel, seatrout, drum, Atlantic croaker, snapper, amberjack, and porgy (Ecology and Environment 1989). Commercial fisheries for Eastern oyster, blue crab, and mullet also occur in the Pensacola estuary
Table 2. Important fish and invertebrate species, and habitat use in Pensacola Bay and Bayou Grande.	
	Table available in hardcopy

	Naval Air Station Pensacola
NOAA Habitats and Species, cont.	 (Beccasio et al. 1982). Brown shrimp are fished commercially, and though juvenile white shrimp occur in the bay, recruitment to adult populations is too low to support a commercial fishery (Brown personal communication 1990). Recreational and commercial shellfishing is prohibited in Bayou Grande by local ordinance for resource management purposes. Shellfish harvests occur in portions of the bay, but may be periodically restricted due to high coliform counts. Most of these restrictions are associated with high precipitation levels that increase runoff into the bay (Thompson personal communication 1989). Threatened or endangered species near the site include the Gulf sturgeon, currently being considered for threatened species status by the U.S. Fish and Wildlife Service (USFWS 1987). The State Fisheries Commission is considering a moratorium on fishing of striped mullet. Manatees, an endangered marine mammal, have been sighted adjacent to the site within the last year (Troxel personal communication 1990). Atlantic bottlenose dolphin have also been sighted regularly near the site include the site (Facleavand Environment 1989).
References	 Beccasio, A.D., N. Fotheringham , A.E. Redfield, R.L. Frew, W.M. Levitan, J.E. Smith, and J.O. Woodrow, Jr. 1982. Gulf Coast Ecological User's Guide and Information Base. Wash- ington, D.C.: Biological Services Program, U.S. Fish and Wild- life Service. 191 pp. Brown, J. D., Bream Fishermans Association, Pensacola, Florida, personal communication, July 24, 1990.
	 Cooley, N.R. 1978. An Inventory of the Estuarine Fauna in the Vicinity of Pensacola, Florida. 31. St. Petersburg, Florida: Florida Department of Natural Resources, Marine Research Laboratory. 119 pp. Ecology and Environment, Inc. 1989. Draft contamination assessment/remedial activities investigation work plans (Groups A, B, C, D, E, F, G, J, K, M and N). Naval Air Station Pensacola, Pensacola, Florida. Pensacola: Department of the Navy, Southern Division, Naval Facilities Engineering Command.

	Naval Air Station Pensacola
References, cont.	Long, E.R., and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. U.S. Department of Commerce. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA- 52. 175 pp.+ Appendices.
	Research Planning Institute (RPI). 1984. The sensitivity of coastal environments and wildlife to spilled oil in West Florida. Pensacola, Florida: Florida Department of Veteran and Community Affairs, Division of Local Resource Manage- ment.
	Thompson, Robert, Biologist, Florida Department of Natural Resources, Tallahassee, personal communication, August 28, 1989.
	Troxel, Jay, U.S. Fish and Wildlife Service, Panama City, Florida, personal communication, July 24, 1990.
	U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. U.S. EPA, Office of Water Regulations and Stan- dards. Criteria and Standards Division. Washington, D.C. EPA 440/5-87-003.
	U.S. Fish and Wildlife Service. 1987. Long Range Fish and Wildlife Section, Naval Air Station Pensacola and Outlying Field Bronson, Pensacola, Florida. Panama City, Florida: U.S. Fish and Wildlife Service Field Office.

	Savannah River Plant
Site Exposure Potential, cont.	chemicals, feed, and water. Petroleum products were stored in underground tanks (Westinghouse 1989).
	Other sources include an unlined sludge lagoon, land areas where sludge was applied, and sanitary landfills. Sources of radioactive contamination include burial grounds for radioac- tive wastes, buried debris from an exploded evaporator, and a sump for high-level radioactive sludge. Other areas include concrete-lined disassembly basins that contain water used to store irradiated parts from reactors, basins that received radio- active purge water from these disassembly basins, and a build- ing where target rods from nuclear reactors are dissolved using nitric acid. Contaminants emitted into the atmosphere include tritium and 1,1,1-trichloroethane.
	The site covers approximately 780 km ² and is bordered on the south by the Savannah River. There are extensive wetlands along the Savannah River and its numerous tributaries. Manmade lakes on the site include Pond B, L-Lake, and the 1,060-hectare Par Pond. Surface geology is characterized by unconsolidated sand, clayey sand, and sandy clay, underlain by dense crystalline metamorphic rock or consolidated red mudstone. Groundwater on the site flows generally towards the Savannah River or its tributaries.
	Site activities have potentially contaminated soil, groundwater, surface water, and sediment. Because of the geography and geology of the site, surface water runoff and groundwater transport represent the primary pathways for transport of contaminants to the Savannah River.
Site-Related Contamination	The only contaminant data for soils presented in the 1988 Savannah River Environmental Report were those from radio- logical monitoring. Groundwater was contaminated by metals throughout the site. Sediment samples were tested for PCBs and pesticides only (Westinghouse 1989).
	Radionuclides and trichloroethylene were found in groundwa- ter throughout the site. Other organic contaminants were also measured, including carbon tetrachloride, benzene, 1,2- dichloroethane and 1,1-dichloroethylene, but there are no

Savannah River Plant

Site-Related Contamination,

cont.

Table 1. Maximum concentrations of major contaminants in groundwater, surface water, and sediment collected at the Savannah River site.

	Water			Sediment		
		Ground-	Surface			
		water	Water	AWQC ¹	Sediment	ER-L ²
		µg/l	µg/l	µg/l	mg/kg	mg/kg
INOR	GANIC SUBS	TANCES				
cadmi	Jm	113	< 10	1.1+	NT	5
chrom	ium	854	< 20	11	NT	80
coppe	r	2,040	20	12+	NT	70
iron		803,000	1,500	1,000	NI	NA
lead		3,600	60	3.2+	NI	35
mercu	ry	19.3	0.83	0.012	NI	0.15
nickel		1,420	< 5	160+	NI	30
silver		66	ND	0.12		1
zinc		7,300	30	110+	IN I	120
ORGA						
		ND	< 0.05	0.001	< 2	0.003
endrin		12.6	< 0.05	NA	< 2	0.00002
PCB 1	260	ND	< 0.50	0.014*	< 20	0.03
-						
1:	Ambient wa	ter quality crite	eria for the pro	tection of aqu	atic organism	IS.
	Freshwater chronic criteria presented (EPA 1986)					
2:	Effective range-low; the concentration representing the lowest 10 percentile					ercentile
	value for the data in which effects were observed or predicted in studies					
	compiled by Long and Morgan (1990).					
+	Hardness-dependent criteria: 100 mg/l CaCO3 used.					
NT	Not tested					
*	Value shown is for total PCB					
ND	Not detected at method detection limit, detection limit not available					
NΔ	A Screening level not available					

screening levels available for these compounds (Westinghouse 1989). Maximum concentrations of metals found in waters and sediments at the site are shown in Table 1, along with appropriate screening levels (Westinghouse 1989).

Radioactivity is monitored in rainfall, soil, and sediment; and in tissues of fish, invertebrates, and hogs and deer. The maximum concentration of non-volatile beta radioactivity in fish was measured in bass at 162 pCi/g in Pond B. In comparison, the maximum concentration measured in bass at the mouth of the Savannah River was 1.8 pCi/g. The maximum concentration of cesium-137 in fish (145 pCi/g) was found in bass in Pond B, compared to concentrations of 0.10 pCi/g in bass

Table 2. Pond B, compared to concentrations of 0.10 pCi/g in bass Maximum groundwater Maximum **Drinking Water** Contaminant Units Standard* concentrations for Concentration gross alpha pCi/l 2.140 15 radionuclides and pCi/l total radium 140 5 trichloroethylene 0.005 radium 226 pCi/ml 1.52 at the site 3,480,000 tritium pCi/ml 20 compared to EPA trichloroethylene 0.005 128 mg/l drinking water *U.S.Government Printing Office 1987

	Savannah River Plant
NOAA Trust Habitats and Species	from the mouth of the Savannah River (Westinghouse 1989). Soil data were not presented, but cesium-137 concentrations were discussed as ranging from 0.14 to 1.1 pCi/g (Westinghouse 1989). Table 2 compares maximum concentra- tions of radionuclides and trichloroethylene to EPA drinking water standards (Westinghouse 1989).
Table 3. Species and habitat use in the Savannah River near the site.	
	The habitat of concern to NOAA is the Savannah River, which borders the site for approximately 48 km, beginning at river km 233. The river bordering the site is fresh water, and pro- vides habitat for several spawning runs of andromous species, including the federally and state endangered shortnose stur- geon (Table 3; Oakley personal communication 1990). The anadromous species listed in Table 3 all spawn within the portion of the river bordered by the site.
	The Savannah River is heavily polluted, particularly from sewage from the city of Augusta, upstream of the site (Oakley personal communication 1990).
	Amercian shad are commercially fished in the river during the summer months. Both Atlantic and shortnose sturgeon spawn near the site, and juveniles spend from one year to 18 months in the river before migrating downstream to the estuary at the river mouth. To augment the natural population of shortnose sturgeon, the South Carolina Marine Resources Division stocks the river with juveniles that were raised in hatcheries. Atlantic sturgeon were previously fished in the river, but
	Savannah River Plant
--	--
NOAA Habitats and Species, <i>cont</i> .	fishing has been restricted for about five years. Striped bass are fished recreationally in the river from the South Carolina side, but fishing is restricted by the state of Georgia (Oakley personal communication 1990). The estuary at the mouth of the Savannah River is a major nursery area for marine species, including summer flounder, spot. Atlantic menhaden, croaker, tarpon, and blue crab.
References	 Spot, Atlantic menhaden, croaker, tarpon, and blue trab. Long, E.R., and L.G. Morgan. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA-52. 175 pp.+ Appendices. Oakley, D., Fisheries Biologist, Commercial Finfish, South Carolina Wildlife and Marine Resources Division, Charleston, South Carolina, personal communication, August 10, 1990. U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003
	 U.S. Government Printing Office. 1987. <u>Title 40, Part 141</u> <u>Code of Federal Regulations</u>. National Primary Drinking Water Regulations. Washington, D.C.: Office of the Federal Register, National Archives and Records Administration. Westinghouse Co. 1989. Savannah River Site Environmental Report for 1988. Aiken, South Carolina: U.S. Department of Energy. WSRC-RP-89-59-1.

	Camp Pendleton Marine Corps Base
Site Exposure Potential, cont.	The four main drainage basins at Camp Pendleton, formed by the Santa Margarita River, Las Flores Creek, San Onofre Creek, and San Mateo Creek, empty into coastal wetlands within Camp Pendleton boundaries. In addition, there are two wet- land habitats that are protected by state and county agencies. These habitats (vernal pools and coastal marshes) support several threatened or endangered plant, bird, and mammal species.
	 Drainage basins within Camp Pendleton are characterized by water-bearing alluvial deposits. Soil is highly permeable and groundwater is shallow, averaging 2 to 4 m below the surface (Jacobs 1990). Groundwater movement has only been identified for the Santa Margarita basin and is generally to the southwest. Potential pathways of contaminant transport at the Camp Pendleton site are direct discharge of contaminated groundwater to surface drainages, surface runoff, or subsurface migration.
Site-Related Contamination	Limited information is available for evaluation of levels of contamination present at the Camp Pendleton site. Available data indicate that groundwater and surface water may be contaminated in the Santa Margarita River Basin (SCS Engineers 1984). The herbicide Silvex was measured in surface water at concentrations of 13 μ g/l and in groundwater at concentrations of 73 μ g/l near the pest control facility drainage ditch leading to the Santa Margarita River. Other pesticides have been detected in surface water from this river, including 2,4-D (98 μ g/l), 2,4,5-TP (51 μ g/l), and methoxychlor (6 μ g/l). Methoxychlor, the only one of these pesticides with an ambient water quality criteria value, exceeds its freshwater chronic AWQC of 0.03 μ g/l. Mercury has also been measured at 2.6 μ g/l in surface water and 49 μ g/l in groundwater, exceeding its freshwater chronic AWQC of 0.012 μ g/l (EPA 1986).
NOAA Trust Habitats and Species	Camp Pendleton contains 27 km of undeveloped shoreline along the Pacific Ocean, including three saltwater marshes at the outlets of San Mateo and Las Flores creeks and the Santa Margarita River. A variety of marine species use the offshore

	Camp Pendleton Marine Corps Base
NOAA Trust Habitats and Species	habitats, including marine mammals that migrate through the area (Table 1; Buck personal communication 1990; Mitsos personal communication 1990; USFWS 1990). The mouth of the Santa Margarita River forms a lagoon that is sometimes silted over and blocked from saltwater influence. The U.S. Fish and Wildlife Service, the Marine Corps, and the
Table 1. Species and habitat use along the coast and offshore of the site, including the lagoon at the mouth of the Santa Margarita River.	Table envilable in bendeenv
	California Department of Fish and Game plan to maintain artificially saltwater access to the lagoon, allowing it to func- tion continuously as an estuarine habitat (Goodbread personal communication 1990). Fish sampling by the U.S. Fish and Wildlife Service in the lagoon from 1986 to 1989 found 24 different species of fish, including many juveniles (USFWS 1990). Among the species caught were the commercially im- portant California halibut. Salmon and trout runs have not occurred in the Santa Margarita River since the 1920s. The marine habitat offshore of Camp Pendleton is largely
	sandy, with rocky reefs and kelp forests in the northern por- tion that harbor fish communities, including garibaldi and bass. The California Department of Fish and Game con- structed an artificial reef in 1980 south of San Onofre. Com- mercial fishing for white

	Camp Pendleton Marine Corps Base
NOAA Trust Habitats and Species,	but, and lobster takes place in the area. California halibut, lobster, barred sand bass, kelp bass, halibut, and lobster are all fished recreationally in the area.
com.	Several species of marine mammals occur intermittently in the area, including harbor seals and California sea lions that may haul out on the beaches (Buck personal communication 1990). Grey whales, especially females and calves, may come close inshore to feed during migrations up and down the coast (SCS Engineers 1984).
References	Buck, S., Wildlife Biologist, Natural Resources Division, U.S. Marine Corps, Camp Pendleton, California, personal communi- cation, July 12, 1990.
	Goodbread, S., Environmental Contaminants Specialist, U.S. Fish and Wildlife Service, Laguna Niguel, California, personal communication, July 12, 1990.
	Jacobs Engineering. 1990. Summary Report, U.S. Marine Corps Base Camp Pendleton. San Diego: Navy Clean Program.
	Mitsos, D., Marine Biologist, California Department of Fish and Game, Nearshore Sportfish Habitat Enhancement Program, Long Beach, California, personal communication, July 18, 1990.
	SCS Engineers. 1984. Initial Assessment Study. Marine Corps Base, Camp Pendleton, California. Port Hueneme, California: Navy Assessment and Control of Installation Pollutants (NACIP) Department, Naval Energy and Environmental Sup- port Activity.
	U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003.
	U.S. Environmental Protection Agency. 1988. National Priori- ties List Camp Pendleton Marine Corps Base, San Diego County, California. San Francisco: Region 9.
	U.S. Fish and Wildlife Service. 1990. Unpublished data. La- guna Niguel, California: USFWS.

	Fort Ord Army Base
Site Exposure Potential, cont.	The base is bordered by the Salinas River to the north, El Toro Creek to the east, and Monterey Bay to the west. Sand dunes, the primary landforms in this area, underlie most of the base. The area consists of confined and partially confined aquifers in sandy or finer substrates. Three aquifers underlie the Fort Ord site: a shallow, unconfined sand aquifer, and aquifers com- posed of finer materials at 55 m and 122 m. These aquifers are not consistently isolated from one another. Groundwater movement in the shallow aquifer is generally west or north- west. The deeper aquifers may be influenced by groundwater pumping in Marina and flow in a more northeasterly direction.
	During the original evaluation of Fort Ord as a potential Na- tional Priorities List site, surface water transport was not con- sidered an important pathway for off-site migration of con- taminants (EPA 1988). However, surface water runoff occurs at all sites investigated on the base. Most runoff is currently collected in storm drains, some of which enter the sanitary sewers that ultimately discharge into Monterey Bay. In the past, runoff occurred from sites with no diversion, ditching, or other collection. There was no information in the Preliminary Assessment regarding the potential for runoff to reach major surface water bordering the site.
	Groundwater movement and surface water runoff remain potential pathways for contaminants to reach NOAA re- sources.
Site-Related Contamination	Limited studies have indicated that both soil and groundwater are contaminated in areas on the site (E.A. Engineering 1990). In 1985, volatile organic compounds (VOCs) were detected in groundwater sampled from the northwest section of the base. Concentrations of these compounds exceeded California state action levels for drinking water but did not exceed AWQC (EPA 1986). In 1989, groundwater and soil samples from the four main areas were collected as part of a preliminary site investigation. VOCs were detected in groundwater at levels below ambient water quality values by a factor of 10 (EPA 1986; E.A. Engineering 1990). Groundwater samples were contaminated with VOCs, but at

	Fort Ord Army Base
Site-Related Contamination, <i>cont</i> .	 levels below ambient water quality values. Mercury, chromium, zinc, nickel, and copper exceeded ambient water quality levels in groundwater by a factor of 10. Soil samples were contaminated with VOCs, phthalate esters, PAHs, and total petroleum hydrocarbons. In several areas, elevated concentrations of mercury were detected in soil. Mercury concentrations in groundwater sampled from the 707th Maintenance Division ranged from 17-98 μg/l, greatly exceeding the freshwater chronic AWQC of 0.012 μg/l.
NOAA Trust Habitats and Species	The Fort Ord site includes approximately 7 km of shoreline along Monterey Bay and part of the Salinas River. The mostly flat, sandy-bottomed nearshore area provides habitat for many commercially important marine species, several of which spawn nearby (Table 1; Benteen personal communication 1990; Hardwick personal communication 1990). The Salinas River Wildlife Refuge, operated by the U.S. Fish and Wildlife Service, encompasses the lagoon and dunes area at the mouth
Table 1. Species and habitat use in Monterey Bay and the Salinas River near the site.	
	Table available in hardcopy

	Fort Ord Army Base
NOAA Trust Habitats and Species,	of the Salinas River, north of the town of Marina. A state park along the shoreline near Marina is heavily used for recreation (Hardwick personal communication 1990).
cont.	Chinook salmon and squid are caught commercially within one-quarter mile of shore, and California halibut is caught recreationally in Monterey Bay in the vicinity of Fort Ord. Halibut and squid spawn in the sandy nearshore area of the bay. Sanddabs and English sole, both the object of offshore commercial fisheries, use the area as a nursery ground and may also spawn nearby. Surf smelt are fished north of Fort Ord (Hardwick personal communication 1990).
	The sea otter is the only resident of the several species of ma- rine mammals in this part of Monterey Bay. Elephant seal, northern fur seal, and California sea lion are seen intermit- tently on the beaches adjacent to Fort Ord.
	The Salinas River and lagoon are tidally influenced for approximately 1.6 km upstream from Monterey Bay. Riverflow is intermittent part of the year since upstream dams retain most of the water during dry months. There is a native run of steelhead trout in the Salinas River, but migrations up- and downriver are restricted to periods when the river is flowing. This steelhead run is fished recreationally (Benteen personal communication 1990).
References	Benteen, R., Associate Fisheries Biologist, California Depart- ment of Fish and Game, Monterey, California, personal com- munication, June 19, 1990.
	 E.A. Engineering, Science, and Technology. 1990. Final Site Investigation Report. Fort Ord and Fort Hunter Liggett, Cali- fornia. Part 1. Fort Ord, California: U.S. Army Corps of Engineers, Omaha District and Directorate of Engineering and Housing. Hardwick, J., Marine Biologist, California Department of Fish and Game, Monterey, California, personal communication, July 3, 1990. U.S. Environmental Protection Agency. 1986. Quality Criteria

	Fort Ord Army Base
References, cont.	for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003. U.S. Environmental Protection Agency. 1988. National Priori- ties List. Fort Ord, Marina, California. San Francisco: EPA Region 9.

	Travis Air Force Base
Site Exposure Potential, cont.	fluids, solvents, paint thinners, cyanide, pesticides, and sew- age sludge. Wastes were burned, disposed in landfills or pits located on-site, or discharged to the sewage or storm drain system (Weston 1990).
	The base is located in the Suisun-Fairfield Basin on the west- ern edge of the Sacramento Valley. Natural surface drainages on the site are highly modified due to extensive channelization. Union Creek flows across the base as part of the storm sewer system and enters Hill Slough 1.8 km beyond the base boundary (Figure 1). This slough is part of the Suisun Marsh, a major wetland adjoining the San Francisco Bay estuary. Local groundwater exists in semi-confined con- ditions and aquifers are characterized by alluvial sediment with low permeability and pockets of sand and gravel. Groundwater in the local aquifer flows southward towards the Suisun Marsh.
	Based on site characteristics and historical practices, surface water transport and groundwater discharge are the primary pathways of contamination to the aquatic environment.
Site-Related Contamination	Surface and subsurface soil, groundwater, surface water, and sediment samples were collected from more than 17 areas at Travis AFB as part of the Installation Restoration Program (Weston 1990). The samples were analyzed for a broad range of hazardous substances and all matrices were found to be contaminated with trace elements and other inorganic com- pounds, volatile organic compounds, and total petroleum hydrocarbons (Table 1; Weston 1990).
	Concentrations of cadmium, chromium, lead, mercury, silver, and zinc, were highly elevated in groundwater and surface water and greatly exceeded applicable ambient water quality criteria (EPA 1986). Most of these samples were collected from the storm sewer zone representing a large area in the central portion of the base.
	Silver, cadmium, lead, and zinc were greatly elevated above background levels in soils (Lindsay 1979). Most trace ele- ments were found in high concentrations in storm sewer

Travis Air Force Base

Site-Related Contamination,

cont.

sediment on the base. In addition, barium occurred in extremely high concentrations in sediment.

Trichloroethylene and associated volatile organic compounds were measured in high concentrations in groundwater, surface water, and soils. Total petroleum hydrocarbon (TPH) concentrations were extremely high in samples from surface water, groundwater, soil, and sediment.

Table 1.			Water		S	oil	Sedim	ent	
Maximum		-				Average			
concentrations of		Surface	Ground-	Chronic		U.S.			
		Water	water	AWQC ¹	Soil	Soil ²	Sediment	ERL ³	
contaminants in		µg/l	µg/l	µg/l	mg/kg	mg/kg	mg/kg	mg/kg	
surface water,	INORGANIC S	SUBSTANC	ES						
groundwater, soil,	arsenic	20	10	190	32	5	26.4	33	
and sediment at	barium	680	2,500	NA	820	430	151,000	NA	
the site with	cadmium	230	110	1.1+	13	0.06	124	5	
	chromium	530	260	11	60	100	1130	80	
applicable	copper	260	60	12+	160	30	1240	70	
screening levels.	lead	4,600	360	3.2+	850	10	6360	35	
	mercury	10	940	0.012	25	0.03	5.5	0.15	
	nickel	130	4,100	160+	46	40	5710	30	
	silver	80	70	0.12	120	0.05	24.0	1.0	
	thallium	780	170	40*	ND	0.1	216	NA	
	zinc	14,000	310	110+	4400	50	23,500	120	
	ORGANIC CC	MPOUNDS	;						
	TPH ⁴	39600000	10500000	NA	15,300	NA	74,300	NA	
	TCE	18	19,000	NA	290	NA	0.12	NA	
	t-1,2-dichloro-						1		
	ethene	442	1,300	NA	ND	NA	ND	NA	
	1: Ambien	t water quality	criteria for th	e protection	n of aquatic	life, freshwa	ater chronic crite	eria	
	presente	ed (EPA 1986	i).						
	2: Lindsay	(1979). e range-low: tl	he concentrat	ion represe	ntina the lo	west 10 per	centile value for	the data	
	in which	effects were	observed or r	predicted in	studies cor	npiled by Lo	ng and Morgan	(1990).	
	4: Total Pe	troleum Hydr	ocarbons.			P , -	3 •• • 3 ••	(/	
	+ Hardne	ss-dependent	criteria: 100	mg/I CaCO	3 used.				
	* Insufficient data to develop criteria. Value presented is the Lowest Observed Effects Level								
	(LOEL).								
	ND: Not dete	ected at meth	od detection I	imit; detecti	on limit not	reported.			
	INA. Screeni	ng level not a	valiable.						
	NOAA true	et habit	ate in th	o vicini	ty of T	rovic A	FP are Su	icum	
NOAA Irust	NOAA IIU	IST Habite		e vicini		I avis A	rb ale Su	ISUII	
Habitats and	Marsh, its	associat	ed wate	rways,	and Su	iisun Ba	ay. Sever	al	
Spacias	creeks inte	ersect the	e base ji	ncludir	o Unic	n Cree	k Suisun	Val-	
Species		Crear I	lallar, C				l Creele I	Testan	
	теу Стеек,	Green	aney Ci	теек, аг	ia Leag	gewood	Стеек. С	Julion	
	Creek is a	major di	rainage	pathwa	ay to Si	iisun M	larsh, an i	im-	
	nortant w	etlandes	system i	n San F	ranciso	o Bay t	hat provi	des	
	Portant W	chanus s	ystem n	i San F	ancist	J Day t	nat provi	ues	

	Travis Air Force Base
References	Hergeshell, P., Fisheries Biologist, California Department of Fish and Game, Santa Rosa, California, personal communica- tion, July 12, 1990.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R., and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum NOS OMA-52. 175 pp.+ Appendices.
	Roy F. Weston. 1990. Installation Restoration Program. Stage 2. Travis Air Force Base, California. Draft Technical Report. Volume 1. Scott Air Force Base, Illinois: Headquarters Mili- tary Command, Command Civil Engineer, and U.S. Air Force, Human Systems Division, IRP Program Office, Brooks Air Force Base, Texas. 1,500 pp.
	Rugg, M., Water Quality Biologist, California Department of Fish and Game, Yountville, California, personal communica- tion, August 7, 1990.
	U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5- 87-003.

U.S. Naval Submarine Base, Bangor

Bangor, Washington Region 10 WA5170027291

Site Exposure Potential

The U.S. Naval Submarine Base (Subase) Bangor is located approximately 16 km north of Bremerton near Bangor, Washington in Kitsap County (Figure 1). The 2,830-hectare subase is adjacent to Hood Canal, a major Puget Sound estuary. Established in 1944, the base originally served as an ammunition depot. In 1963, the Polaris Missile Facility Pacific was added, and in 1974 the base was designated a homeport for Trident submarines.

A wide variety of solid and liquid wastes were disposed of at Subase Bangor from the 1940s to the 1980s. General refuse, ordnance materials, demilitarization wastes, and Otto fuel were either burned or disposed of in landfills at various locations on the base. Ten areas on the subase were identified in the RI/FS process as potential uncontrolled hazardous waste sites (Hart CrowserInc. 1989).

	U.S. Naval Submarine Base, Bangor
Site Exposure Potential, cont.	The Bangor facility can be divided into two main watersheds. The largest, Hood Canal watershed, includes Cattail Lake, Hunters Marsh, and DevilÕHole. Eight of the ten contami- nated sites identified in the RI/FS process are located in this watershed. Contaminants within Hood Canal watershed could migrate via surface water runoff and groundwater transport into Hood Canal.
	The second watershed is the Clear Creek watershed, which drains a comparatively small area in the southeastern portion of the Bangor facility. All surface and groundwater discharge from this small watershed flow into Clear Creek, which dis- charges into Dyes Inlet, another Puget Sound estuary, ap- proximately 5.1 km downstream of the Subase.
	Groundwater flow and surface water runoff are the primary pathways for off-site migration of contaminants from this watershed.
Site-Related Contamination	Trace elements are the primary contaminants of concern to NOAA. Maximum concentrations of contaminants over the entire subase are reported in Table 1 (Hart Crowser 1989; Ribic and Swartzman 1989). Concentrations of contaminants were generally elevated in surface waters collected within the Hood Canal Watershed, particularly in the Hunters Marsh area. Clear Creek watershed samples had elevated levels of chro- mium, copper, and lead. Mercury concentrations in ground- water samples collected from the Hunters Marsh area were high and concentrations of other inorganic substances were elevated. Ordnance compounds were also reported at high levels in samples from Hunters Marsh and Devil©Hole. RDX and trinitrotoluene (TNT) concentrations were measured at 8 600
	trinitrotoluene (TNT) concentrations were measured at 8,600 μ g/l and 7,600 μ g/l, respectively, in groundwater from the Devil $\hat{\mathbf{O}}$ Hole area. The propellants picranic acid, picric acid, and Otto fuel were measured at 2,800 μ g/l, 290,000 μ g/l, and 5,000 μ g/l in groundwater from the Hunters Marsh area.
	Soil was contaminated with trace elements in the DevilÕHole area of the Hood Canal watershed and the Clear Creek water- shed. Cadmium, copper, and zinc soil concentrations were

U.S. Naval Submarine Base, Bangor

Site-Related Contamination.

Table 1. Maximum concentrations of major inorganic contaminants at the site compared with

applicable screening levels.

cont.

above background levels in both areas (Lindsay 1979). Nickel concentrations were slightly above average background levels in the Devil OHole area. Chromium, mercury, and silver were above background levels in soil samples from the Clear Creek watershed. However, mercury was not measured in soil from other areas. Ordnance compounds were also detected in soil

		Water		S	oil	Sedim	ent
	Surface Water µg/l	Ground- water µg/l	Chronic AWQC ¹ µg/l	Soil mg/kg	Average U.S. Soil ² mg/kg	Hood Canal Sediment mg/kg	ER-L ³ mg/kg
INORGANIC S	SUBSTANC	ES					
cadmium	4.6	1.2	9.3	16	0.06	2.2	5
chromium	6	17	50	150	100	28	80
copper	6	16	2.9	59	30	100	70
lead	10	<5	5.6	400	10	72	35
mercury	1.0	1.0	0.025	0.16	0.03	0.24	0.15
nickel	7	14	8.3	34	40	NT	30
silver	3	2.7	2.3 ^a	1	0.05	NT	1
zinc	230	250	86	540	50	480	120
1: Ambien presente 2: Lindsay 3: Effective data in	t water quality ed (EPA 1986 (1979). e range-low; t which effects	y criteria for t b). he concentra s were obser	he protection ation represe ved or predi	n of aquatic nting the lo cted in stud	life, marine west10 perce ies compiled	chronic criteria entile value for I by Long and I	the Morgan

Marine acute criteria presented; no chronic criteria available

a NT: Not analyzed

from the DevilOHole area; RDX and TNT were measured at 760 mg/kg and 6,000 mg/kg, respectively.

Sediment and clam tissues were collected from areas adjacent to the pier facilities in Hood Canal. Copper, lead, zinc, and mercury in Hood Canal sediment exceeded levels reported to be associated with toxic effects to aquatic organisms in other studies (Long and Morgan 1990). Trace elements were found

Table 2.		Mytilus	s edulis	Macon	na spp.	Saxidomus	giganteus	
Maximum concen-		Bangor	Puget	Bangor	Puget	Bangor	Puget	
trations of metals in		Darigoi	Max	Darigor	Max	Daligoi	Max	
	cadmium	5.5	5.5	1.0	0.2	0.6	0.4	
shellfish collected	chromium	3.9	12.0	21.0	1.8	5.1	NT	
in Hood Canal in	copper	19.0	13.0	98.0	89.0	14.0	4.2	
the vicinity of the	mercury	0.2	0.13	0.2	NT	0.08	0.04	
site compared to	lead	7.2	15.0	2.7	9.7	0.3	0.42	
lessels was arts of fair	zinc	260.0	320	300	260	64.0	16.4	
levels reported for	1: Olsen and Schell (1977).							
Puget Sound.	2: Stober	and Chew	(1984); valu	ues are from	a single sar	nple only.		
	3: Faiger	ıblum et al.	(1988).					
	NT Not tes	sted						

	U.S. Naval Submarine Base, Bangor
Site-Related Contamination, cont.	in Hood Canal clam tissues (Table2; Olsen and Schell 1977; Stober and Chew 1984; Faigenblum et al. 1988; Ribic and Swartzman 1989). Concentrations of cadmium, chromium, copper, mercury, lead, and zinc exceeded maxi- mum levels reported for Puget Sound in some species.
NOAA Trust Habitats and Species	The primary habitats of concern to NOAA are Hood Canal and Dyes Inlet. Habits of secondary concern include Clear Creek, Devil©Hole Lake, and Cattail Lake. Hood Canal is within the Puget Sound estuary and consists of a narrow inlet that ex- tends 75 km southwest from Admiralty Inlet in northern Puget Sound.
	The nearshore areas adjacent to the subase support numerous species of interest to NOAA and are of the most concern (Table 3; Peeling and Goforth 1975; Bax et al. 1978; USFWS 1981; Naval Energy and Environmental Support Activity 1983; Research Planning Institute Inc. 1985). Clams and mussels abound in the coves along Hood Canal in the area of the subase and oysters are found in protected areas. Subtidal geoduck beds occur intermittently along the shoreline, with the greatest abundances in the river delta areas. All species listed in Table 3 support commercial or recreational fisheries. Many of these are harvested recreationally along the shoreline of Subase Bangor and some are commercially harvested from offshore areas (National FisheryResearchCenter 1988).
	Abundant eelgrass beds along the shoreline adjacent to the subase provide habitat for several marine species of interest to NOAA, including juvenile rockfish, lingcod, and English sole. Herring use nearshore areas for spawning and nursery grounds, especially where eelgrass is prevalent (Jongejan/ Gerrard Associates 1974 ; Peeling and Goforth 1975; Naval Energy and Environmental Support Activity 1983).
	Subtidal areas provide highly productive habitat for various crustacean species. The Puget Sound recreational shrimp fishery is dominated by the Hood Canal spot shrimp, which accounts for nearly 70 percent of all Puget Sound shrimp landings (Washington Department of Fisheries 1988). It is estimated that Hood Canal provides 30 percent of the total

	U.S. Naval Submarine Base, Bangor
NOAA Habitats and Species, cont.	annual catch of chum salmon for Puget Sound and 20 percent of the pink salmon catch (Jongejan/Gerrard Associates 1974). Salmonids enter Hood Canal from surrounding streams as juveniles during the late winter and spring and migrate north
Table 3. Major invertebrate and fish species use of Hood Canal, and major commercial and recreational fisheries in Hood Canal.	Table available in hardcopy
	along the shoreline toward the Strait of Juan de Fuca (Jongejan/Gerrard Associates 1974). The out-migrating salmon use the shallow portions of the canal adjacent to the site for foraging. Steelhead trout, and coho and chum salmon use the lower

	U.S. Naval Submarine Base, Bangor
NOAA Trust Habitats and Species, cont.	1988). DevilsÕHole Lake is a six-hectare lake connected to Hood Canal by a small stream with a fish ladder. The Navy uses the lake for rearing sea-run cutthroat trout and coho salmon (Munn personal communication 1990). Cattail Lake supports a native, naturally reproducing stock of cutthroat trout, which spawn in the small streams entering the lake (National Fishery ResearchCenter 1988). There are currently no anadromous fish runs in Cattail Lake, as fish migration is prevented by a screened spillway. Historical records indicate that the stream may have supported anadro- mous fish runs in the past (Jongejan/Gerrard Associates 1974).
References	 Bax, N.J., E.O. Salo, B.P. Snyder, C.A. Simenstad and W.J. Kinney. 1978. Salmonid outmigration studies in Hood Canal. Final Report. Phase III, January to July 1977. Seattle: Univer- sity of Washington College of Fisheries, Fisheries Research Institute,. Faigenblum, J., G. Plews, and J. Armstrong. 1988. Chemicals and biological organisms in Puget Sound recreational shell- fish. In <u>Proceedings, First annual meeting on Puget Sound research</u>, Seattle, March 18-19, 1988. Seattle: Puget Sound Water Quality Authority. pp. 307-318.
	 Hart Crowser Inc. 1989. Current situation report, Sites C, D, E, F, 5, 6, 11, 12, 24, and 25, SUBASE Bangor, Bangor, Washington. Volume I, Seattle: U.S. Environmental Protection Agency, Region 10. Jongejan/Gerrard Associates. 1974. Draft Environmental Impact Statement. Trident Support Site. Bangor. Washington:
	U.S. Department of the Navy. Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.

	U.S. Naval Submarine Base, Bangor
References, cont.	Long, E.R. and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum. NOS OMA-52. 175 pp + Appendices.
	Munn, M., E.V.S. Consultants, Seattle, Washington, personal communications, March 5 and 8, 1990.
	National Fishery Research Center. 1988. Natural resources management plan for the Naval submarine base Bangor, Bremerton, Washington. Seattle: U.S. Fish and Wildlife Ser- vice.
	Naval Energy and Environmental Support Activity. 1983. Navy Assessment and Control of Installation Pollutants: Ini- tial Assessment Study of Naval Submarine Base Bangor, Bremerton, Washington, Volumes I and II. Port Hueneme, California: U.S. Department of the Navy, Naval Energy and Environmental Support Activity.
	Olsen, S.J. and W. R. Schell. 1977. Base line study of trace heavy metals in biota of Puget Sound. Seattle: Municipality of Metropolitan Seattle. Unpublished report. 66 pp.
	Peeling, T.J. and H.W. Goforth. 1975. Trident biological surveys: a summary report, June 1973 - July 1975. San Diego: U.S. Department of the Navy, Naval Undersea Center, Under- sea Sciences Department.
	Research Planning Institute. 1985. Sensitivity of coastal envi- ronments and wildlife to spilled oil: central and southern Puget Sound. Seattle: Office of Oceanography and Marine Assessment, NOAA. 113 maps.
	Ribic, C.A. and G.L. Swartzman. 1989. Analysis of SUBASE Bangor heavy metal monitoring data. Final Report. Seattle: University of Washington, Center for Quantitative Science.

t- i-	References, <i>cont.</i>
ia -	
1	
38	
1 i - 1 i - 3	cont.

	Bonneville Power Administration, Ross Complex
Site Exposure Potential, cont.	through Lake River and a flushing channel between the lake and the Columbia River. Surface runoff from the site is directed through oil-water separators that remove oily contaminants before the water discharges to Cold Creek and Burnt Bridge Creek. Storm runoff not intercepted by the oil-water separators is dis- charged to open fields, Cold Creek, and Burnt Bridge Creek.
	Groundwater at the BPA site occurs primarily in the Troutdale aquifer 30 to 45 m below ground. Although no shallow groundwater has been found on the site, some perched groundwater has been found in the clay, silt, and sand over- laying this deeper aquifer in nearby areas. The groundwater flow in the main aquifer beneath the site is generally to the southwest. Flow that would occur in a shallow system would probably discharge to Cold Creek (U.S. DOE 1986). Cold Creek originates as a groundwater discharge to the surface approximately 0.2 km north of the site (Battelle 1988).
	The primary pathways of contaminant transport to NOAA resources or habitats are surface runoff to on-site creeks and the leaching of contaminants from fill areas adjacent to surface water. Groundwater may also represent a potential migration pathway, but insufficient information is available to evaluate its significance.
Site-Related Contamination	Groundwater, surface water, soil, and sediment samples were collected during the preliminary assessment (U.S. DOE 1986) and subsequent site investigations (Battelle 1988). Based on the limited data collected during these investigations, the contaminants of most concern to NOAA are lead, mercury, silver, zinc, and PCBs. Copper may also be of concern because high concentrations have been detected in on-site soil. Maxi- mum concentrations of contaminants in various matrices sampled are presented together with available screening levels in Table 1 (U.S. DOE 1986; Battelle 1988).
	The maximum concentration of lead was measured in surface water samples collected from Cold Creek, downstream from the fill area during the 1988 site investigation (Battelle 1988). Silver was measured at high levels from Cold Creek down-

Bonneville Power Administration, Ross Complex

Site-Related Contamination,

cont.

Table 1. Maximum concentrations of major contaminants near the site compared with applicable screening levels.

	Water		Soil		Sediment		
	Ground- water	Surface Water		Soil	Average U.S. Soil ²	Sediment	ER-L ³
INORGANIC SI		<u> </u>	µg,,	iiig/itg	ing/ing	iiig/iig	mg/ng
inonganic sc arsenic chromium copper lead mercury silver zinc	<10 NT 13 <0.5 NT NT	<5 0.5 1 10 <0.5 2.5 76	190 11 12 ⁺ 3.2 ⁺ 0.012 0.12 110 ⁺	50 460 37,000 1,300 0.76 0.13 1,100	5 100 30 10 0.03 50	16 20 19 32 0.05 0.12 116	33 80 70 35 0.15 1.0 120
1: Ambient presente 2: Lindsay 3: Effective data in v (1990)	t water qualit ed (EPA 1986 (1979) e range-low; † which effects	y criteria for 5). the concent were obser	the protect ration repre- ved or pred	ion of aquations of aquations of aquations of aquations of a section o	c life, freshv owest 10 pe es compiled	vater chronic o rcentile value by Long and	oriteria for the Morgan

- + Hardness-dependent criteria; 100 mg/l CaCO₃ used.
- NT: Not analyzed

stream from the Construction and Services Building during the preliminary assessment (U.S. DOE 1986). High concentrations of arsenic, chromium, copper, and lead were detected in soil taken from the fog chamber dump. Concentrations of mercury, silver, and zinc were measured in a soil sample collected from a surface drain in the Cold Creek fill area.

No PCB analyses were performed on groundwater samples. Trace amounts of PCBs were detected in surface water from Cold Creek downstream of the fill area. The highest concentrations of PCBs in soil were found in samples from the capacitor testing yard. Elevated levels were also found in the soil collected from the landfill surface drain. PCB concentrations were below the detection limit in Cold Creek sediment collected downstream of the surface drain discharge.

Measurements of organic compounds in groundwater indicated the presence of some organic contamination but at low levels with respect to NOAA concerns. Benzene was the only organic compound detected in surface water samples and occurred at very low levels. PCP and numerous PAHs associated with creosote were present at low concentrations in soil from wood pole storage areas. No volatile or semi-volatile organic compounds were detected in sediment from Cold Creek; however, the number of samples taken was very small.

	Bonneville Power Administration, Ross Complex
NOAA Trust Habitats and Species	PCP was not detected in groundwater or surface water samples. No PCP analyses were performed on Cold Creek sediment. The habitats of most concern to NOAA are all freshwater, including Cold Creek, Burnt Bridge Creek, and Vancouver Lake. Cold Creek and Burnt Bridge Creek are small streams 2- 5 m wide, less than one meter deep, and with gravel and sandy substrates, respectively. Cold Creek has been
	channelized as it crosses the BPA site. Burnt Bridge Creek drains a larger, more developed area but is usually dry during periods of low precipitation (Battelle 1988; Starkes personal communication 1990).
	Vancouver Lake is a shallow, weedy lake serving as waterfowl habitat. In the early 1980s, the lake was dredged to a depth of approximately three meters and a channel was constructed between the Columbia River and the east end of Vancouver Lake to increase flushing (Roller personal communication 1990).
	Species in Vancouver Lake of special interest to NOAA in- clude chinook salmon, coho salmon, steelhead trout, cutthroat trout, and white sturgeon. Chum salmon are no longer found in Burnt Bridge and Cold creeks because of habitat degrada- tion caused by residential and commercial development in the lower watershed, and agricultural runoff in the upper water- shed. Coho salmon, steelhead trout, and cutthroat use Burnt Bridge and Cold creeks for spawning and nursery habitat. However, populations of these fish are very small due to habitat degradation. Although some chinook salmon may enter these streams, no spawning occurs there. Juvenile stur- geon are found in Vancouver Lake and the lower reaches of Burnt Bridge Creek, where the water flow is slowed by "backup" from the lake (Roller personal communication 1990; Van Tussenberg personal communication 1990).
	There are no commercial fisheries of NOAA trust resources near the site. The only commercial fishery in the area is for carp in Vancouver Lake. Recreational fishing occurs in Cold Creek, Burnt Bridge Creek, and Vancouver Lake, mainly for freshwater species (blue gill, black and white crappie, and

	Bonneville Power Administration, Ross Complex
NOAA Habitats and Species, <i>cont</i> .	catfish). Salmon and trout populations are too limited to support a recreational fishery (Van Tussenberg personal com- munication 1990).
	No federally protected species are known to frequent nearby habitats of concern, although recreational fishermen are at- tempting to have endangered-species status conferred upon the Lower River wild chinook, Snake River fall-run chinook, and Upper Columbia summer-run chinook (Roller personal communication 1990).
References	Battelle Pacific Northwest Laboratory. 1988. Site inspection report on the Bonneville Power Administration's Ross Com- plex, Volumes I-III, Vancouver, Washington. Draft. Portland, Oregon: Bonneville Power Administration. 102 pp + Appen- dices.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R. and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, National Oceanic and Atmo- spheric Administration. Rockville, Maryland. NOAA Techni- cal Memorandum. NOS OMA 52. 175 pp + Appendices.
	Roller, T., Washington Department of Fisheries, Battleground, Washington, personal communication, April 6,1990.
	Starkes, J., E.V.S. Consultants, Seattle, Washington, personal communication, April 5, 1990.
	U.S. Department of Energy. 1986. CERCLA Preliminary Assessment, BPA Ross Complex, Vancouver, Washington. Vancouver, Washington: Bonneville Power Administration. 50 pp. + Attachments.
	U.S. Environmental Protection Agency. 1986. Quality Criteria for Water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5- 86-001

Elmendorf Air Force Base

Anchorage, Alaska Region 10 AK8570028649

Site Exposure Potential Elmendorf Air Force Base (AFB) occupies a 5,300-hectare site just north of Anchorage, Alaska (Figure 1). The base began operations in 1940 as Fort Richardson and Elmendorf Field, and has been known as Elmendorf AFB since 1948. Since the mid-1940s, industrial operations have resulted in the discharge and disposal of potentially hazardous substances, including waste oils, fuels, solvents, and other chemicals. The major sources of hazardous wastes on the base include industrial shops, fire training facilities, fuel storage facilities, and landfills (Black and Veatch 1989).

> Spent solvents and waste oils were disposed of in storm and sanitary sewers or floor drains that discharged directly to dry wells or surface drainage ditches. Combustible chemicals,

	Elmendorf Air Force Base
Site Exposure Potential, cont.	such as oils, fuels, and solvents were used as fuel for fire train- ing drills. Since the mid-1970s, waste liquids have been stored on the site for periodic removal and off-site disposal.
	Ship Creek and Cherry Hill Ditch form the major surface drainages for the Elmendorf AFB. Ship Creek flows along the southern boundary of the base for 7 km before discharging to Knik Arm. Several on-site waste disposal operations are lo- cated near Ship Creek. Another proposed NPL site, Standard Steel, is located on Ship Creek immediately south of the base boundary. Cherry Hill Ditch flows southwest from the runway area of the base and discharges to Knik Arm. This ditch is composed primarily of surface runoff and storm drain dis- charge from much of the base. Occasional oily sheens and foam have been observed on water flowing from the ditch (Black and Veatch 1989).
	Groundwater is extremely shallow at Elmendorf AFB, often occurring at the ground surface. Flow is generally south to southwest toward Ship Creek. The shallow aquifer and Ship Creek share a complex relationship. Ship Creek provides much of the groundwater recharge to the shallow aquifer in the mid- and upper reaches of the creek. However, in the lower reaches of Ship Creek, groundwater discharges to the creek.
	The primary pathways for contaminant migration are ground- water and surface runoff. Contaminated groundwater eventu- ally discharges to Ship Creek. Surface runoff and storm drain- age patterns have not been investigated. Observations made during the Remedial Investigation suggest that the majority of the surface runoff discharges to Cherry Hill Ditch and Knik Arm. Sites near Ship Creek may discharge directly to the creek.
Site-Related Contamination	The contaminants of concern at Elmendorf AFB include ar- senic, cadmium, chromium, copper, lead, mercury, nickel, zinc, and several PAHs. These substances were found at elevated concentrations in the groundwater and sediment of Cherry Hill Ditch. PAHs were not widespread but moderate concentra- tions of several of these compounds were observed in the

Site-Related Contamination,

cont.

sediment collected at one site in Cherry Hill Ditch. Groundwater contaminated with trace elements may eventually discharge to Ship Creek at concentrations toxic to aquatic resources present in the stream. Sediments contaminated with these same elements and PAHs observed in Cherry Hill Ditch may be transported to Knik Arm during periods of erosion (e.g., during heavy precipitation events).

Elmendorf Air Force Base

Elevated concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, or zinc were measured in most of the groundwater samples collected (Table 1; Black and Veatch 1989). Lead and mercury concentrations exceeded screening levels established for surface waters in samples from Cherry Hill Ditch. Concentrations of most trace elements in the soil were similar to background levels established

Table 1.
Maximum
concentrations of
major
contaminants at
Elmendorf AFB
site compared
with applicable
screening levels.

	Water			Soil		Sediment		
		Ground-	Surface Water	ANA/001	Soil	Average	Sediment	ED 1 3
		ua/l	ug/l	ua/l	ma/ka	0.5. 501- ma/ka	ma/ka	ma/ka
INOR	GANIC S	UBSTANCES	; ;	F 3 '				3 3
arseni	с	715	17	190	31	5	70	33
cadmium		13	ND	1.1+	ND	0.06	8	5
chromium		1300	ND	11	57	100	117	80
copper		5500	10	12+	35	30	190	70
lead		222	10	3.2+	39	10	852	35
mercury		17	0.2	0.012	0.2	0.03	1.35	0.15
nickel		3300	ND	160+	39	40	75	30
zinc		3100	ND	110+	70	50	455	120
1: 2: 3:	Ambier present Lindsay Effectiv data in (1990). Hardne	it water qualit ed (EPA 1980 (1979). e range-low; t which effects ss-dependent	y criteria fo 5). the concent were obse t criteria; 10	r the protecti tration repres rved or pred	on of aquati senting the line to the line of the line	c life, freshw owest 10 per ies compiled	ater chronic c centile value f by Long and I	riteria or the Morgan

PAHs were the primary organic compounds of concern observed at Elmendorf AFB. PAHs were generally not found in

	Elmendorf Air Force Base
Site-Related Contamina- tion, cont.	groundwater at the base, but naphthalene (280 μ g/l) and 2- methylnaphthalene (500 μ g/l) were observed in low concen- trations in one monitoring well. Low concentrations (<10 mg/ kg) of phenanthrene, benzo(a)anthracene, benzo(a)pyrene, and benzo(k)fluoranthene were measured in the soil taken at several sites. PAHs were observed in one sediment sample from Cherry Hill Ditch at high concentrations.
NOAA Trust Habitats and Species	Ship Creek and Knik Arm in upper Cook Inlet form the pri- mary habitats of concern to NOAA. Intermittent pockets of riparian wetlands are found along Ship Creek from the mouth of the creek to the site (Brna personal communication 1990).
	Ship Creek is a spawning ground and migratory corridor for anadromous Dolly Varden and adult chinook, coho, pink, sockeye, and chum salmon. Chinook and coho salmon use the creek for spawning and early juvenile rearing. Knik Arm is a juvenile rearing area. Anadromous Dolly Varden may spawn in the vicinity of the site (Wiedmer personal communication 1990).
	Prior to 1989, the Alaska Department of Health and Human Services posted signs along Ship Creek stating, "The munici- pality of Anchorage recommends against the eating of fish taken from these waters because of chemical contamination of stream sediment." The signs were removed in 1989 for admin- istrative reasons.
	Cook Inlet is one of eight recognized wintering areas world- wide for beluga whales. The Cook Inlet population is resident year-round, and may contain 300 to 500 whales. No compre- hensive surveys have been done, so these numbers may be conservative (Morris 1988). Belugas are known to concentrate at the mouth of Ship Creek and feed on anadromous fish there from mid-May through September (Smith personal communi- cation 1990).
References	Black and Veatch. 1989. Installation Restoration Program, Stage 3. Remedial investigation/feasibility study, Elmendorf
	Elmendorf Air Force Base
---------------------------------	--
References, <i>cont.</i>	Air Force Base, Alaska. Volume 1. Anchorage: U.S. Air Force, Alaskan Air Command.
	Brna, P., Alaska Department of Fish and Game, Habitat Pro- tection Division, Anchorage, Alaska, personal communica- tions, May 29 and June 4, 1990. Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Long, E.R. and L.G. Morgan. 1990. The potential for biologi- cal effects of sediment-sorbed contaminants tested in the National Status and Trends Program. Seattle: Coastal and Estuarine Assessment Branch, NOAA. NOAA Technical Memorandum. NOS OMA-52. 175 pp + Appendices.
	Morris, B.F. 1988. Cook Inlet beluga whales. Anchorage: National Marine Fisheries Service, NOAA.
	Smith, B., National Marine Fisheries Service, Anchorage, Alaska, personal communication, May 29, 1990.
	U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87- 003.
	Wiedmer, M., Alaska Department of Fish and Game, Depart- ment of Fisheries, Anchorage, Alaska, personal communica- tion, May 15, 1990.

Anchorage, Alaska Region 10 AK980978787

Site Exposure Potential

Standard Steel occupies 2.5 hectares along Ship Creek in a heavily industrialized area of Anchorage, Alaska (Figure 1). Since 1972, recycling and salvage operations have been conducted on the site, including reclaiming of transformers contaminated with PCBs, salvaging batteries, and processing equipment and drums from nearby military bases. From 1972 to 1981, an on-site incinerator burned excess oil on copper wires salvaged from the inside of electrical transformers, generating dioxin-contaminated ash. Transformer oil was also reportedly used to ignite large piles of debris on-site, which may have included transformer carcasses or cores. The majority of the site is covered haphazardly with heavy salvage debris extending into Ship Creek. In 1986, a rip-rap erosion wall was built along the creek adjacent to the site to prevent roadbed erosion and the transport of potentially contaminated soils and materials into the creek. Groundwater at the site is very shallow, from 0.9 to 2.9 m below ground surface, and generally flows south-southwest towards Ship Creek. On-site soils are highly permeable, making transport of contaminants

	Standard Steel					
Site Exposure Potential, cont.	in surface soil The primary p affect NOAA and, for the w Contaminated source of cont	s very prob oathways o resources o estern port soils and s amination.	bable (Eco f contam or habitat tion of th sediment	ology and inant trar is are grou e site, sun is may rej	l Environ nsport tha undwater face wat present a	ament 1986). at may discharge er runoff. secondary
Site-Related Contamination	Surface and su sediment sam studies (Table Roy F. Westor communicatio pollutant meta collected from ins and furans dioxins, and r NOAA at the contaminants Table 1 along Copper, lead, groundwater. and zinc were	ubsurface s ples were o 1; Ecology 1986; EPA n 1986; EPA n 1990). Sa als, organic the on-site the on-site s. Results i elated fura Standard S in the varie with applie nickel, and The maxin observed i	oils, grou collected y and Env A 1987; Re amples we compou e incinera ndicated ns are the teel site. ous matri- cable scree l zinc we mum con in a moni	undwater during a vironment obinson-V vere analy inds, and ator were that trace e contami Maximu ices analy eening lev re detected centratio itoring w	, surface series of t 1986, 19 Wilson pe yzed for p PCBs. A analyzed e metals, inants of m concer yzed are p yels. ed at high ns of cop ell locate	water, and preliminary 87, 1988; ersonal priority sh samples d for diox- PCBs, concern to trations of presented in a levels in per, lead, d on the
T. 1 1. 1			Wator			Soil
Maximum concentrations		Ground- water	Surface Water		Soil ma/ka	Average U.S. Soil ² mg/kg
of major	INORGANIC SUBS	TANCES	F 37	rð''		
contaminants in	arsenic			190	53 750	5
the vicinity of	chromium	ND	NT	1.1 '	1,600	100
the site	copper	650	NT	12+	7,700	30
compared with	lead	760	NT	3.2+	11,000	10
applicable	mercury	ND	NT	0.012	180	0.03
screening	nickel	100	NT	160+	650	40
levels.	silver		N I NT	0.12	32	0.05
		UNDS		110+	10,000	50
	Total PCBs	2,025	<0.10	0.014	165,000	NA
	1: Ambient wat criteria prese 2: Lindsay (19 + Hardness-de ND: Not detected NT: Not analyzed NA: Screening le	ter quality criteria ented (EPA 1986 79). ependent criteria; I at method detec d vel not available.	t for the protec). ; 100 mg/l CaC ction limit; dete	ction of aquatic CO ₃ used. ection limit not	blife, freshwat	er chronic

	Standard Steel
Site-Related Contamination, <i>cont</i> .	southwest boundary of the site. The maximum concentration of nickel was observed in a monitoring well near the main transformer storage area. Elevated levels of nine trace metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc) were observed in soil samples on site. Sur- face water and sediment samples were not analyzed for trace metals.
	Groundwater and three soil samples were analyzed for vola- tile and semi-volatile organic compounds, but only very low levels of contamination were detected in any of the samples. Surface water and sediment samples were not analyzed for volatile or semi-volatile organic compounds.
	Elevated levels of PCBs (primarily Aroclor 1260) were observed in groundwater, on-site soil, and sediment. PCBs in groundwater were measured at very high levels in a monitoring well near the main transformer storage area. Floating oil containing extremely high levels of PCBs (9,040,000 μ g/l) was detected in another nearby groundwater monitoring well. The maximum concentration of PCBs in soil was measured in a sample collected from the main transformer storage area. PCBs in sediment had a maximum value of 2.5 mg/kg and were detected in a sample collected 45 m downstream of the Standard Steel site. PCBs were not detected in any surface water samples, but detection limits (0.10 μ g/l) were higher than the screening levels for this contaminant. Groundwater, soil, and sediment were not analyzed for pesticides, so no evaluation of Standard Steel as a potential source can be made at present (Tetra Tech 1988).
	Ash samples collected from the on-site incinerator were found to contain up to 4.2 μ g/kg tetrachlorinated dioxins (TCDD); however, the samples did not contain the most toxic isomer, 2,3,7,8-TCDD. Because this isomer was not present, and di- oxin isomers have different toxicities, all dioxin concentrations reported for the Standard Steel site are expressed as concen- trations equivalent to the 2,3,7,8-TCDD isomer. A concentra- tion equivalent to 5.71 μ g/kg 2,3,7,8-TCDD was found in an ash sample collected from inside the incinerator. Significant levels of chlorinated dioxins and furans were present in all

	Standard Steel				
Site Related Contamination, <i>cont</i> .	samples collected ter, surface water, not analyzed for o Tissue samples of ately downstream PCBs, DDE, and t	in and around the incir and soil outside of the lioxins (Ecology and Er Dolly Varden trout fro of the Standard Steel s he dioxin concentratior	nerator. Groundwa- incinerator area were nvironment 1986). m Ship Creek immedi- site were tested for n equivalents to		
Table 2. Maximum concentrations of	Contaminant	Collectic Ship Creek ua/ka	on Site Anchorage Area ug/kg		
contaminants in Dolly Varden trout from Ship Creek	PCBs DDE 2,3,7,8-TCDD	143.0 50.5 0.87	218.0 17.2 0.000685		
from nearby surface water.	2,3,7,8-TCDD (Table 2; Tetra Tech 1988). Maximum levels of DDE and TCDD were higher than those from tissue samples of trout collected from other surface waters in the vicinity of Anchorage.				
NOAA Trust Habitats and Species	Ship Creek and Knik Arm in upper Cook Inlet form the pri- mary habitats of concern to NOAA. Intermittent pockets of riparian wetlands are found along Ship Creek from the mouth of the creek to the site (Brna personal communication 1990). Ship Creek is a spawning and migratory corridor for adult chinook, coho, pink, and chum salmon, and Dolly Varden. Chinook and coho salmon also use the creek for spawning and early juvenile rearing. Knik Arm is a juvenile rearing area. Anadromous Dolly Varden use Ship Creek as a migratory corridor and may spawn near the Standard Steel site (Wiedmen personal communication 1990).				
	Prior to 1989, the Alaska Department of Health and Human Services posted signs on Ship Creek stating, Dhe municipality of Anchorage recommends against the eating of fish taken from these waters because of chemical contamination of stream sediments. OThe signs were removed in 1989 for administra- tive reasons.				

	Standard Steel
References	 Cook Inlet is one of eight recognized wintering areas worldwide for beluga whales. The Cook Inlet population is resident year-round, and may contain 300 to 500 whales. No comprehensive surveys have been done, so these numbers may be conservative (Morris 1988). Belugas are known to concentrate at the mouth of Ship Creek and feed on anadromous fish there from mid-May through September (Smith personal communication 1990). Brna, P., Alaska Department of Fish and Game, Habitat Protection Division. Anchorage. Alaska, personal communication
	 tions, May 29 and June 4, 1990. Ecology and Environment, Inc. 1986. TAT activities report, preliminary assessment, Standard Steel and Metals Salvage Yard, Anchorage, Alaska. 28 October to 8 November, 1985. Seattle: U.S. Environmental Protection Agency, Region 10. 59 pp.
	Ecology and Environment, Inc. 1987. Standard Steel Action Memorandum. Attachment 3. Seattle: U.S. Environmental Protection Agency, Region 10. 12 pp.
	Ecology and Environment, Inc. 1988. On-scene coordinator $\tilde{\mathbf{O}}$ report. Standard Steel and Metals Salvage Yard. Seattle: U.S. Environmental Protection Agency, Region 10. 64 pp + appendices.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449 pp.
	Morris, B.F. 1988. Cook Inlet beluga whales. Anchorage: National Marine Fisheries Service, NOAA.
	Robinson-Wilson, E., U.S. Fish and Wildlife Service, Anchor- age, Alaska, personal communication, May 1, 1990.
	Roy F. Weston, Inc. 1986. TAT activities report, hazardous waste site cleanup, Standard Steel and Metals Salvage Yard. Seattle: U.S. Environmental Protection Agency, Region 10. 38 pp

	Standard Steel
References, <i>cont.</i>	Smith, B., National Marine Fisheries Service, Anchorage, Alaska, personal communication, May 29, 1990.
	Tetra Tech. 1988. Bioaccumulation of selected pollutants in fish. Washington, D.C.: Office of Water Regulations and Standards, U.S. Environmental Protection Agency.
	U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003.
	U.S. Environmental Protection Agency. 1987. Environmental response team investigation of the extent of groundwater and soils contamination at the Standard Steel Site, Anchorage, Alaska. 9 pp.
	Wiedmer, M., Alaska Department of Fish and Game, Depart- ment of Fisheries, Anchorage, Alaska, personal communication, May 15, 1990.

	Union Pacific Tie Treating Facility
Site Exposure Potential, cont.	excess wastewater may have been released onto the ground north and south of the treatment system. In 1980, approxi- mately 8 million liters of liquids and 450,000 liters of sludge
	were removed from the process ponds and disposed of off-site. Clean fill material was placed over the former ponds. In 1983, the wastewater treatment system was improved and expanded to result in zero discharge.
	Three Mile Creek flows along the eastern border of the site before discharging to the Columbia River. The site lies ap- proximately 200 meters south of the Columbia River and is separated from the river by a levee constructed in 1937 for flood control. Prior to construction, the site was open to the river. In 1948, flooding along the Columbia River breached a levee, inundating operational portions of the plant. In 1958, construction of The Dalles Dam was completed and provided flood control for the site and the city of The Dalles.
	Groundwater occurs in both an unconfined shallow aquifer and deeper confined aquifers. The unconfined unit is 1.5 to 3.5 meters below the ground surface and flows north towards the Columbia River. Deeper, confined aquifers are located about 12 to 15 meters below the level of the river. The confined aquifers lack good hydraulic connection with the Columbia River and discharge is believed to occur primarily by well pumping.
	The primary migratory pathways for contamination from the site to the Columbia River and Three Mile Creek are via groundwater movement and surface runoff. Direct discharge to the Columbia River may also occur through the old pipeline beneath the levee.
Site-Related Contamination	The RI/FS sampling program has been completed and the RI report is in preparation. Data characterizing contamination at the site are very limited and are based on results from preliminary hydrogeologic surveys (CH ₂ M Hill 1986, 1987).
	Concentrations of PAHs, the major contaminants found at the facility, were elevated in groundwater and soil (Table 1; CH ₂ M Hill 1986, 1987). Concentrations of PCP were also elevated in

	Union Pacific Tie	Treating Fc	icility		
Site-Pelated			ator		Soil
Contamination.		Ground-			Average
cont.		water	AWQC ¹	Soil	U.S. Soil ²
	INORGANIC SUBSTA	NCES	μg/i	mg/kg	nig/kg
Table 1.	arsenic	190	190	59	5
Maximum	zinc	26	110+	NR	50
concentrations of	ORGANIC COMPOUN	DS			
contaminants of	total PAHs	>20,000	300*	>6300	NA
groundwater and	PCP	780	13++	0.4	NA
soil at the site.	dibenzofuran	/90 6.3	NA 0.014	990 ND	NA NA
	And Presented (EPA 19 Presented (EPA 19 2: Lindsay (1979). + Hardness -dependent crit * Insufficient data to effects given NA: Screening level no ND: Not detected at me these matrices. F	PCBs were de	l CaCO ₃ used. west observed ef detection limit no tected in gr	fect level for fresh ot reported	nwater acute
NOAA Trust Habitats and Species	found in soil sam samples was take Bonneville Pool i are the habitats of River, the largest approximately 60 ticularly prolific cial and recreation Below The Dalles 850 meters wide Bonneville Dam sparse along this levee and rip-rap Three Mile Creek the site's eastern bia River below t sandy and stream Due to its shallow Extensive upstream	nples. Howeven. In the Columb of primary con- triver basin it 58,220 km ² an- salmonid rur- onal fisheries s Dam, the Co- and free-flow 67 kilometers reach, know 67 kilometers reach, know 63 kilometers reach, know 64 kilometers reach, know 65 kilometers reach, know 65 kilometers reach, know 65 kilometers reach, know 66 kilometers reach, know 67 kilometers reach, know 67 kilometers reach, know 67 kilometers reach, know 67 kilometers reach, know 68 kilometers reach, know 69 kilometers reach, know 60 kilometers reach, know 61 kilometers reach, know 62 kilometers reach, know 63 kilometers reach, know 64 kilometers reach, know 65 kilometers reach, know 65 kilometers reach, know 65 kilometers reach, know 66 kilometers reach, know 67 kilometers reach, know 68 kilometers reach, know 69 kilometers reach, know 60 kilometers reach, know 68 kilometers reach, know 69 kilometers reach, know 60 kilometers reach, know 60 kilometers reach, know 60 kilometers reach, know 61 kilometers reach	ver, only a l bia River an incern to NO n western I d supports is that susta (Beccasio e blumbia Riv ing until re- downriver n as the Bo hallow inter swith seaso rature varia	limited nur nd Three M DAA. The North Ame diverse bio ain intensiv t al. 1981). ver is appro- eaching the r. Wetland nneville Po- ermittent st eded into t s. The sub nal precipi ations are s n periodic s	nber of (ile Creek Columbia rica, drains ota, par- ve commer- oximately s are ool, due to ream on he Colum- strate is tation. substantial. sediment

Union Pacific Tie Treating Facility

NOAA Trust Habitats and Species, cont. loading in the creek (Newton personal communication 1990). Near the site, Three Mile Creek nurtures a corridor of wetlands consisting of narrow and broad-leaved emergents and short shrubs. The creek is undergoing a long-term restoration, coor-

Table 2.	5	Species		Habitat	
anadromous	Common Name	Scientific Name	Snawning	Nursony	Adult
fish species in	white sturgeon 1	Acipenser	Spawning		
Bonneville	white sturgeon	transmontanus		•	•
Pool.	American shad	Alosa sapidissima	•	•	•
	chum salmon ²	Oncorynchus keta			•
	coho salmon	Oncorynchus kitsutch	•	•	•
	steelhead trout	Oncorynchus mykiss	•	•	•
	sockeye salmon	Oncorynchus nerka	•	•	•
	chinook salmon	Oncorynchus	•	•	•
		tshawytscha			
	cutthroat trout	Saimo ciarki	•	•	•
d ((s E C ii c E a h C t i ii c t	Bonneville Da populations h personal com	im. Except in cases of inc ave emerged (ODFW ar munication 1990).	idental released WDF 1989	se, separate ; Newton	pool
	occur above E no fishing effo 1989; Newton	Bonneville Dam but would brt for chum salmon in the personal communication	l be consider Bonneville F 1990).	ed rare ther Pool (ODFW	e. There is and WDF
	(ODFW), to imp sonal communic Bonneville Pool eral anadromous ODFW and Was in addition to re cance.	and Three Mile Cr s fish species (Tab hington Departme sident freshwater	reek prov eek prov le 2; Becca ent of Fish species of	ide habit ide habit asio et al neries (W f recreati	tat for sev- . 1981; /DF) 1989) ional signifi
	Bonneville Pool and adult forage head and cutthr Creek for spawn the last decade, increased fishing upstream spawn	is a migratory cor e ares for coho and oat trout. These sp ning (Newton pers salmonid populati g, restricted upstre ning habitats. Sum	ridor and chinook pecies alse onal com ons have eam passa umer chin	spawnin salmon, o use Th municati declinec age, and ook, coh	ng, nursery and steel- ree Mile ion 1990). I due to loss of o, sockeye,

	Union Pacific Tie Treating Facility
NOAA Trust Habitats and Species, cont.	and chum salmon, and summer steelhead have been particu- larly impacted (ODFW and WDF 1989). Within Bonneville Pool, coho and chinook populations are bolstered by hatchery releases. White sturgeon populations have rebounded slowly from nearly complete depletion in the late 1800s. Primarily deep channel spawners, it is doubtful that they spawn in the vicinity of the site, but they may use adjacent areas as nursery and forage areas. American shad, introduced in 1885, have flourished throughout the lower Columbia River, producing a record run of 2.2 million fish in 1988 (ODFW and WDF 1989).
References	Beccasio, A.D., J.S. Isakson, A.E. Redfield, W.M. Blaylock, H.C. Finney, R.L. Frew, D.C. Lees, D. Petrula, and R.E. Godwin. 1981. Pacific Coast Ecological Inventory. User's guide and information Base. Washington, D.C.: U.S. Fish and Wildlife Service, Biological Services Program. 159 pp.
	CH ₂ M Hill. 1986. Phase II Report: Hydrogeologic Investiga- tion, Union Pacific Railroad Tie Treating Plant, The Dalles, Oregon. Omaha: Union Pacific Railroad Company.
	CH ₂ M Hill. 1987. Retort Area Subsurface Exploration Report for Union Pacific Railroad Tie Treating Plant, The Dalles, Or- egon. Omaha: Union Pacific Railroad Company.
	CH ₂ M Hill. 1989. Work plan for the remedial investigation and feasibility study at the Tie Treating Plant, The Dalles, Oregon. Omaha: Union Pacific Railroad Company.
	Lindsay, W.L. 1979. <u>Chemical Equilibria in Soils</u> . New York: John Wiley & Sons. 449pp.
	Newton, Jim, Oregon Department of Fish and Wildlife, Clakamas Regional Office, personal communications, August 14, 1990.
	Oregon Department of Fish and Wildlife and Washington Department of Fisheries. 1989. Status Report: Columbia River Fish Runs and Fisheries, 1960-88. 105 pp.
	U.S. Environmental Protection Agency. 1986. Quality criteria for water. Washington, D.C.: Office of Water Regulations and Standards, Criteria and Standards Division. EPA 440/5-87-003.