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Abstract: Logistic regression is an important tool for wildlife habitat-selection studies, but the method frequently
has been misapplied due to an inadequate understanding of the logistic model, its interpretation, and the influ-
ence of sampling design. To promote better use of this method, we review its application and interpretation under
3 sampling designs: random, case–control, and use–availability. Logistic regression is appropriate for habitat
use–nonuse studies employing random sampling and can be used to directly model the conditional probability of
use in such cases. Logistic regression also is appropriate for studies employing case–control sampling designs, but
careful attention is required to interpret results correctly. Unless bias can be estimated or probability of use is small
for all habitats, results of case–control studies should be interpreted as odds ratios, rather than probability of use
or relative probability of use. When data are gathered under a use–availability design, logistic regression can be
used to estimate approximate odds ratios if probability of use is small, at least on average. More generally, howev-
er, logistic regression is inappropriate for modeling habitat selection in use–availability studies. In particular, using
logistic regression to fit the exponential model of Manly et al. (2002:100) does not guarantee maximum-likelihood
estimates, valid probabilities, or valid likelihoods. We show that the resource selection function (RSF) commonly
used for the exponential model is proportional to a logistic discriminant function. Thus, it may be used to rank
habitats with respect to probability of use and to identify important habitat characteristics or their surrogates, but
it is not guaranteed to be proportional to probability of use. Other problems associated with the exponential
model also are discussed. We describe an alternative model based on Lancaster and Imbens (1996) that offers a
method for estimating conditional probability of use in use–availability studies. Although promising, this model
fails to converge to a unique solution in some important situations. Further work is needed to obtain a robust
method that is broadly applicable to use–availability studies.
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Logistic regression has become increasingly
popular for modeling wildlife habitat selection
but often is used incorrectly. Misapplications
reflect an inadequate understanding among wild-
life researchers concerning the logistic model, its
interpretation, and especially the influence of
sampling design. Design effects have been well
studied by epidemiologists and economists (e.g.,
Prentice and Pyke 1979, Steinberg and Cardell
1992, Lancaster and Imbens 1996), but the range
of designs and their influence on perceived prob-
ability of habitat use have not been clearly and
accurately articulated in the wildlife literature.
We address use and interpretation of logistic
regression in habitat-selection studies.

We distinguish among 3 sampling designs—
random, case–control, and use–availability—
whose key characteristics are illustrated in the fol-
lowing hypothetical example. Imagine that we
are designing a study of nest-site selection by the

Hungarian horntail dragon (Flammasaurus cero-
caudus; Rowling 2000:327), which nests in east
European old-growth forests. If nests are com-
mon and easily seen, we might choose a random
sampling design, whereby a number of trees are
selected randomly from throughout the forest,
and characteristics of each are measured and
recorded along with information about whether
the tree contains a nest. If nests are easily seen
but uncommon, we might use a case–control
design to ensure that our final sample contains
an adequate number of nest trees. With this
design, we draw 2 distinct random samples: 1
from the pool of all trees containing a horntail
nest, and a second from the pool of all trees lack-
ing a nest. Again, relevant characteristics of each
sampled tree are recorded, together with infor-
mation about whether the tree contains a nest. In
both the random and case–control designs, we
assume that nests are easily seen so that both
presence and absence of a nest are determined
without error. If only presence can be deter-
mined reliably, then we might employ a use–avail-1 E-mail: kkeating@montana.edu
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ability design. For example, we might identify a
random sample of nest trees by tracking
radiomarked females to their nests, then mea-
sure habitat availability by randomly sampling
from all trees in the forest. We record relevant
characteristics of each tree sampled, but because
horntail nests are notoriously cryptic, we do not
know whether the trees in our available sample
contained a nest. Some key differences among
these designs are: (1) the random design yields a
sample that contains nest and non-nest trees in
approximate proportion to their occurrence in
the forest; (2) the case–control design yields a
sample of nest and non-nest trees, but relative
proportions of the 2 are determined by the re-
searcher and may not be representative of the
underlying population of trees; and (3) the
use–availability design yields a random sample of
nest trees and a second random sample drawn
from all trees in the forest, but we do not know
whether trees in the second sample contain nests.
These differences in sampling design translate
into profound differences in the way that logistic
regression can be applied and interpreted.

We reexamine use of logistic regression for
wildlife habitat modeling under each of these
sampling designs. We especially consider the
role of logistic regression in estimating resource
selection probability functions (RSPFs) and
RSFs. Manly et al. (2002:27) defined an RSPF as
“a function which gives probabilities of use for
resource units of different types.” An RSF is any
function proportional to the RSPF (Manly et al.
2002:29); that is, RSF = kRSPF for some positive
constant k. Of the various statistical methods for
estimating RSPFs or RSFs (Alldredge et al. 1998,
Manly et al. 2002), logistic regression is most
widely used. For each sampling design, we pre-
sent the formal probability model and identify
relationships to commonly used forms of the
RSPF and RSF. Quantitative examples are used
to illustrate the different sampling designs and
effects of different estimation methods. For each
design, we discuss implications for modeling
habitat selection.

RANDOM SAMPLING

Sampling Model
When using logistic regression, the probability

that a particular habitat will be used by the species
or individual of interest is assumed to take the form
of a logistic model, parameterized as follows.
Imagine an area comprised of multiple locations

that are sampled with replacement by observing
whether the sampled location was used. A binary
response variable (y) is defined for each observa-
tion, such that y = 1 if use was observed and y = 0 if
it was not. We assume that y is recorded without
error (for discussions related to this assumption,
see MacKenzie et al. 2002). Also, p covariates are
measured at each location as x′ = (1, x1, …, xp).
The logistic model describing probability of use
conditioned on habitat (i.e., the RSPF) is

(1)

where β′ = (β0, β1, …, βp) is a vector of coefficients
relating probability of use to the habitat covari-
ates via the relationship β′x = β0 + β1x1 + ... + βpxp.
Model (1) is intrinsically bounded within the
interval [0,1]. In this model, the sampling unit is
an individual observation and P(y = 1 | x) is inde-
pendent of sample size. This differs from other
formulations (e.g., Manly et al. 2002:83) in which
the sampling unit is the physical location, so that
P(y = 1 | x) increases with time and hence with
sample size. However, because the 2 formulations
are effectively the same when the number of
available locations is large relative to the sample
size, we use them interchangeably.

The simplest sampling design is one in which n
locations are drawn randomly with replacement
from the N available locations, and y and x are
observed and recorded for each. Model parame-
ters are then estimated by maximizing the log-
likelihood (Hosmer and Lemeshow 2000:9).
With random sampling, this yields approximately
unbiased estimates of the coefficients and in turn
the conditional probability of use, as illustrated
in the following example.

Example 1: Random Sampling
Let the true conditional probability of use be,

(2)

where ELEV is elevation in km. Using ArcView 3.2
and ArcView Spatial Analyst (Environmental Sys-
tems Research Institute 1999), we projected Eq. (2)
over a 30-m resolution grid covering a model study
area of about 2,500 km2 in the upper Yellowstone
River Valley, Montana, USA (N ∼∼ 2.8 × 106 pixels).
We then sampled n = 2,000 pixels randomly with
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replacement, recording ELEV for each and calcu-
lating P(y = 1 | x) as per Eq. (2). Whether a pixel
was used was stochastically determined as y = I [U
≤ P(y = 1 | x)], where U is a uniform random vari-
able on the interval [0,1], and I [·] is the indicator
function (i.e., I [U ≤ P(y = 1 | x)] = 1 if U ≤ P(y =
1 | x) is true and I [U ≤ P(y = 1 | x)] = 0 otherwise).
This sampling process was replicated 1,000 times.
For each replicate, we used the LOGIT module
in SYSTAT (Systat Software 2000) to fit the data to
a logistic model (Eq. [1]) in which β′x = β0 +
β1ELEV. The resulting mean (SE) estimates of β̂

–
0

= 5.672 (0.388) and β̂
–
1 = –3.000 (0.175) were

essentially unbiased. Estimates of β0 and β1 also
were substituted into Eq. (2) and, for each repli-
cate, P(y = 1 | x) was estimated for 100 randomly
selected pixels. The resulting estimates (P̂ (y =
1 | x)) were similarly unbiased (Fig. 1).

Implications for Modeling Habitat Selection
With random sampling designs, logistic regres-

sion is straightforward and yields models of the
probability of use conditioned on habitat (P(y =
1| x)). In the terminology of Manly et al.
(2002:27), a direct estimate of the RSPF is ob-
tained. Examples include species occurrence
models constructed from grid-based samples of
kangaroos (Macropus spp.; Walker 1990) and griz-
zly bears (Ursus arctos; Apps et al. 2004). These
studies implicitly assumed that, with respect to
habitat, grids were randomly located and sam-

pled. Apps et al. (2004) violated this assumption
by excluding some low-use areas from sampling
during some years, thereby biasing their sample
in favor of used sites. Random sampling also has
been assumed in some transect-based studies. For
example, Fleishman et al. (2001) applied logistic
regression to model probability of occurrence of
Great Basin butterflies, using data gathered
along trails and roads. They implicitly assumed
that trails and roads traversed a random sample
of available habitats—an assumption we ques-
tion, given the area’s rugged terrain. Overall,
habitat-selection studies using random or
approximately random sampling designs are rel-
atively uncommon in the wildlife literature.
When such a design is adopted, however, associ-
ated assumptions should be clearly articulated,
and their validity, if not self-evident, should be
discussed.

CASE–CONTROL SAMPLING

Sampling Model
When use is rare, a prohibitively large random

sample would be required to detect enough in-
stances of use for meaningful analysis. In such
cases, sampling can be stratified by y, drawing
with replacement a random sample of n1 used
locations and a second random sample of n0 un-
used locations. This is a case–control design
(Hosmer and Lemeshow 2000:205) and is equiva-
lent to sampling protocol C of Manly et al.
(2002:5). The resulting sample is no longer
described by Eq. (1) because the probability of
observing an instance of use in our sample is now
different than the probability of use in the popu-
lation. To devise an appropriate model, a variable
indicating whether a location appears in the sam-
ple is needed (Hosmer and Lemeshow 2000:206).
Therefore, let η = 1 for each location that was
selected as part of the sample, and η = 0 other-
wise. Also, let P1 = P(η = 1 |y = 1) be the probabil-
ity that any particular used location was included
in the sample, and let P0 = P(η = 1 |y = 0) be the
probability that any particular unused location
was included. When sampling from a finite pop-
ulation where sample size is small relative to pop-
ulation size, these are equivalent to P1 = n1/N1
and P0 = n0 /N0, where N1 and N0 are the respec-
tive numbers of used and unused locations in the
population of N = N0 + N1 total locations. The
probability model describing our case–control
sample is then (Hosmer and Lemeshow
2000:207)

Fig. 1. Relationship between the estimated and true condi-
tional probability of use [P̂ (y = 1 |x) and P(y = 1 |x), respec-
tively] for the 1,000 models fit to data gathered according to a
random sampling design.
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(3)

where β*′ = (β∗
0, β1, …, βp) and β*

0 = β0 +
1n(P1/P0). This is a logistic model with intercept
term β*

0. Using logistic regression to fit case–con-
trol data yields estimates of β* rather than β. Note
that the RSPF, P(y = 1 |x), is still given by Eq. (1)
and can be calculated from Eq. (3) if estimates of
P0 and P1 are available, since

(4)

In the notation of our paper, Manly et al.
(2002:104, Eq. 5.19) give the RSPF for the
case–control setting as

(5)

Equations (4) and (5) are equivalent because
1n(P0/P1) = –1n(P1/P0).

In most case–control studies, probability of use
cannot be estimated because P0 and P1 are un-
known. However, logistic regression still provides
useful information, if interpreted carefully.
Manly et al. (2002:104) suggested setting P0 = P1
in Eqs. (4) and (5), then using the resulting equa-
tion to index selectivity. This approach allows
habitats to be ranked qualitatively. Quantitative
comparisons of habitats are possible by examin-
ing odds ratios. Substituting from Eq. (1) and
rearranging terms, we can show that

(6)

This is the odds that a location will be used given
the covariate pattern x. In case–control studies,

parameter estimates are commonly interpreted
in terms of odds ratios, but interpretation
depends on whether the variable is categorical or
continuous. Consider a model with a single cate-
gorical predictor (x1) with 2 levels. For example,
let x1 = 1 if a location was recently burned, and x1
= 0 otherwise. The odds ratio (ψ) is

Thus, the odds a burned location is used is equal
to exp(β1) times the odds an unburned location
is used. For a continuous variable (x1), we can
show that

.

Thus, for every 1-unit change in x1, a change of
exp(β1) units occurs in the odds ratio. In gener-
al, for both categorical and continuous variables,
if we denote a reference habitat type by xR = (1,
x1,R , …, xp,R), then

Often, it is mathematically convenient to define
the reference habitat so that xR = (1, 0, ..., 0), in
which case

(7)

Although superficially identical to the RSF that
Manly et al. (2002:100) proposed for the
use–availability setting, this form of ψ(x | xR)
derives from a different model and generally can-
not be interpreted the same. Approximately un-
biased estimates of odds ratios can be obtained
from either random or case–control samples
because odds ratios are unaffected by the model
constant, β0 or β*

0. Hosmer and Lemeshow (2000)
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provide further discussion with examples of inter-
pretation in more complex settings.

Under narrow conditions, case–control results
also are interpretable in terms of relative risk.
Relative risk is the probability of use given x rela-
tive to the probability of use given a reference
type, xR; that is,

(8)

The odds ratio is related to relative risk as

(9)

Thus, if use is rare everywhere (i.e., P(y = 1 |x) ∼∼
0 for all x, including xR), then ψ(x | xR) ∼∼
ℜ(x |xR), and the odds ratio can then be used to
approximate relative risk. Compton et al.
(2002:836) explicitly used this approximation in
their study of wood turtle (Glyptemys insculpta, for-
merly Clemmys insculpta) habitat selection. How-
ever, this approximation is increasingly biased as
P(y = 1 |x) increases (Fig. 2). Thus, using the odds
ratio to approximate relative risk implicitly
assumes that P(y = 1|x) is small not just on aver-
age, but for all x, including xR.

Example 2: Case–control Sampling
Using the same true model as in Example 1, we

again sampled pixels randomly with replace-
ment, stochastically determining use as y = I [U ≤
P(y = 1 |x)]. Sampling continued until we had
drawn n0 = 1,000 pixels for which y = 0, and n1 =
1,000 pixels for which y = 1. We repeated this
process 1,000 times. For each replicate, the data
were fit to Eq. (3) using the LOGIT module in
SYSTAT and letting β*′x = β*

0 + β1ELEV. Compar-
ing results with known values, the mean (SE) of
β̂
–

1 = –3.008 (0.157) was a nearly unbiased estimate
of β1 = –3.000, but β̂

–*
0 = 6.741 (0.353) greatly over-

estimated the true model constant, β0 = 5.673. In
this example, n1 = n0, n was small relative to N,
and mean (unconditional) probability of use for
the study area was

Therefore, as per Eq. (3), the expected bias of β̂*
0

was

and the observed bias was β̂
–*

0 – β0 = 1.045. Using
the odds ratio to approximate relative risk under
the (erroneous) assumption that P(y = 1 |x) was
small for all x, the model accurately indexed
probability of use. However, because the relative
importance of habitats with a high probability of
use was overstated, the model predicted that use
would be more concentrated than it really was
(Fig. 3). Overall, we cannot recommend this
approximation unless the rare use assumption is
justified.

Implications for Modeling Habitat Selection
Using case–control sampling, logistic regression

cannot be used to model a RSPF unless one can
estimate the proportions of used and unused
locations sampled and thereby correct the bias in
the model constant. Case–control results typical-
ly must be evaluated in terms of odds ratios,
which although easily obtained, can be difficult
to interpret in the context of a given problem.
Under narrow conditions, odds ratios are a good
estimate of relative risk and can easily be inter-
preted as a RSF, but this interpretation is only an
approximation whose validity rests on the
assumption that probability of use is small for all

Fig. 2. Relationship between the odds of use (P(y = 1 |x) / [1 –
P(y = 1|x)]) and probability of use (P(y = 1 |x)). A curve with
the same general form describes the relationship between the
odds ratio and relative risk, but the axes will be scaled differ-
ently depending on the value of the reference habitat.
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habitats. Simulations by Zhang and Yu (1998)
suggest this approximation is unacceptable if, for
any habitat, P(y = 1 |x) > 0.10. Where it is violat-
ed, relative probability of use may be greatly over-
estimated for high-probability locations, as illus-
trated in Example 2. When interpreting logistic
regression in terms of odds ratios or relative risk,
the reference habitat and relevant assumptions
should be clearly identified.

True case–control designs are uncommon in
wildlife studies, being strictly applicable only when
used and unused habitats are (or are assumed to
be) distinguishable. For example, in his study of
the greater prairie chicken (Tympanuchus cupido),
Niemuth (2003) used logistic regression to com-
pare habitats used as leks versus those not used as
leks, implicitly assuming that use and nonuse
were detectable without error. His study illustrates,
however, the need for caution when interpreting
results. Because Niemuth (2003) interpreted his
logistic regression results in terms of Eq. (1), he
implicitly and inappropriately assumed that his
data were gathered according to a random rather
than a case–control design. 

USE–AVAILABILITY SAMPLING

General Sampling Model
With a use–availability design, we randomly sam-

ple, with replacement, n1 locations from the sub-
population of N1 used locations and n0 locations
from all N available sites. If use is rare, at least on

average (i.e., P(y = 1) ∼∼ 0) then the use–availabil-
ity and case–control designs are approximately
equivalent because the sample of available sites
will consist almost entirely of unused sites. In gen-
eral, however, use–availability differs from the
previous sampling designs because the sample of
available locations can contain observations of
both used and unused sites. If q is the uncondi-
tional probability of use, P(y = 1), then we expect
that our sample of available habitats will be com-
prised, on average, of (1 – q)n0 unused and qn0
used locations. From a case–control perspective,
q is the expected contamination rate of the con-
trol sample, leading Lancaster and Imbens
(1996) to refer to this design as case–control sam-
pling with contaminated controls. Cosslett (1981)
and Steinberg and Cardell (1992) labeled it a
supplementary sampling design.

To deal with contaminated controls, we expand
the sampling model following Lancaster and
Imbens (1996). Let h = n1 /n (where n = n0 + n1)
be the proportion of observations for which we
observe y = 1. We make no assumption about the
value of y for the n0 observations of available loca-
tions because this sample is contaminated with
some unknown proportion of used locations. Also,
let s indicate sampling stratum, so that the n1
observations of used sites are assigned the value s
= 1, and the n0 observations of available sites are
assigned s = 0. As before, let η = 1 if a location
appears in our sample, and η = 0 otherwise. Now,
define P(s = 1 |x, η = 1) as the probability that a

Fig. 3. Relative risk versus odds ratio for the study area and model of Example 2. Values are colored to enable comparison of
distributions of total weights over the landscape. Comparison shows that odds ratios place proportionately greater weight on
habitats with a high probability of use, yielding a map in which habitat values are indexed correctly but where the indices gen-
erally are not proportional to probability of use.
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location will be among the n1 locations for which
use is actually observed, conditioned on the habi-
tat and the location being among the samples
drawn. The distinction between P(y = 1 |x) and
P(s = 1 |x, η = 1) is critical; the former is the prob-
ability of use conditioned solely on habitat (i.e.,
the RSPF), whereas the latter is the conditional
probability that a sampled site will be among the
locations for which use is observed.

Lancaster and Imbens (1996) derived the gen-
eral model

(10)

where P(y = 1 |x) can take the form of any valid
probability model. Their derivation assumes that
P(x | s = 1) = P(x |y = 1), making Eq. (10) a large-
sample approximation. Dividing numerator and
denominator by (1 – h), Eq. (10) can be rewritten as

(11)

Defining P1 = n1 /N1 and PA = n0/N as the respec-
tive proportions of used and available locations in-
cluded in our sample, it follows that under finite
sampling h/[q(1 – h)] = P1/PA. Therefore, under
the assumption that n0 /N is quite small, Eq. (11)
is approximately equivalent to Eq. (5.8) of Manly et
al. (2002:99), which was derived independently.
Two specific formulations of Eq. (10) have been
proposed, whereby P(y = 1 | x) is assumed to con-
form to either the exponential (Manly et al.
2002:100) or the logistic model (Lancaster and
Imbens 1996). We discuss both, but neither can be
fit using logistic regression. Only the exponential
form previously has been used in habitat modeling.

Sampling Model – Exponential Form
With use–availability sampling, Manly et al.

(2002:100) assumed that the RSPF could be
approximated by the exponential function

(12)

where β′x ≤ 0 for all x. The constraint β′x ≤ 0
ensures P(y = 1 |x) ≤ 1. Substituting into Eq. (11)
yields

(13)

where β*′ = (β*
0, β1, ..., βp), β*

0 = β0 + 1n(P1/PA),
and β′x ≤ 0. This is Eq. (8.6) of Manly et al.
(1993:127) and, under the assumption that n0/N
is small, also is approximately equivalent to Eq.
(5.10) of Manly et al. (2002:100). The log-likeli-
hood is

(14)

At first glance, Eqs. (13) and (14) appear to spec-
ify a logistic model, leading Manly et al. (2002:100)
to recommend that logistic regression be used to
fit model (13) and thereby estimate the parame-
ters of model (12). This approach relies on at
least 2 critical assumptions. First, the constraint
β′x ≤ 0 is assumed to be either optional or some-
how satisfied by the logistic regression procedure.
If true, then parameter estimates should always
translate into valid probability estimates. Second,
RSFs calculated from the resulting parameter
estimates are assumed to be proportional to the
true probability of use; that is, we should observe
exp(β̂′x – β̂0)/P(y = 1 |x) = k, for some positive
constant k. Examples 3 and 4 show that neither
assumption is necessarily true. In epidemiologi-
cal studies, where Eq. (12) is known as the log-
binomial model (Schouten et al. 1993, Skov et al.
1998), use of this approach has been similarly
criticized (Edwardes 1995, Ma and Wong 1999).

Example 3: Use–Availability, Exponential
Form I

In this example, we show that using logistic
regression to fit model (13) cannot guarantee that
the resulting probability model will be valid, even
when the true underlying model is exponential
and the resulting parameter estimates are unbi-
ased. Let x1 be a continuous positive covariate,
distributed in the populations of used and avail-
able locations as f1(x1) = 2exp(–2x1) and f (x1) =
exp(–x1), respectively. Also, let q = 0.5. From
Bayes’ Rule we get

(15)

This is an RSPF of exponential form, where β0 = 0
and β1 = –1. Substituting into Eq. (11) and specify-
ing that samples will be drawn so that h = 0.5, we get 
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where x1 > 0. This is model (13), with 

.

Thus, an approximately unbiased estimate of β0
is β̂0 = β̂*

0 – 1n(2). Using S-PLUS 2000 (MathSoft
1999), we drew 1,000 random samples each from
f1(x1) and f (x1) then estimated the relevant coef-
ficients using the glm function with a binomial
family argument. This process was repeated 1,000
times. Mean estimates (SE) were β̂

–*
0 = 0.696

(0.051), β̂
–
0 = 0.003 (0.051), and β̂

–
1 = –1.005 (0.079).

Estimates were essentially unbiased. However,
because the logistic regression procedure did not
impose the required constraint, β′x ≤ 0, the esti-
mated maximum probability of use was >1 in 505
of the 1,000 simulations. Of those, an average of
6% of the locations sampled had fitted probabili-
ties >1. We also evaluated whether the estimated
RSFs were proportional to probability of use (i.e.,
whether RSF = kRSPF for some positive constant
k) as required by definition. For this example, we
know that k = 1. On average, observed values of 

were clustered around 1, but values associated
with any particular replicate varied systematically
and were not constant (Fig. 4). Thus, the statisti-
cal expectation of proportionality does not guar-
antee that the estimated RSF will, in fact, be even
approximately proportional to probability of use
in a given study.

Example 4: Use–Availability, Exponential
Form II

Next, we illustrate the confounding effects of
using common model-selection procedures
together with logistic regression to fit use–avail-
ability data to model (13). Using the same true
model as in Example 1, we sampled randomly
with replacement, drawing n1 = 1,000 pixels for
which y = 1. Each was labeled as belonging to
sampling stratum s = 1. Without regard to y, we
then randomly drew n0 = 1,000 pixels with replace-
ment from our model study area and assigned
each to stratum s = 0. This procedure was repeat-

ed 1,000 times. For each replicate, the data were
fit to model (13) using the LOGIT module in
SYSTAT. Preliminary analyses suggested that a
polynomial of order m ≥ 4 was needed to approx-
imate the logistic form of the true model; there-
fore, we fit the data from each replicate to models
of order m = 1 to 5 and used Akaike’s Information
Criterion (AIC; Burnham and Anderson 2002:61)
to select the most parsimonious model.

To evaluate whether the AIC-selected models
violated the assumption that β′x ≤ 0, we calculat-
ed probabilities of use implied by each model.
We first corrected for sampling bias using known
values of P1 and PA to calculate β̂0 = β̂0

* –
ln(P1/PA), where

(16)

The value β̂0 was then substituted for β̂0
* to obtain

β̂. We then applied each of our 1,000 bias-cor-
rected models to estimate probability of use for
every pixel in our study area and recorded the
maximum estimated probability for each model.
Probability estimates ranged as high as P̂(y = 1 | x)
= 5.71 (Fig. 5), and estimates >1 were observed
for 75% of the models, indicating that the
assumption β′x ≤ 0 was consistently violated.

Fig. 4. Observed ratios of the resource selection function
(RSF), estimated according to the method of Manly et al.
(2002:100), and known resource selection probability function
(RSPF) plotted on the RSPF, for 100 randomly selected loca-
tions for each of the 1,000 RSF models fit in Example 4. The
RSF must be proportional to the RSPF, by definition. There-
fore, if the method of Manly et al. (2002:100) yielded valid
RSFs, this graph should have been comprised of 1,000
approximately horizontal lines.
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We also evaluated whether RSFs were propor-
tional to probability of use. For each AIC-selected
model, a RSF was estimated as exp(β̂*′x – β̂*

0), as
per Manly et al. (2002:100). For each model, we
then randomly sampled 100 locations with
replacement from our study area, calculated 

for each location, and plotted those values
against P(y = 1 |x). Results showed that RSFs were
not proportional to probability of use (Fig. 6). Al-
though RSFs usefully indexed probability of use
in many cases, this was not guaranteed. For mod-
els of polynomial order m > 1, locations with very
different probabilities of use often were indexed
by identical or nearly identical RSF values.

Sampling Model – Logistic Form
Lancaster and Imbens (1996) presented an

alternative form of model (10). In the notation of
our paper, they assumed

(17)

This is the logistic model of Eq. (1) with terms
rearranged and requires no constraint on β′x.
Substituting into Eq. (10) yields

(18)

Substituting Eq. (1) into Eq. (11), the model also
can be written as

(19)

The log-likelihood is given by Eq. (14). This
model is not logistic and cannot be fit using logis-
tic regression (Lancaster and Imbens 1996). Lan-
caster and Imbens (1996) provided 2 methods
(maximum likelihood and generalized method
of moments) for estimating the model parame-
ters β and the nuisance parameter q, and showed
that the 2 are essentially equivalent for estimating
β. In Example 5, we use maximum likelihood to
estimate β and q and compare estimates with
known values. 

Fig. 5. Distribution of maximum estimates of probability of use,
calculated by applying the 1,000 best models of Example 3,
ranked by Akaike’s Information Criterion, to the elevations in
the model study area. The dashed line indicates the upper
bound of 1 that should have been observed if the procedure
of Manly et al. (2002:100) yielded valid probability models.

Fig. 6. Observed ratios of the resource selection function
(RSF), estimated according to the method of Manly et al.
(2002:100), and known resource selection probability function
(RSPF) plotted on the RSPF, for 100 randomly selected loca-
tions for each of the 1,000 RSF models fit in Example 5. The
RSF must be proportional to the RSPF, by definition. There-
fore, if the method of Manly et al. (2002:100) yielded valid
RSFs, this graph should have been comprised of 1,000
approximately horizontal lines.
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Example 5: Use–Availability, Logistic Form
Using the same 1,000 samples as in Example 4,

we fit the data to Eq. (18) using the nonlinear
regression module (NONLIN) in SYSTAT. To ob-
tain maximum-likelihood estimates, we set the
loss function equal to the negative of the log-like-
lihood (Eq. [14]). Because P(s = 1 | x, η = 1) is
binomial, variance was a function of x. We there-
fore used iterative reweighting (Cox and Snell
1989:19), whereby the weight for each observation
was recalculated as the inverse of the variance,

following each iteration of the least-squares non-
linear regression procedure. The nonlinear regres-
sion procedure was sensitive to starting values
and often failed to converge if starting values
were very far from actual values. To resolve this
problem in a manner suited to actual field stud-
ies, we first fit each of the 1,000 data sets to the
simple logistic model of Example 1 using stan-
dard logistic regression. The resulting estimates
(β̂0 and β̂1) were then used as starting values in
our nonlinear regressions. To calculate starting
values for q, we used elevation data for our study
area together with β̂0 and β̂1 to estimate proba-
bility of use as

(20)

then averaged those estimates over the study area
to obtain q̂ = P̂

–
(y = 1 |x) = P̂(y = 1). The final

mean (SE) estimates of β̂
–

0 = 5.594 (1.528), β̂
–

1 =
–3.015 (0.444), and q̂

–
= 0.250 (0.082) obtained via

nonlinear regression were nearly unbiased. How-
ever, uncertainties associated with β̂0 and β̂1 were
much greater than we observed using random
sampling (cf. Example 1). Estimates of P(y = 1 | x)
were similarly uncertain. Final estimates of β0
and β1 were substituted into Eq. (20) and, for
each replicate, P(y = 1 |x) was estimated for 100
randomly selected pixels. The resulting esti-
mates, P̂(y = 1 | x), reflected the considerable un-
certainty in  β̂0 and β̂1 (Fig. 7).

Implications for Modeling Habitat Selection
Use–availability is perhaps the most common

sampling design in habitat-selection studies.
Unfortunately, logistic regression is commonly
misused in this setting. For example, applying
logistic regression to use–availability data for

mountain quail (Oreortyx pictus), Wyoming toads
(Bufo baxteri), and southwestern myotis (Myotis
auriculus), respectively, Brennan et al. (1986),
Parker and Anderson (2003), and Bernardos et
al. (2004) incorrectly interpreted their results in
terms of Eq. (1)—as if the data had been gath-
ered according to a random sampling design. To
avoid these and other types of errors requires an
understanding of the many nuances and assump-
tions that accompany the use–availability design.
In the following sections, we discuss some of the
more important ones.

Use–Availability as an Approximation to Case–Con-
trol.—Use–availability is approximately equivalent
to a case–control design if the unconditional
probability of use (q) is small because we then
expect that the control sample will be composed
almost exclusively of unused sites. Thus,
use–availability studies that treat the data as if
they had been collected using a case–control
design implicitly assume that use is rare, at least
on average. Examples of use–availability studies
treated as case–control designs include those for
the northern spotted owl (Strix occidentalis cauri-
na), sage grouse (Centrocercus urophasianus), and
flammulated owl (Otus flammeolus; Ramsey et al.
1994); grizzly bear (Mace et al. 1996); and wood
turtle (Compton et al. 2002). Of these, only
Compton et al. (2002) explicitly discussed the
underlying rare use assumption. Particularly for
telemetry-based studies (e.g., the sage grouse and

Fig. 7. Relationship between the estimated and true condi-
tional probability of use [P̂ (y = 1 |x)and P(y = 1 |x), respec-
tively] for the 1,000 models fit to data gathered according to a
use–availability sampling design.
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grizzly bear studies of Ramsey et al. [1994)] and
Mace et al. [1996]), it often is not self-evident
that randomly selected available habitats were in
fact unused or that q was necessarily small. When
analyzing use–availability data as if they had been
gathered according to a case–control design, the
assumption that q is small merits explicit and
careful consideration. Also, when using this
approximation, results generally must be inter-
preted as odds ratios (as per Eq. [7]) rather than
RSFs—the latter being, by definition, propor-
tional to P(y = 1 |x), while the former are not.
Only when P(y = 1 |x) is small for all habitats (i.e.,
all x values, including xR) can odds ratios be
interpreted as approximate RSFs. Although rea-
sonable in some cases, we believe the assumption
that P(y = 1| x) is small for all habitats is danger-
ous in general. Knowing when use is rare enough
for this approximation to hold will be strictly pos-
sible only when P1 and PA are both known (i.e.,
when q is known and model [12] is a good
approximation to the true probability of use).
Unfortunately, determining when these condi-
tions are even approximately satisfied is often dif-
ficult. The assumption that q is small is far less
stringent and thus more likely to prove useful in
wildlife studies.

Use–Availability and the Exponential Model.—In
general, logistic regression cannot be applied to
analyze use–availability data because the underly-
ing probability model (Eq. [10]) is not logistic. A
common misconception (e.g., Manly et al.
2002:100) is that standard logistic regression,
when applied to use–availability data, yields max-
imum-likelihood estimates of the parameters of
the exponential model of Eq. (12). Maximizing
the likelihood of the logistic model and maxi-
mizing the likelihood subject to the constraint
β′x ≤ 0 are not equivalent problems and, in gen-
eral, will not yield the same solutions. Because
standard logistic regression does not impose the
requisite constraint, using it to fit model (13) and
thereby estimate the parameters of model (12)
does not guarantee maximum-likelihood solu-
tions, valid standard errors, or even valid proba-
bilities, as demonstrated in Examples 3 and 4.
Furthermore, invalid probabilities imply invalid
log-likelihoods—a fact with serious implications
for studies using this approach together with like-
lihood-based model-selection methods like AIC.

Perceptions regarding the exponential model
are confounded by the fact that logistic regres-
sion can yield mathematically acceptable results
in some cases. Nielson et al. (2004) reported that

logistic regression yielded approximately unbi-
ased parameter estimates and valid probability
estimates (i.e., 0 ≤ P̂(y = 1 |x) ≤1) in use–avail-
ability simulations with contamination rates as
high as q = 0.5. They concluded that logistic
regression should yield valid results, unless q is
quite large. In Examples 3 and 4, however, we
observed invalid probability estimates when q =
0.259 and q = 0.5, respectively. This illustrates that
the validity of the estimated model is not deter-
mined solely by q. The same conclusion can be
reached more formally by considering the
inequality exp(β0 + β1x1 + ... + βpxp) ≤ 1, which
follows from model (12) and the constraint β′x ≤
0. Multiplying both sides by n1/(n0q) and remem-
bering that 

for the exponential model, this inequality can be
rewritten as 

Rearranging terms yields

(21)

which must hold for all x to ensure that estimat-
ed probabilities are ≤1. One implication of Eq.
(21) is that no single threshold value exists for q
that will ensure a valid probability model.
Instead, the permissible upper bound for q is a
function of the particular exponential model
(β̂*), study area (x values), and the sampling pro-
portion n1/n0. Indeed, for every exponential
model, study area, and sampling proportion,
some upper bound for q is implicitly assumed.
This assumed upper bound can be surprisingly
small. Consider the fernbird (Bowdleria punctata)
example of Manly et al. (2002:105), in which n1 =
24, n0 = 25, and

Examining only the 49 values of x actually ob-
served in that study (Manly et al. 2002:40, Table
3.4), a maximum value of exp(β̂*′x) = 11,968 was
obtained for the observation x′ = (1, 1.2, 14, 8.9).
For the estimated model to yield valid probabili-
ties, we must therefore assume that q ≤ 24/(25 ×
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11,968) ~~ 0.00008. This bound would undoubted-
ly be lower if covariate values from all locations in
the study area had been examined. Even so, the
implicit threshold of q ≤ 0.00008 contrasts sharply
with the threshold of q ≤ 0.5 suggested by Nielson
et al. (2004) and further illustrates that no single
threshold value for q can ensure a valid probabil-
ity model in all cases. Knowing whether logistic
regression results are acceptable in any particular
instance is likely to be study and model depen-
dent and hence difficult in practice. However,
given information about x for all locations in a
study area, users of the exponential model can
apply Eq. (21) to calculate the assumed upper
bound on q and at least consider whether that
assumption might be realistic.

Despite the problems discussed above, one may
reasonably question whether RSFs obtained for
the exponential model might be proportional to
probability of use. Examples 3 and 4 (Figs. 4, 6)
showed that proportionality is not assured. Ob-
served relationships between fitted RSFs and the
true probability of use typically were nonlinear
and, in some cases, maximum RSF values were
associated with intermediate rather than maxi-
mum probabilities. Thus, observed RSFs were
rarely proportional to probability of use and
sometimes were unreliable even as an index of
that probability. In Example 4, in which we
approximated a logistic model using an expo-
nential model with polynomial terms, lack of pro-
portionality probably was due, in part, to model
misspecification. In Example 3, however, the
model was correctly specified, yet calculated RSFs
still were not proportional to the RSPF. Instead,
relationships between the RSFs and the RSPF
were a function of x. This can be understood as
follows. Recall that by definition RSF/RSPF = k,
where k is a positive constant. Estimates of k for
Example 3 are therefore given by

(22)

The expected proportionality constant in Exam-
ple 3 was k = 1/exp(β0) = 1. From Eq. (22), we see
that this expectation will be realized only if x1 = 0
or β1 is estimated without error (i.e., β̂1 – β1 = 0).
In all other cases, k̂ is an exponential function of

x1 and the estimation error. The observed lack of
proportionality between the RSF and RSPF raises
serious questions about applications that rely crit-
ically on the assumption of proportionality. For
example, RSF-based assessments of risk (McDonald
and McDonald 2002), carrying capacity (Boyce
and Waller 2003), or population size (Boyce and
McDonald 1999) seem especially difficult to justify.

Beyond these issues, the general form of the
exponential model exhibits several undesirable
properties. First, because modeled probabilities
of use are bounded on the upper end only via the
constraint β′x ≤ 0, the validity of any particular
model depends on x. Consequently, even if the
underlying constraint were satisfied for a model
constructed for 1 area or time period, it may not
be satisfied if that model is extrapolated to areas
or periods where the range of x values is differ-
ent. Extrapolations of exponential models (e.g.,
Boyce and Waller 2003) are therefore suspect on
purely mathematical grounds. Second, using the
exponential model to approximate non-expo-
nential relationships requires higher-order poly-
nomials. For example, the most commonly
assumed relationship between probability of use
and a continuous covariate (x1) is

which yields the classic sigmoidal curve assumed
for random and case–control sampling. To
approximate this form using model (12) would
require a fourth- or fifth-order polynomial; that
is, it would require that for m = 4 or 5,

(23)

Such models are rare in the literature. Although
use of quadratic terms has become more common,
we know of only 2 studies (McDonald and McDon-
ald 2002, Manly et al. 1993:112) that included cubic
terms. The fact that higher-order polynomials are
rarely even considered suggests that few
researchers appreciate this property of the expo-
nential model. More importantly, polynomial mod-
els become increasingly unstable as higher-order
terms are added, confound model interpretation,
and impose an unnecessarily high cost in terms of
commonly used model-selection criteria like AIC.
Such problems are exacerbated when multiple pre-
dictors or interaction terms are included. Third,
the exponential model implies that use and
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nonuse are influenced by habitat in fundamentally
different ways. For a continuous covariate, the
model implies that relative probabilities of use
are independent of the covariate value because

for any arbitrary constant (a). Thus, an increase
of a units in the covariate x1 has the same effect
on relative probability of use regardless of the
actual value of x1. In contrast, relative probabili-
ties of nonuse are given by

which depends on x1. The biological justification
for this lack of symmetry in the habitat-selection
process is unclear.

Use of the exponential model also undermines
comparability among studies employing different
sampling designs. Imagine a situation where use,
nonuse, and habitat data are collected for a single
continuous covariate (x1) according to each of
the 3 sampling designs we outlined above. Using
these data, 3 different analyses are conducted,
assuming as appropriate (Eqs. [1], [4], [12])

Ideally, these approaches should yield compara-
ble results because they all describe the same
underlying reality. However, the coefficients in
the third model are not comparable to those in
the first 2, nor are the covariates themselves treat-
ed the same because polynomial transformations
are required to ensure that the exponential model
yields approximately the same values for proba-
bility of use. This lack of comparability under-
mines efforts to develop a truly unified frame-
work for habitat-selection modeling.

The Exponential Model as a Logistic Discriminant
Function.—Despite serious theoretical and practi-
cal concerns regarding the exponential model, it
has been widely applied, with most researchers
reporting that the resulting RSFs appear reason-
able. If truly flawed, why should this model seem-
ingly perform well? One explanation is that an
RSF of the form exp(β1x1 + ... + βpxp) is propor-
tional to a logistic discriminant function. To see
this, we reformulate the problem as follows. Let
f1(x) be the distribution of covariates in a pool
consisting of all habitat choices made by the
species of interest, and let f2(x) be the distribu-
tion in a pool of all choices made randomly. The
sampling universe is hypothetical, containing all
possible realizations of the 2 different sampling
methods; that is, we imagine a hypothetical pop-
ulation g(x) such that g(x) = πf1(x) + (1 – π)f2(x),
where π is the probability of drawing from f1(x),
and 1 – π is the probability of drawing from f2(x).
In this hypothetical formulation, f1(x) and f2(x)
are mathematically distinct populations. We want
to determine which population, f1(x) or f2(x), a
particular observation x belongs to. This is a clas-
sification problem, and 1 way of handling the
problem is to assume (Seber 1984:308)

This logistic discriminant function is used to
classify x as belonging to f1(x) if β0 + β1x1 + ... +
βpxp > ln[(1 – π)/π]. Of course, π is rarely known,
and a common practice is to classify based on
sampling proportions; that is, classify x as belong-
ing to f1(x) if 

,

where n1 and n2 are the sample sizes drawn from
f1(x) and f2(x), respectively. Thus, using logistic
regression to fit use–availability data to the expo-
nential model yields a logistic discriminant func-
tion (Seber 1984:308–317, Manly 1994:118–125),
where the nuisance parameter q and the trouble-
some constraint β′x ≤ 0 are no longer considera-
tions. Being proportional to this discriminant func-
tion, exp(β1x1 + ... + βpxp) should allow meaningful
ranking of habitats—although, as seen in Exam-
ple 3, use of polynomial regression can undermine
the accuracy of those rankings. This approach also
should allow meaningful identification of those
habitat characteristics (or their surrogates) most
strongly associated with habitat selection.
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When using logistic regression to obtain a logis-
tic discriminant function, the result must be
interpreted differently than in RSF analysis. To
see this, let f0(x) denote the population of un-
used habitats. Use of logistic regression in RSF
analysis assumes that the available population is a
mixture of used and unused habitats (i.e., f2(x) =
qf1(x) + (1 – q)f0(x)). This implies that the result
is a logistic discriminant function that distin-
guishes between f1(x) and f0(x) (use and non-
use), rather than f1(x) and f2(x) (observed use and
random use). The latter interpretation is always
valid under use–availability sampling, but the for-
mer is not unless one is willing to make strong
assumptions. The difference is subtle, and confu-
sion exists in the literature about which data-gen-
erating model applies. The use–availability sam-
pling plan described by Manly et al. (2002:99)
clearly assumes that the available population is a
mixture of used and unused units (Manly et al.
2002:27), but in other discussions of resource
selection, some of these same authors describe a
sampling plan more like the logistic discriminant
setting (e.g., the pie example in McDonald and
McDonald [2002], where no population of
unused pies exists). The study of northern rac-
coon (Procyon lotor) den-site selection by Henner
et al. (2004) provides an example of a use–avail-
ability design where logistic regression was explic-
itly used to discriminate between observed use
and random use, rather than use and nonuse.

Use–Availability and the Logistic Model.—Lancast-
er and Imbens (1996) provide a framework (Eq.
[10]) for developing alternative models applica-
ble to use–availability
data. In doing so, they
demonstrate the theo-
retical feasibility of esti-
mating P(y = 1 |x) in this
setting, while retaining
the logistic model
assumed in the random
and case–control set-
tings. This introduces a
consistent mathematical
framework, whereby re-
searchers can estimate
habitat-specific proba-
bilities of use from the
same underlying logistic
model, regardless of
sampling design. More-
over, in contrast to the
exponential model, the

logistic model is intrinsically bounded so that 0 ≤
P(y = 1 |x) ≤ 1 regardless of x, avoids use of high-
order polynomials, and assumes symmetry with
respect to habitat use–nonuse decisions. Nontriv-
ial problems we encountered in applying the
Lancaster-Imbens logistic model include the lack
of commercially available software to implement
their generalized method of moments solution.
More seriously, their maximum-likelihood method
failed to converge to a unique solution when using
categorical covariates or some transformations of
continuous covariates. Reasons for this are
unclear, but alternative approaches apparently
are needed to provide a generally robust method
for estimating RSPFs from use–availability data.
This problem is the subject of ongoing study.

MANAGEMENT IMPLICATIONS
The validity of habitat models is affected by

many factors, including choice of statistical
method and interpretation of results. Logistic
regression is among the most popular methods
for constructing habitat models but is easily mis-
applied. Because misapplications most often have
been due to lack of understanding about the
assumptions and constraints applicable under
different sampling designs, we offer the following
summary guidelines (Table 1).

With random sampling of use–nonuse data,
logistic regression can be applied to estimate the
conditional probability of use (P(y = 1 |x)), which
is the RSPF of Manly et al. (2002:27). With
case–control sampling, logistic regression gener-
ally cannot be used to estimate P(y = 1 |x), but it

Table 1. Summary of methods and interpretations appropriate to particular sampling designs
under a range of assumptions or conditions relevant to wildlife habitat-selection studies. P(y
= 1) is the unconditional probability of use; P(y = 1 |x) is the probability of use conditioned on
the habitat (x); RSPF is the resource selection probability function; and “~~” indicates approx-
imation.

Sampling Special assumptions
design or conditions Method Interpretation

Random None Logistic regression RSPF
Case–control P

0
= P

1
Logistic regression Habitat ranking

None Logistic regression Odds ratio
Use rare everywhere; Logistic regression ~~ Relative risk
P(y = 1|x) ~~ 0 for all x

Use–availability None Lancaster-Imbensa RSPF
None Logistic regressionb Habitat ranking
Use rare, on average; Logistic regression ~~ Odds ratio
P(y = 1)  ~~ 0
Use rare everywhere; Logistic regression ~~ Relative risk
P(y = 1| x)  ~~ 0 for all x

a Lancaster and Imbens (1996) generalized method of moments or maximum-likelihood
methods.

b Used here to obtain a logistic discriminant function.
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does yield valid estimates of odds ratios. In gen-
eral, odds ratios are not proportional to the RSPF
and thus cannot be interpreted as an RSF. How-
ever, a special case exists if P(y = 1 |x) is small for
all habitats (i.e., all x values) because the odds
ratio is then approximately equal to relative risk
and thus can be treated as a good approximation
to an RSF. With use–availability sampling, logistic
regression will yield a logistic discriminant func-
tion that can be used to rank habitats based on a
comparison of observed versus random use and
identify those habitat characteristics most strong-
ly correlated with habitat use. The reliability of
habitat rankings may be undermined, however, if
models are poorly specified. If use is rare, then
use–availability data also may be treated as being
approximately equivalent to a case–control sam-
ple. Logistic regression results may then be inter-
preted as either odds ratios (if P(y = 1) is small) or
RSFs (if P(y = 1| x) is small for all x).

The assumption that estimated RSFs or RSPFs
are proportional to the true probability of use is
critical in some applications. Our results show
that, regardless of the modeling approach used,
this assumption should be considered carefully.
First, unless the model is correctly specified, a sta-
tistical expectation of proportionality may not
exist. Example 4 (Fig. 6) illustrates problems that
can arise due to model-selection uncertainty. Sec-
ond, even where the true model is correctly spec-
ified and a statistical expectation of proportion-
ality exists, stochastic variation in parameter
estimates can create a situation in which propor-
tionality is rare. In our Monte Carlo trials, this sit-
uation occurred when variability about the statis-
tical expectation varied with x (Examples 3, 5;
Figs. 4, 7). This underscores the need for rela-
tively large samples in applications in which pro-
portionality is assumed.

Overall, use of logistic regression in habitat-
selection studies currently requires that research-
ers navigate with meticulous care through a set of
choices regarding sampling design, the underly-
ing probability model, and associated assump-
tions. Ultimately, these determine the appropri-
ateness of interpretations made from their
analyses. New developments hint at the possibili-
ty of simplifying this complex situation. Specifi-
cally, RSFs previously have been accepted as a
necessary complication because RSPFs were
viewed as unattainable, except under random
sampling. The logistic-based model of Lancaster
and Imbens (1996) provides a solution to this
problem for studies using only simple continuous

covariates but apparently fails in other situations;
thus, we do not recommend its use. Nonetheless,
the model suggests the feasibility of directly esti-
mating conditional probability of use from
use–availability data. We encourage additional
work in this direction to enable estimation of a
single underlying probability model that is com-
parable across sampling designs.
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