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Abstract:  For grizzly bears (Ursus arctos horribilis) in the Greater Yellowstone Ecosystem (GYE), minimum population size and allowable num-
bers of human-caused mortalities have been calculated as a function of the number of unique females with cubs-of-the-year (F

CUB
) seen during a 3-

year period.  This approach underestimates the total number of F
CUB

, thereby biasing estimates of population size and sustainable mortality.  Also, it
does not permit calculation of valid confidence bounds.  Many statistical methods can resolve or mitigate these problems, but there is no universal
best method.  Instead, relative performances of different methods can vary with population size, sample size, and degree of heterogeneity among
sighting probabilities for individual animals.  We compared 7 nonparametric estimators, using Monte Carlo techniques to assess performances over
the range of sampling conditions deemed plausible for the Yellowstone population.  Our goal was to estimate the number of F

CUB
 present in the

population each year.  Our evaluation differed from previous comparisons of such estimators by including sample coverage methods and by treating
individual sightings, rather than sample periods, as the sample unit.  Consequently, our conclusions also differ from earlier studies.  Recommenda-
tions regarding estimators and necessary sample sizes are presented, together with estimates of annual numbers of F

CUB
 in the Yellowstone popula-

tion with bootstrap confidence bounds.
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Criteria for recovering the grizzly bear in the lower
United States include annual limits on mortalities (U.S.
Fish and Wildlife Service 1993).  Since 1993, these limits
have been calculated as a function of the number of F

CUB

present in the population, as estimated during 6-year run-
ning periods.  Currently, the number of F

CUB
 present each

year (N) is estimated as the number of such animals actu-
ally observed ( �N   

Obs
).  To the extent that criteria for distin-

guishing family groups are conservative (see Knight et
al. 1995), and because it is highly unlikely that all such
animals are seen,  

 
�N   

Obs 
almost certainly underestimates N.

This helps ensure that mortality limits are conservative,
but precludes calculation of valid confidence bounds.
Moreover, use of a biased estimator like  �N   

Obs 
 effectively

removes decisions regarding the appropriate degree of con-
servatism from the purview of managers.  This is not a
trivial issue because the magnitudes of biases and uncer-
tainties inherent in  �N   

Obs 
 may be biologically and manage-

rially significant.
Efforts to calculate statistically sound estimates of N

have focused on parametric approaches.  Eberhardt and
Knight (1996) applied the Peterson-type estimators of
Chapman and Bailey (Seber 1982), and Boyce et al. (M.S.
Boyce, D. MacKenzie, B.F.J. Manly, M.A. Haroldson, and
D. Moody, 1999, Cumulative counts of unique individu-
als for estimating population size, U.S. Fish and Wildlife
Service, Missoula, Montana, USA) recommended the
maximum likelihood method of Lewontin and Prout
(1956).  These methods assume that each family group

has an equal probability of being sighted.  Because this
assumption is untenable for the Yellowstone data (K.A.
Keating,  M.A. Haroldson, D. Moody, and C.C. Schwartz,
1999, Estimating the number of females with cubs-of-the-
year in the Yellowstone grizzly bear population:  are maxi-
mum-likelihood estimates that assume equal sightability
conservative?  U.S. Fish and Wildlife Service, Missoula,
Montana, USA) estimates based on these methods will be
negatively biased.  Seeking a more robust approach, Boyce
et al. (2001) recommended joint estimation of N over all
years using an estimator derived from the zero-truncated
negative binomial distribution.  This estimator can be
traced to Greenwood and Yule (1920), with early applica-
tions to wildlife population estimation by Tanton (1965,
1969) and Taylor (1966).  The sampling model assumed
by the negative binomial estimator allows for heteroge-
neous sighting probabilities among individuals and, thus,
is equivalent to model M

h
 of Otis et al. (1978).  Unfortu-

nately, Boyce et al. (2001) found that the negative bino-
mial estimator gave reasonable results only when the
coefficient of variation among individual sighting prob-
abilities (CV) was assumed to be constant over time.  This
assumption is difficult to justify for grizzly bears in
Yellowstone, where year-to-year differences in distribu-
tions and abundances of foods affect bear movement pat-
terns and, in turn, the likelihood of seeing particular bears
(Picton et al. 1986).  Such differences almost certainly
affect heterogeneity among individual sighting probabili-
ties, implying that CV varies among years.  Also, because
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the size, distribution, and behavior of bear populations
may interact in ways that affect sightability (Keating 1986),
CV likely changes with N.  The claim of an increased
bear population in Yellowstone (Boyce et al. 2001), there-
fore, is inconsistent with the assumption of a constant CV.
The joint estimation procedure recommended by Boyce
et al. (2001) suffers other drawbacks as well.  Most seri-
ously, estimates of N from previous years may change
retrospectively as new data are added — a property that is
justifiable only if CV is truly constant over time.  Overall,
problems with the parametric methods used to date argue
for considering other alternatives.

Many nonparametric estimators might apply to this
problem (e.g., Otis et al. 1978, Bunge and Fitzpatrick 1993,
Lee and Chao 1994).  Indeed, when estimating N under
model M

h
, many studies have favored non-parametric

methods such as the jackknife (Burnham and Overton
1978, 1979), Chao (Chao 1984, 1989), and sample cover-
age estimators (Chao and Lee 1992, Lee and Chao 1994).
Among the nonparametric methods available, however,
there is no universal best choice, as relative performances
can vary with N, CV, or sample size (Burnham and Overton
1979, Smith and van Belle 1984, Chao 1988).  What we
require is an estimator that is reasonably robust to varia-
tions in these parameters over the range of values experi-
enced when sampling the Yellowstone grizzly bear
population.  To identify such an estimator, we used Monte
Carlo methods to compare performances of 7 nonpara-
metric methods when sampling from a range of condi-
tions that encompassed those deemed plausible for
observations of F

CUB
 in the GYE.

METHODS

General Problem and Notation
The sampling model we used approximates the true

sampling scheme, in which reports of F
CUB

 come from
observers using various sampling methods (ground-based
observation, trapping, systematic fixed-wing observations,
or fixed-wing observations made incidental to other work).
Because the sampling period associated with each of these
methods varies considerably (or, in some cases, is unde-
fined) we used the sighting of an individual F

CUB
 as the

sample unit.  The problem of estimating population size
from repeated sightings of unique individuals may then
be phrased as a special case of the more general model in
which multiple individuals may be sighted during a given
sampling period (e.g., Otis et al. 1978).

Suppose that, during a given year, after recording n in-
dependent random sightings of individuals from a closed
population of size N (where N is unknown), we observe
m unique animals.  The average probability that any par-

ticular sighting will be of the ith individual is p
i
, and prob-

abilities for all N individuals are given by p = (p
1
, p

2
, ...,

p
N
)   where

Because the model allows for heterogeneous p
i
 values,

temporal or spatial differences in habitat use or sampling
effort are incorporated into p, as are differences in prob-
abilities of reporting and recording sightings of particular
animals.  We assume all individuals are correctly identi-
fied (consequences of misidentification are considered
below).  In our sample, individuals were observed with
frequency n = (n

1
, n

2
, ..., n

N
), which is multinomially dis-

tributed with cell probabilities  (p
1
, p

2
, ..., p

N
).  However,

we do not know the identities of the N - m animals for
which n

i
 = 0.  The number of different individuals ob-

served exactly j times was f
j
, and f = (f

0
, f

1
, f

2
,..., f

n
) is fully

observable except for f
0
, the number of bears not observed

in our sample.  Important relationships include

�

���

�

�� � �

and N - m = f
0
.  The problem is to estimate N (or, equiva-

lently, f
0
) using only the observable information in f and

n.
In this idealized model, all information about popula-

tion size is obtained from the n randomly sighted indi-
viduals.  For the Yellowstone grizzly bear population,
observations of radiomarked F

CUB
 made during

radiorelocation flights provide additional information from
non-randomly sighted individuals.  In particular, obser-
vations of otherwise unobserved F

CUB
 may be added to m

to improve the estimate of minimum population size, yield-
ing  �N  

Obs 
≥ m.    �N  

Obs
 provides a natural lower bound for

estimating N and is the estimator that has been used pre-
viously to set annual mortality limits.  Overall, we seek
an estimator that improves upon  �N  

Obs
  while minimizing

the risk of overestimating N.

The Estimators
In addition to m and  �N  

Obs
, which we included in our

analyses for comparative purposes, we evaluated 7 non-
parametric estimators (see Table 1 for example calcula-
tions).  The first 5 methods we considered estimate N as
�N  

  
= m +  f�

0
 , where  f�

0
 is an estimate of the number of

unobserved individuals.
We first examined Chao's (1984) estimator,

(1)

In Eq. (1),  f�
0 
= f

1
2/(2f

2
).  Using  �N  

 Chao1
, the statistical expec-

�

���

�

n =     n
i
 =      jf

j

m =      f
j

�

���

�

�

���

�

2
1

Chao1
2

ˆ .
2

f
N m

f
= +
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Estimator Example calculation

Unique FCUB observed via
random sightings

29m=

Unique FCUB observed via
random sightings and
radiotelemetry

Obs
ˆ 29 2 31N = + =

Chao

2 2
1

Chao1
2

13ˆ 29 41.1
2 2(7)

f
N m

f
= + = + ≈

Bias-corrected Chao

2 2
1 1

Chao2
2

13 13ˆ 29 38.8
2( 1) 2(7 1)

f f
N m

f

− −= + = + ≈
+ +

First-order jackknife J1 1

1 65 1ˆ 29 13 41.8
65

n
N m f

n

− −   = + = + =      

Second-order jackknife

2 2

J2 1 2

2 3 ( 2) 2(65) 3 (65 2)ˆ 29 13 7 47.7
( 1) 65 65(65 1)

n n
N m f f

n n n

   − − − −   = + − = + − ≈      − −      

Best-order jackknife
J2 J1

J 1 J1 1 1/21/2
J2 J1

22
2 J2 J1

J2 J1
1

ˆ ˆ 47.7 41.8ˆ ˆ 41.8 was selected because T 1.396 1.960,  where
ˆ ˆ [17.996]ˆ[var( | )]

ˆ ˆ( )ˆ ˆv̂ar( | ) ( )
1

29 2
                           

29 1

k

j j
j

N N
N N

N N m

N Nm
N N m b f

m m=

− −= = = ≈ ≈ <
−

 −− = − −  

≈
−

∑
22 2 2(65) 3 65 1 (65 2) (47.7 41.8)

13 7 17.996
65 65 65(65 1) 29

  − − − −  − + − ≈   −    
First-order sample coverage 2

1
SC1

1

1
1

2

11

ˆ 29 13(0.325)ˆ 41.5,
ˆ 0.800

13ˆ where 1 1 0.800 
65

( 1) 29 2(7) 6(4) 12(1) 20(3) 42(1)
ˆand max 1,  0 max 1, 0 0.325

ˆ ( 1) 0.800 65(65 1)

n
j

j

m f �
N

C

f
C

n

j j - fm
�

n nC =

+ += = ≈

= − = − =

    + + + + = − = − ≈    − −     
∑

Second-order sample coverage 2
1

SC2

2

1 2
2

2

12

ˆ 29 13(0.319)ˆ 41.3,
ˆ 0.803

2 ( 1) 13 2(7) (65 1)ˆ where 1 1 0.803 
65

( 1) 29 2(7) 6(4) 12(1) 20(3) 42(1)
ˆand max 1,  0 max 1,  0

ˆ ( 1) 0.803 65(65 1)

n
j

j

m f �
N

C

f f n
C

n

j j - fm
�

n nC =

+ += = ≈

− − − −= − = − ≈

    + + + + = − = −    − −    
∑ 0.319≈



Table 1.  Example calculations for the 7 non-parametric estimators compared in this study, using 1997 grizzly bear sighting
data from the Greater Yellowstone Ecosystem.  For 1997, n = 65 sightings of females with cubs-of-the-year (FCUB) were made
via means other than radiotelemetry.  Distinguishing individuals as per Knight et al. (1995), m = 29 unique animals were seen;
13 were seen once (f1 = 13), 7 were seen twice (f2 = 7), 4 were seen 3 times (f3 = 4), 1 was seen 4 times (f4 = 1), 3 were seen 5 times
(f5 = 3), and 1 was seen 7 times (f7 = 1).  Two additional and otherwise unobserved FCUB were seen only as a result of using
radiotelemetry.  Because all calculations were carried out in double precision, rounding errors are evident in some of the
examples.



164 Ursus 13:2002

tation for the estimate, E(N � 
   
),  equals N only when sight-

ing probabilities are the same for all animals; i.e., when
CV= 0.  Theoretically, when CV > 0,  E(N � 

  
) < N (Chao

1984).  This does not ensure  �N  
Chao1

≤ N in all cases, but
does suggest that  �N  

Chao1
 might provide an inherently con-

servative approach to estimating N. We also considered a
similar bias-corrected form of this estimator, developed
by Chao (1989).  Where the sample unit is the individual
animal, Chao's (1989) estimator is given by (Wilson and
Collins 1992),

Here, f
0
=(f

1
2 - f

1
)/[2(f

2 
+ 1)].  Unlike  �N  

Chao1,
  �N  

Chao2
  will yield

an estimate even when f
2
 = 0.

Burnham and Overton (1978, 1979) devised a jackknife
estimator ( �N  

Jk
 ) of the general form

where α
jk
 is a coefficient in terms of n, and α

jk
 = 0 when j

> k (see Table 2).  Here, f
0
 is estimated as the series

be calculated, but variance increases rapidly with k so that,
in practice, k is small (Burnham and Overton 1979).  We
considered the first- and second-order jackknife estima-
tors ( �N  

 J1
  and   �N  

 J2
,  respectively; Table 2), as well as a best

kth-order jackknife estimator.  Burnham and Overton
(1979) suggested 2 methods for choosing a best value for
k for a particular study.  Because previous work showed
little difference between them (K.A. Keating unpublished
data), we considered only their first method, which evalu-
ates estimates of order k = 1 to 5 (Table 2).  The method is
as follows.  Beginning with k = 1 and proceeding to sub-
sequently higher values of k, test the null hypothesis that
E(N � 

 J, k+1
 – N � 

 Jk
) = 0 versus the alternative hypothesis that

E(N � 
 J, k+1

– N � 
  Jk

) ≠ 0.  If the observed difference is not signifi-
cant, testing ends and N � 

 Jk
 is taken as the best jackknife

estimate.  We reference the resulting kth-order estimate
as N � 

 Jk1
 .  The test is based on the statistic

where

J, 1 J

1/2
J, 1 J

ˆ ˆ

ˆ ˆˆ[var( | )]
k k

k

k k

N N
T

N N m
+

+

−
=

−

2
1 1

Chao2
2

ˆ
2( 1)

f f
N m

f

−= +
+

2
J, 1 J2

J, 1 J
1

ˆ ˆ( )ˆ ˆv̂ar( | ) ( )
1

n
k k

k k j j
j

N Nm
N N m b f

m m
+

+
=

 −
− = − 

−   
∑

f
n

n
mN 11J

1
 = ˆ 





 −+

2

2

12J )1(

)2(32
=ˆ f

nn

n
f

n

n
mN 





−

−−




 −+

3

3

2

2

13J )2)(1(

)3(

)1(

1915363
 = ˆ f

nnn

n
f

nn

nnf
n

n
mN 





−−

−+





−

+−−




 −+

4

4

3

23

2

2

14J

)3)(2)(1(

)4(

)2)(1(

175148424

)1(

55366104
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f
nnnn

n

f
nnn

nnnf
nn

nnf
n

n
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−
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 −+

5

5

4
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3

23

2

2

15J

)4)(3)(2)(1(
)5(

)3)(2)(1(
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66048512010
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f
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n
f

nnnn
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  f
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n
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Table 2.  Jackknife estimators of population size, N �   Jk, for order k = 1-5, where m is the number of unique individuals observed
after n samples and fi is the number of individuals observed exactly i times (after Burnham and Overton 1979).

�

Theoretically, jackknife estimates of order k = 1 to n could
1

k

jk j
j

fα
=

∑α

J
1

ˆ
k

k jk j
j

N m fα
=

= + ∑α
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and b
j
 = α 

j,k+1
 - α 

jk
.  T

k
 was evaluated at α = 0.05  using P

values determined from the standard normal distribution.
Chao and Lee (1992) proposed an estimator based on

sample coverage (C), where C is the sum of the p
i
 values

for the m individuals actually observed in the sample.  Lee
and Chao (1994) offered 2 estimators of C that, in the
notation of our sampling model, are given by

(2)

and

(3)

In Eqs. (2) and (3), the quantities f
1
/n and [f

1
 – 2f

2
/(n–1)]/

n, respectively, estimate the sum of the p
i
 values for the f

0

unobserved animals.  For our model (equivalent to model
M

h
 of Otis et al. [1978]), Lee and Chao (1994) then esti-

mated N as

(4)

where j = 1 or 2, and γ   is a measure of the coefficient of
variation of the p

i
’s .  Essentially, Eq. (4) begins with a

Peterson-type estimator (m/��  ) that assumes equal
sightability (i.e., all p

i
 = 1/N; Darroch and Ratcliff 1980),

then adds a bias correction term ( f
1
γ� 2/��

j
) that increases

with heterogeneity, as estimated by γ� 2.  Put another way,
the quantity  f

1
γ� 2 estimates the number of additional indi-

viduals that would have been observed if p had, in fact,
been homogeneous.  Adding this to m then dividing by
the estimated coverage estimates N.  Where the sample
unit is the sighting of an individual animal, γ� 2 is calcu-
lated as (Chao and Lee 1992),

(5)

Calculation of γ� 2 requires an initial estimate of N.  Fol-
lowing Chao and Lee (1992), we used N�       = m/ �C

j
. We

considered but did not use the partitioned sample cover-
age estimator of Chao et al. (1993, 2000) because pre-

liminary Monte Carlo results showed the method offered
no advantage over   �N  

SCj
 when applied to our field data.

Monte Carlo Comparisons
Estimator performances were compared using Monte

Carlo methods.  Parameters for the Monte Carlo sampling
were chosen to encompass the range of values deemed
plausible when sampling F

CUB
 in the GYE.  Overall, we

simulated 15 populations, including all combinations of
N = 20, 40, and 60 animals, where the coefficient of varia-
tion among the  p

i
 values was set to CV = 0.0, 0.25, 0.50,

0.75, or 1.0.  We calculated p
i
 as the integral of a standard

beta distribution over the interval (i - 1)/N to i/N; i.e.,

(6)

where I
x
(a,b) is the incomplete beta function ratio with

parameters a and b (Johnson et al. 1995).  We used a down-
hill simplex (Press et al. 1992) to select values for a and b
(Table 3) that gave the desired CV among the p

i
 values.

We then sampled each population, with replacement, by
generating n pseudorandom numbers from the specified
beta distribution and tallying each as a sighting of the ith
animal if it fell within the interval (i - 1)/N to i/N.  We
chose n so that the number of sightings per individual in
the population (n/N) was equal to 0.5, 1.0, 1.5, 2.0, 2.5,
3.0, 3.5, or 4.0.  After each sampling bout, we estimated
N using each of the estimators described above.  This pro-
cess was repeated 1,000 times for each parameterization
of the model.  For each parameterization and estimator,
performance was summarized as the bias and root mean
square error (RMSE) of the estimator, where

                        RMSE =

In addition, 2 estimators (N�      
SC1 

and N�      
SC2

) yielded explicit
estimates of CV, in the form of γ�  (Eq. 5).

Following the above analyses, the most promising esti-
mator was selected.  Confidence bounds for estimates
based on the best method were calculated using the method
of Boyce et al. (2001), in which bootstrap samples were
drawn from the distribution of individual sighting frequen-
cies implied by  N�          (i.e., from the estimate of the vector n).
Details are as follows.  A model population with  N�          indi-

( 1)( , ) ( , ),i i N i Np I a b I a b−= −

1
1

ˆ 1
f

C
n

= −

1 2
2

2 ( 1)ˆ 1
f f n

C
n

− −= −

2

1

( 1)ˆˆ max 1,   0
( 1)

n
j

j

j j - f
� �

n n=

 
= − − 

∑

21
SC

2
1

ˆ ˆ
ˆ ˆ

ˆ
        ,

ˆ

j

j j

j

fm
N �

C C

m f �

C

= +

+=

����
�

�
�

�
SD

Table 3.  Values of the parameters (a, b) of the standard beta distributions used to model p = (p1, p2, ...pN), where pi is the
probability that a particular sighting will be of the i th animal.  Values are listed by size (N) of the model population and the
coefficient of variation (CV) among the pi  values.

(a, b)

N CV = 0.00 CV = 0.25 CV = 0.50 CV = 0.75 CV = 1.00

20 (1.000, 1.000) (0.955, 1.270) (0.791, 1.380) (0.664, 1.446) (0.589, 1.600)
40 (1.000, 1.000) (1.084, 1.398) (0.797, 1.382) (0.686, 1.477) (0.593, 1.512)
60 (1.000, 1.000) (1.173, 1.449) (0.794, 1.369) (0.688, 1.462) (0.611, 1.559)
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viduals was constructed and the first m individuals were
assigned sighting frequencies n* = (n

1
*, n

2
*, ..., n

m
*), cor-

responding to the actual sighting frequencies (n
i
 values)

for the m animals observed in the original sample.  The
remaining N�       - m individuals were assigned sighting fre-
quencies of 0.  A bootstrap sample of  N�          (rounded to the
nearest integer) individual sighting frequencies (n

i
* val-

ues) was then randomly drawn with replacement from n*.
The number of samples for which n

i
* = j was tabulated as

f
j
*, giving the bootstrap sighting frequency vector f = (f

1
*,

f
2
*, ..., f

n
*), and the bootstrap number of sightings

The estimate was then recalculated using the information
in  f * and n*.  This procedure was repeated 1,000 times
for each estimate.  Confidence bounds were calculated
using both the percentile and bias-corrected-and-acceler-
ated (BCA) methods (Efron and Tibshirani 1993).  We
assessed performances of the 2 methods by comparing
observed versus nominal coverages.

Although 90 or 95% confidence bounds are normal for
scientific hypothesis testing, managers may appropriately
choose a higher level of risk.  Thus, we compared cover-
ages for lower, 1-tailed 70, 80, 90, and 95% confidence
bounds.  Earlier studies reported 2-tailed confidence
bounds (e.g., Eberhardt and Knight 1996, Boyce et al.
2001).  However, we believe 2-tailed bounds are inappro-
priate for this problem because managers charged with
recovering the Yellowstone grizzly bear population are
concerned with possible overharvest, not underharvest.
Thus, they seek assurance that the true population size is
greater than or equal to the estimated size.  It follows that
lower, 1-tailed confidence bounds provide the appropri-
ate measure of uncertainty.

Field Data
Sightings of F

CUB
 were examined for 1986–2001.  We

considered only sightings from within the grizzly bear
recovery zone and the surrounding 10-mile buffer area
because calculated mortality limits only apply to human-
caused mortalities within this area.  Boyce et al. (2001)
considered sightings throughout the GYE.  Consequently,
sample sizes (n values) and numbers of unique, randomly
observed F

CUB
 (m values) reported herein differ slightly

from values reported by Boyce et al. (2001).
For each year, unique family groups were distinguished

as per Knight et al. (1995).  Observations of radiocollared
animals made during radiolocation flights were included
when calculating the minimum number of F

CUB
 known to

exist in the population each year (N�     
   Obs

), but were excluded
from statistical estimates of N because such sightings were
non-random.  Sightings were summarized by year as the

number of unique family groups seen once, twice, etc.
Total numbers of F

CUB
 for each year were then estimated

using the method selected following our Monte Carlo com-
parisons.  Lower, 1-tailed confidence bounds were calcu-
lated using the selected bootstrap procedure.

RESULTS

Monte Carlo Comparisons
Patterns of estimator performance varied little with

population size.  For brevity, therefore, we discuss only
results for model populations with N = 40 individuals.

Population Estimates.—All estimates tended to con-
verge toward N as relative sample size (n/N) increased,
but rate of convergence and direction of bias at small to
moderate sample sizes varied considerably among esti-
mators and with CV (Fig. 1).  Contrary to expectations,
Chao's (1984) estimator, N�   

    Chao1
, was postively biased when

CV was small.  This bias was especially pronounced when
n/N also was small.  However,  N�   

     Chao1
was among the least

biased estimators when CV was large, regardless of sample
size.  As predicted by theory (Chao 1989), N�   

   Chao1
 was

nearly unbiased when CV = 0, but became increasingly
and negatively biased as CV increased.  The jackknife
estimators (N�    

    J1
 ,  N�     

    J2
, and  N�       

Jk1
) were all negatively biased

when n/N < 1.0, but tended to overestimate N at sample
sizes where 1.0 < n/N ≤ 3.0, particularly when CV was
small.  The jackknife estimators also did not converge
toward N as quickly as other estimators as sample size
increased.  Patterns for the 2 sample coverage estimators
were similar:  both tended to overestimate N when n/N
and CV were small, but converged relatively quickly to-
ward N as n/N exceeded 1.0, particularly when 0.25 ≤ CV
≤ 0.75.

With some methods, it was not always possible to esti-
mate N.  Over the full range of conditions modeled, N�   

     Chao1

N�     
  Jk1

,   N�     
  SC1

, and  N�     
    SC2

  failed to yield estimates in 0.2% of
the cases (range = 0.0–29.0% for  N�   

    Chao1
; range = 0.0–

6.6% for  N�     
    Jk1,  N�     

  SC1
, and   N�     

  SC2
).  Reasons for failures

varied.  For  N�   
     Chao1

, no estimate is possible when f
2
 = 0

because this leads to division by zero (Eq. 1).  For     N�     
  Jk1

,
the selection process was aborted if a best jackknife esti-
mate was not selected from the estimates  N�     

    J1
-  N�         

J5.  
 Using

N�    
 J k1

, Burnham and Overton (1979) similarly failed to
identify a best estimate in 3.7% of their trials.  For  �N  

SC1

and   �N  
SC2,

 no population estimate is possible if the esti-
mated sample coverage is zero, as this also leads to divi-
sion by zero (Eq. 4).  This occurs when individuals in the
sample are seen only once each, so that f

1
 = n and f

2
 = 0

(Eqs. 2 and 3).  For all of these methods, failure rates
declined as sample size and, hence, information content
increased.

n* = jf
j
*

�

���

�
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For   N�   
     Chao1

,  N�     
   Chao2

,    N�     
   SC1

, and    N�     
   SC2

,  RMSE declined
monotonically toward zero as n/N increased (Fig. 2).  Pat-
terns of decline were indistinguishable for N�     

    SC1
 and  N�     

    SC2
,

and RMSE converged more quickly toward zero for these
estimators than for N�   

 Chao1
 or  N�   

  Chao1
.  Also for these 4

estimators, RMSE increased with CV when n/N ≥ 1.  When
n/N was small,   N�     

    J1
,   N�     

    J2
, and   N�     

   Jk1
 exhibited the lowest

RMSEs of the estimators we evaluated.  However, rate of
convergence toward zero as sample size increased was
slow compared to other methods; indeed, RMSE for the
jackknife estimators often increased with sample size when
0.5 ≤ n/N ≤ 2.0.  Also, relatively low RMSEs, especially

for  N�     
   J1

, often were due to low standard deviations over-
compensating for high bias.  This suggested that  N�     

   J1
  may

yield narrow confidence bounds, but that those bounds
will be centered around highly biased estimates, likely
resulting in poor coverage.

Of the methods we compared, our overall choice was
the second-order sample coverage estimator,   N�     

 SC2 
(see

Discussion).  Comparing observed versus nominal lower,
1-tailed confidence bounds for  N�     

   SC2
 showed that cover-

age was affected by n/N and CV, and by the method used
to calculate confidence bounds (Figs. 3 and 4).  Dispari-
ties between observed and nominal coverages generally

Fig. 1.  Percent bias of population estimates calculated using the Chao   N� (      Chao1), bias-corrected Chao  N� (      Chao2), first-order jackknife
( N�       J1), second-order jackknife (N�       J2), best-order jackknife (N�       Jk1), first-order sample coverage (N�       SC1), and second-order sample
coverage (N�       SC2 ) estimators.  Number of unique individuals observed (m) is shown for comparison.  Each point represents the
mean of 1,000 Monte Carlo replicates; in each, calculations were based on n random sightings drawn from a model population
with N = 40 individuals.  CV gives the coefficient of variation among sighting probabilities for the 40 individuals.  CV = 0.0
indicates equal sightability.

0 1 2 3 4 5
1.0
0.75
0.50
0.25
0.0

CV

0 1 2 3 4 5

Chao2
N̂

Chao1
N̂m

J1
N̂

J2
N̂

1J

ˆ
k

N

SC1
N̂

SC2
N̂

Nn / Nn /

Nn /

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5
-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40
P

er
ce

n
t 

b
ia

s
P

er
ce

n
t 

b
ia

s
P

er
ce

n
t 

b
ia

s



168 Ursus 13:2002

increased with CV, but declined as the nominal confidence
level increased.  Results varied most noticeably with n/N
when CV ≥ 0.75.  Using the percentile bootstrap method,
nominal values sometimes overstated the true coverage
when CV = 0.0, but tended to either closely approximate
or understate true coverage when 0.25 ≤ CV ≤ 1.0 (Fig.
3).  Using the BCA bootstrap method, nominal values
more closely approximated observed coverages when CV
= 0.0, and tended to either approximate or understate true
coverage when 0.25 ≤ CV ≤ 0.75.  For CV = 1.0, how-
ever, nominal values tended to overstate true coverage by
a large margin when n/N ≥ 2.0.  Overall, we chose the

percentile bootstrap method for calculating confidence
bounds because, with CV = 0.0 unlikely in natural popu-
lations, we believe that it better minimizes the risk of over-
estimating N.

Estimates of n/N and CV.—In our Monte Carlo study, n/
N and CV were important determinants of performance for
our estimator of choice, N�    

 
  
       SC2

.  Estimates of these values are
given by n/N� 

   SC2
 and γ�   (Eq. 5), respectively.  Presumably,

such estimates might be used to ask whether actual values
of n/N and CV in our field studies were within the range of
values in which  N�     

   SC2
 performed well.  First, however, it is

prudent to ask whether n/ N�     
   SC2

  and  γ�   themselves provide
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Fig. 2.  Root mean square error (RMSE) of population estimates calculated using the Chao (N�          Chao1), bias-corrected Chao (N�          Chao2),
first-order jackknife (N�        J1), second-order jackknife (N�         J2), best-order jackknife (N�         Jk1 ), first-order sample coverage (N�            SC1), and
second-order sample coverage (N�            SC2) estimators.  Number of unique individuals observed (m) is shown for comparison.  Each
data point represents the mean of 1,000 Monte Carlo replicates; in each, calculations were based on n random sightings drawn
from a model population with N = 40 individuals.  CV gives the coefficient of variation among sighting probabilities for the 40
individuals.  CV = 0.0 indicates equal sightability.
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Fig. 3.  Observed versus nominal coverages of lower, 1-tailed confidence bounds for second-order sample coverage estimates
(N�        SC2 ), calculated using the percentile bootstrap method (Efron and Tibshirani 1993).  Points above the dashed line indicate
that mean observed coverage was greater than nominal coverage, so confidence bounds tended to be conservative. Each data
point represents the mean of 1,000 Monte Carlo replicates; in each, calculations were based on n random sightings drawn from
a model population with N = 40 individuals. CV gives the coefficient of variation among sighting probabilities for the 40
individuals.  CV = 0.0 indicates equal sightability.
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Fig. 4.  Observed versus nominal coverages of lower, 1-tailed confidence bounds for second-order sample coverage estimates
(N�        SC2 ), calculated using the bias corrected and accelerated bootstrap method (Efron and Tibshirani 1993).  Points above the
dashed line indicate that mean observed coverage was greater than nominal coverage, so that confidence bounds tended to
be conservative.  Each data point represents the mean of 1,000 Monte Carlo replicates; in each, calculations were based on
n random sightings drawn from a model population with N = 40 individuals.  CV gives the coefficient of variation among
sighting probabilities for the 40 individuals.  CV = 0.0 indicates equal sightability.
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good estimates.  Comparisons showed that n/ N�     
          SC2

  provided
nearly unbiased estimates of n/N throughout the range of
conditions we modeled (Fig. 5a).  However,  γ �     was a biased
estimator of CV, overestimating the true value when CV =
0.0 and underestimating in all other cases (Fig. 5b).  The
degree to which  γ �    underestimated CV when CV ≥ 0.25
was influenced by relative sample size.  When n/N = 3.0,
γ �     tended to underestimate CV by about 0.07–0.14.  When
n/N = 0.5,  γ �    tended to underestimate CV by about 0.10-
0.59.

Field Data
Observation frequencies for F

CUB
 in Yellowstone's griz-

zly bear recovery area and the surrounding 10-mile buffer
zone were tabulated for 1986–2001 (Table 4).  Sample
sizes ranged from 20 observations in 1987 to 94 in 1999.
Using  N�     

   SC2
  and rounding to the nearest integer, estimated

numbers of F
CUB

 in the Yellowstone population ranged
from 20 animals in 1987 and 1989 to 60 in 2000 (Table
5).  Estimated relative sample size (n/ N�     

   SC2
) averaged 1.5

and ranged from 0.5 in 1995 to 2.6 in 1986 and 1999,
with n/ N�     

   SC2
 ≥ 1.0 for 14 of the 16 years examined (Table

5).  The estimated coefficient of variation among indi-
vidual sighting probabilities (γ �  ) averaged 0.46 and ranged
from 0.0 in 1990, 1993, and 1994 to 0.90 in 2000 (Table
5).

The total number of unique  F
CUB

  actually observed
( �N  

Obs
) ranged from 13 in 1987 to 42 in 2001 (Table 5).

This included animals that would not have been detected
without radiotelemetry.  The number of unique F

CUB
 de-

tected through random sightings alone (m) ranged from
12 in 1987 to 39 in 2001 (Table 5).  On average, addi-
tional information provided by radiotelemetry increased

the number of unique F
CUB 

observed by 2.1 animals/year
(range = 0–5 animals).  For every year, N�     

  SC2
 exceeded N�     

  Obs

(Table 5).  However, when rounded to the nearest integer,
the lower, 1-tailed 95 and 90% confidence bounds for
N�    
  SC2

 were less than  �N  
Obs

  for 10 and 5 of the years, respec-
tively (Table 5).  Lower, 1-tailed 70 and 80% confidence
bounds were  ≥  �N  

Obs
  for all years except 1990 (Table 5).

DISCUSSION
Whether Yellowstone's grizzly bears are removed from

the threatened species list depends, in part, on whether
human-caused mortalities are within calculated limits.
Because mortality limits are computed as a function of
the number of F

CUB
 present in the population, statistically

sound estimates of annual numbers of  F
CUB

 (N) are needed.
Parametric methods proposed by Eberhardt and Knight
(1996) and Boyce et al. (2001; unpublished report,1999)
improved on the practice of basing mortality limits on a
minimum estimate for N, determined as the number of
unique F

CUB
 observed in a given year (N�     

 Obs
).  However,

these methods require untenable assumptions about the
form and constancy of distributions of individual sight-
ing probabilities.  At best, these assumptions leave un-
necessary room for dispute, potentially undermining the
credibility of results and diverting attention from other
important issues.  At worst, they can cause serious biases.

Nonparametric approaches are free of assumptions
about distributions of sighting probabilities, but have not
previously been applied to this problem.  Nor should they
be applied uncritically, as both absolute and relative per-
formances of different estimators can vary with sampling
conditions.  In this study, we sought a nonparametric

Fig. 5.  Estimated (n/N�        SC2) versus observed (n/N) relative sample sizes (A), and estimated ( γγγγγ �   ) versus observed (CV) values for
the coefficient of variation among individual sighting probabilities (B).  In both (A) and (B), each point represents the mean
value, based on 1,000 Monte Carlo replicates; in each, calculations were based on n random sightings drawn from a model
population with N = 40 individuals.
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of variation among individual sighting probabilities (CV)
affected performance. Over all CV values,  N�    

    SC2
 exhibited

a slightly better balance than N�    
     SC1

  between tendencies to
overestimate and underestimate when relative sample size
(n/N) was in the range of  1.0 < n/N ≤ 2.0 (Fig. 1).  Perfor-
mance under these conditions was seen as particularly
important because estimates of n/N for our field study were
within this range most years (Table 5).

Chao's (1984) estimator (N�    
  Chao1

) showed a greater ten-
dency toward positive bias and exhibited somewhat larger
RMSEs than  N�    

  SC2
 (Figs. 1, 2), but otherwise performed

well.  Because the most serious biases were associated

method that performs well over the range of sampling
conditions deemed plausible for sightings of F

CUB
 in the

GYE.  Comparing 7 variations of the Chao (Chao 1984,
1989), jackknife (Burnham and Overton 1978, 1979), and
sample coverage (Chao and Lee 1992, Lee and Chao 1994)
methods, our provisional choice for estimating numbers
of F

CUB
 in the Yellowstone population was the second-

order sample coverage estimator, N�    
  SC2

.  Differences be-
tween  N�     

     SC2
  and the first-order sample coverage estimator,

N�    
 SC1

, were minor, with both methods converging more
rapidly toward N as sample size increased than did other
estimators.  For both estimators, however, the coefficient

Table 4.  Observation frequency (fj ) by year, where fj is the number of unique females with cubs-of-the-year (FCUB) that were seen
exactly j times during that year.  Total number of observations is given by n =           jfj .  Only observations made without the
benefit of radiotelemetry and within or <10 miles of the designated grizzly bear recovery zone were included.

Observation frequency

Year n f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

1986 82 7 5 6 1 1 0 1 2 0 0 0 0 0 0 1
1987 20 7 3 1 1 0 0 0 0 0 0 0 0 0 0 0
1988 36 7 4 4 1 1 0 0 0 0 0 0 0 0 0 0
1989 27 6 5 0 1 0 0 1 0 0 0 0 0 0 0 0
1990 49 7 6 7 1 1 0 0 0 0 0 0 0 0 0 0
1991 62 11 3 3 3 1 2 1 0 0 0 0 0 0 0 0
1992 37 15 5 1 1 1 0 0 0 0 0 0 0 0 0 0
1993 29 7 8 2 0 0 0 0 0 0 0 0 0 0 0 0
1994 29 9 7 2 0 0 0 0 0 0 0 0 0 0 0 0
1995 25 13 2 1 0 1 0 0 0 0 0 0 0 0 0 0
1996 45 15 10 2 1 0 0 0 0 0 0 0 0 0 0 0
1997 65 13 7 4 1 3 0 1 0 0 0 0 0 0 0 0
1998 75 11 13 5 1 1 0 2 0 0 0 0 0 0 0 0
1999 94 9 4 6 2 4 2 0 1 0 0 1 0 0 0 0
2000 72 17 8 1 2 1 0 2 0 1 0 0 0 0 0 0
2001 84 16 12 8 0 1 1 0 0 1 0 0 0 0 0 0

∑ ∞

=j 1

Table 5.  Estimates of annual numbers (N�       Obs) of females with cubs-of-the-year (FCUB) in the Yellowstone grizzly bear population,
1986–2001.   N�      Obs  gives the number of unique FCUB actually observed, including those located using radiotelemetry; m gives
the number of unique FCUB  observed using random sightings only; and N�      SC2 gives the second-order sample coverage estimates,
per Lee and Chao (1994; Eqs. 3–5).  Lower, 1-tailed confidence bounds are for N�    SC2 and were calculated using Efron and
Tibshirani's (1993) percentile bootstrap method.  Also included are annual estimates of relative sample size (n/N�        SC2, where n
is the total number of observations of FCUB) and of the coefficient of variation among sighting probabilities for individual
animals (γγγγγ �  , Eq. 5).

Lower 1-tailed confidence bounds

Year m 70% 80% 90% 95%         n/

1986 25 24 31.9 28.4 27.0 25.1 23.5 2.6 0.86
1987 13 12 19.5 16.8 15.2 13.3 11.7 1.0 0.37
1988 19 17 21.5 20.1 19.1 17.7 16.7 1.7 0.25
1989 15 13 20.2 16.9 15.3 13.7 12.3 1.3 0.71
1990 25 22 25.5 24.4 23.5 22.2 21.3 1.9 0.00
1991 24 24 34.5 31.1 29.3 27.0 25.2 1.8 0.63
1992 25 23 47.6 40.0 36.4 32.1 28.9 0.8 0.61
1993 19 17 21.8 20.1 19.0 17.9 16.3 1.3 0.00
1994 20 18 25.5 23.4 21.8 19.9 18.8 1.1 0.00
1995 17 17 54.9 41.2 35.9 28.8 24.7 0.5 0.86
1996 33 28 41.4 38.7 36.6 34.0 31.8 1.1 0.00
1997 31 29 41.3 37.5 35.5 33.0 31.1 1.6 0.57
1998 35 33 40.9 38.4 37.1 35.1 33.7 1.8 0.44
1999 32 29 35.7 33.3 32.1 30.4 29.0 2.6 0.61
2000 35 32 59.7 51.8 48.2 43.8 40.3 1.2 0.90
2001 42 39 54.6 49.5 47.3 44.6 42.2 1.5 0.58

   �N  
Obs

   �N  
SC2

   �N  
SC2

 γ�
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with model populations where CV = 0 (an unlikely situa-
tion in nature),  N�    

    Chao1
  may be a suitable alternative to the

sample coverage estimators.  However, we cannot rec-
ommend the other methods we compared.  Over all CV
values, RMSEs for  N�    

  Chao2
  were lower than for  N�    

  SC2
  (Fig.

2), but  N�    
  Chao2

  became increasingly and negatively biased
as CV increased (Fig. 1).  Because individual animals
clearly are not equally sightable, use of such an estimator
would introduce a chronic, negative bias into estimates of
population size and sustainable mortality.  Jackknife esti-
mates oscillated, being negatively biased when n/N was
small, positively biased at moderate values of n/N, and
converging toward N only as n/N increased beyond val-
ues observed in our field study (Fig. 1).  Neither bias nor
RMSE declined monotonically with sample size for any
of the jackknife estimators.  This suggested that, relative
to the other methods examined, larger sample sizes would
be needed to achieve comparably accurate estimates and
that increased sample size might actually lead to increased
bias in some situations.  The latter problem was particu-
larly pronounced in the range of  1.0 < n/N ≤ 2.0 (Figs. 1,
2).

In a similar analysis, Mowat and Strobeck (2000) evalu-
ated nonparametric estimators available in the program
CAPTURE (Otis et al. 1978, White et al. 1982, Rexstad
and Burnham 1991).  They selected Burnham and
Overton's (1979) best-order jackknife method (N�    

  Jk1
) for

estimating numbers of grizzly bears in 2 Canadian popu-
lations that showed evidence of “relatively weak hetero-
geneity” among individual capture probabilities (Mowat
and Strobeck 2000:191).  Our study differed in important
respects.  First, all else being equal, the underlying distri-
bution of sighting probabilities should be more heteroge-
neous in our study (i.e., CV should be larger) because our
sample unit consisted of a single sighting rather than a
sample period.  Second, because our sampling universe
included only F

CUB
, population size appeared to be smaller

than the 74 and 262 animals estimated by Mowat and
Strobeck (2000). Although population size was not a major
determinant of estimator performance in our study, we
considered only a narrow range of values (N = 20, 40, and
60 animals).  Over a larger range, N might emerge as a
more important factor.  Third, we considered sample cov-
erage estimators (Chao and Lee 1992, Lee and Chao 1994)
not available in CAPTURE.  Fourth, Mowat and Strobeck
(2000), apparently, did not vary sampling effort in a way
that would have revealed the oscillatory pattern we ob-
served for the jackknife estimators.

Like all estimators we examined, performance of  N�    
   SC2

varied with n/N.  As expected, the largest biases and
RMSEs were associated with the smallest relative sample
size, n/N = 0.5.  Performance improved dramatically, how-
ever, with even modest increases in n/N, leading us to

recommend a minimum sample size of n/N = 1.  A nearly
unbiased estimate of n/N was n/N�    

  SC2
 (Fig. 5a).  Observed

values for n/N�    
  SC2

 met or exceeded our recommended mini-
mum for all but 2 years during 1986–2001 (Table 5).  This
suggested that observed sample sizes were large enough
in most years to support fairly good estimates of N (Fig.
1).  At this minimal level of sampling effort, however,
confidence bounds were sometimes undesirably broad
(Table 5).  To narrow confidence bounds, we suggest that
n/N = 2 is a reasonable and achievable goal.  Based on
estimates of N for 1996–2001 (Table 5), such a goal would
translate into target sample sizes of about 80–120 inde-
pendent random sightings of F

CUB
 per year.  This com-

pares with observed sample sizes of 45–94 sightings/year
during that same period and indicates a need for increased
support for this aspect of the Yellowstone grizzly bear
monitoring effort.

Performance of N�    
  SC2

 also varied with the degree of het-
erogeneity among individual sighting probabilities, as
measured by CV.  However, such variation was dramatic
only when n/N = 0.5.  When n/N ≥ 1,  N�    

  SC2
 was fairly

robust to variations in CV, especially in the range of  0.0 ≤
CV ≤ 0.75 (Fig. 1).  Even when CV = 1.0, bias was <10%,
regardless of n/N (Fig. 1).  An advantage of  N�    

  SC2
 is that

CV is estimated (γ �    , Eq. 5) as part of the calculation.  For
1986–2001, γ �   averaged 0.46 and ranged from 0.0–0.9,
suggesting that actual CVs were within the range of val-
ues in which  N�    

    SC2
 performs well.  Our Monte Carlo study

demonstrated, however, that  γ �   was negatively biased
when CV ≥ 0.25, particularly when n/N is small (Fig. 5).
Using calculated values for n/ N�    

   SC2
 and  γ �     (Table 5),

rough corrections for such biases can be inferred from
Fig. 5.  For example, when n/N = 1.0 and CV = 0.4,
γ �   tended to underestimate CV by about 0.2 (Fig. 5).  Given
n/N�    

     SC2
 = 1.5 and  γ �   = 0.58 for 2001 (Table 5), this suggests

an unbiased estimate for CV of about 0.85 for that year.
Similar inferences for other years yielded a maximum es-
timated CV of around 1.3 in 2000, but suggested that,
overall, CV rarely was much greater than 1.  Thus, we
believe that actual CVs for sighting probabilities of F

CUB

in the Yellowstone population typically are within the
range of values in which  N�    

  SC2
  performs well.

Regardless of method, there is an inherent risk of over-
estimating N that, in turn, could lead to setting mortality
limits at unsustainably high levels.  To minimize this risk,
we believe it is prudent to base management on some
lower, 1-tailed confidence bound.  This would provide a
specified level of assurance that the population of F

CUB
 is

at least as large as estimated.  For example, calculated
confidence bounds indicated that we can be 95% certain
there were at least 42 F

CUB
 in the Yellowstone grizzly bear

population in 2001, and 80% certain there were at least
47 (Table 5).  To determine whether such bounds accu-
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rately depict the risk of overestimating N, we compared
nominal versus observed sample coverages using both the
BCA and percentile bootstrap methods (Efron and
Tibshirani 1993).  The BCA method, theoretically, is su-
perior to the percentile method (Efron and Tibshirani
1993).  Nonetheless, we recommend the percentile method
for this application because the BCA method substantially
overstated true coverage under conditions that might rea-
sonably occur in field studies; i.e., when CV= 1.0 and
n/N ≥ 2.0 (see Table 5).  Such an error would cause us to
understate the true risk of overestimating N.  Although
the percentile method overstated true coverage when CV
= 0.0 and nomimal coverage was 70 or 80%, we view this
as less serious because it is not reasonable to expect that
CV = 0.0 for natural populations.

In general, we believe  N�    
   SC2

 is superior to  N�    
   Obs

 as a basis
for calculating mortality limits for Yellowstone's grizzly
bears, particularly if lower, 1-tailed confidence bounds
are used to minimize the risk of overestimation.  In some
years, however, depending on the confidence level that is
chosen,  N�    

   Obs
 may be the better alternative.  For example,

N�    
  Obs

 equaled or exceeded the lower, 1-tailed 90% confi-
dence bound for N�    

    SC2
 (rounded to the nearest integer) in 8

of the 16 years examined (1986–90, 1993, 1994, 1998,
and 1999; Table 5), yet is unburdened by the same risk of
overestimation.  Thus, it offers a superior estimate of a
lower bound for N for those years.  This situation occurs
largely because  N�    

   Obs
 incorporates additional information

from non-random sightings of radiocollared animals; in-
formation that cannot legitimately be used when calculat-
ing  N�    

  SC2
 or its confidence bounds.

Overall, we sought a reliable statistical method for esti-
mating numbers of F

CUB
 because such estimates are es-

sential for setting mortality limits for grizzly bears in the
GYE.  Given recommended sample sizes, we believe
N�    

  SC2
 is a reasonable choice for this purpose and that it

improves on earlier approaches.  We emphasize, however,
that knowledge of the number of F

CUB
 is not, by itself,

sufficient for setting mortality limits.  Other calculations
and assumptions are involved that merit additional and
comparable scrutiny.  Thus, we have refrained from using
estimates generated in this study to project total popula-
tion size or infer acceptable levels of mortality, believing
that the remaining issues should be addressed first.  An
important issue is the assumption that every sighting was
correctly identified to individual.  Misidentifications un-
doubtedly occurred, leading to errors of Type I (sightings
of the same animal mistakenly classified as sightings of
different animals) or Type II (sightings of different ani-
mals mistakenly classified as sightings of the same ani-
mal).  Our experience in applying the rule set of Knight et
al. (1995) suggests that Type II errors are much more likely.
Such a bias would cause a tendency to undercount the

number of unique animals actually seen (m), while also
inflating sighting frequencies (n

i
 values) for the m̂   ani-

mals estimated to have been seen.  In turn, this would
lead to estimates of N that are more negatively biased than
depicted in our Monte Carlo results, regardless of the es-
timator that is used.  Such a bias, although undesirable, is
not by itself inconsistent with our goal of improving on
N�    

 Obs
 while minimizing the risk of overestimating N.  Ef-

fects of misidentification on precision are less clear, how-
ever. Misidentification introduces uncertainty in sighting
frequencies and, thus, would increase uncertainty in esti-
mates based on those frequencies.  Our lower, 1-tailed
confidence bounds did not incorporate this additional un-
certainty and, thus, were probably higher than they would
have been if effects of misidentification had been fully
accounted for.  The tendency toward positive bias in the
lower confidence bound would have been countered to
some degree by 2 factors.  First, any negative bias in
N�    
   

resulting from misidentification would necessarily have
been accompanied by a similar bias in the confidence
bounds surrounding  N�    

   
.  Second, our lower, 1-tailed con-

fidence bounds already were biased low within the range
of conditions most often experienced in this study (Fig.
3).  Overall, effects of misidentifications on precision
would be mitigated, but to an unknown degree.  Addi-
tional work to better define the nature, magnitude, and
consequences of identification errors is needed and has
been undertaken.  In the meantime, we offer this work as
the first in what we hope will be a series of refinements
that better ensure reliable estimates of allowable mortal-
ity, while minimizing the risk of error.
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