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Early theoretical work on disease invasion typically assumed large and well-mixed host 

populations.  Many human and wildlife systems, however, have small groups with limited 

movement among groups.  In these situations, the basic reproductive number, R0, is likely to be a 

poor predictor of a disease pandemic because it typically does not account for group structure 

and movement of individuals among groups.  We extend recent work by combining the 

movement of hosts, transmission within groups, recovery from infection, and the recruitment of 

new susceptibles into a stochastic model of disease in a host metapopulation.  We focus on how 

recruitment of susceptibles affects disease invasion and how population structure can affect the 

frequency of superspreading events (SSEs).  We show that the frequency of SSEs may decrease 

with reduced movement and group sizes due to the limited number of susceptible individuals 

available.  Classification tree analysis of the model results illustrates the hierarchical nature of 

disease invasion in host metapopulations.  First the pathogen must effectively transmit within a 

group (R0>1), then the pathogen must persist within a group long enough to allow for movement 

among groups.  Therefore factors affecting disease persistence—such as infectious period, group 

size, and recruitment of new susceptibles—are as important as local transmission rates in 

predicting the spread of pathogens across a metapopulation.   
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Early epidemiological models typically assumed that host populations were large and 

well-mixed (e.g. Kermack & McKendrick 1927).  Many human, wildlife, and livestock 

populations, however, are structured into small groups with limited movement among groups 

(Altizer et al. 2003; Kao et al. 2006).  For example, communities of people that remain 

unvaccinated for religious or philosophical reasons constitute isolated and weakly-linked patches 

of susceptible hosts for diseases such as measles and pertussis (Feikin et al. 2000; Salmon et al. 

1999).   Similarly, the on-going spread of H5N1 influenza among wild birds underscores the 

need to understand whether insights derived from the theory of epidemics in large human 

populations can be applied accurately to diseases in wildlife.  A number of studies have 

considered the effects of spatial or social group structures on disease invasion and persistence 

(e.g., Cross et al. 2004; Fulford et al. 2002; Hagenaars et al. 2004; Hess 1996b; Keeling 1999; 

Keeling & Gilligan 2000a; Keeling & Gilligan 2000b; Keeling & Rohani 2002; Park et al. 2001; 

Park et al. 2002; Swinton 1998; Thrall et al. 2000).  Of particular importance is the research 

investigating the effects of population structure in the form of households on disease invasion 

and dynamics (e.g., Andersson 1997; Andersson & Britton 1998; Becker & Dietz 1995; Becker 

& Starczak 1997; Schinazi 2002).  In this study, we take a novel approach to investigating 

disease invasion.  Rather than analytically determining when a large outbreak is possible, we use 

hierarchical statistical methods to determine what criteria predict successful disease invasion 

most accurately.  We then compare these results to more traditional thresholds to determine the 

amount of prediction error arising from the different approaches. 

The basic reproductive number, R0, is the expected number of infections caused by a 

typical infectious individual in a completely susceptible population.  R0>1 is the threshold 

condition traditionally applied for successful disease invasion (Anderson & May 1991; 
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Heesterbeek 2002; Heffernan et al. 2005).  R0, as it is commonly used, assumes that the host 

population size is sufficiently large that the depletion of susceptible individuals through death or 

infection is negligible, and that the population is homogeneous or well-mixed (Anderson & May 

1991; Keeling & Grenfell 2000).  The R
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0 metric has been widely studied and refined to address 

more complex situations (e.g. multiple classes of host: Diekmann et al. 1990; spatial structure: 

Keeling 1999; depletion of the susceptible pool: Keeling & Grenfell 2000). Although some 

formulations of R0 use a matrix-based approach to account for spatial or group structure (e.g. 

Diekmann et al. 1990), R0 is, by definition, an individual-based rather than group-based metric.  

In this usage R0 may be high, reflecting within-group transmission, while the probability of 

between-group transmission remains low (Ball et al. 1997; Cross et al. 2005; Watts et al. 2005).  

When social groups are small, understanding the processes affecting within-group invasion 

becomes less important than understanding the processes regulating the spread of disease among 

groups.  

The natural invasion metric for disease in a metapopulation is , defined as the number 

of groups infected by individuals from the initially infected group (and hence the group-level 

analogue of R0; Ball et al. 1997).  A similar metric, R

R*

H0, was developed by Becker and Dietz 

(1995) to assess the propagation of infection among households of variable sizes.  In an idealized 

metapopulation, analytic theory has proven  must be greater than one for a pandemic to occur 

(Ball et al. 1997; Becker & Dietz 1995); under less restrictive assumptions, this same threshold 

has been demonstrated by simulation (Cross et al. 2005).  Unfortunately,  is difficult to 

calculate analytically for any but the simplest metapopulation structures.  Empirical estimation of 

 from outbreak data would require contact tracing data at a group level, a formidable 

challenge for wildlife or human diseases.  Thus, while  brings conceptual clarity to the study 

of disease in metapopulations, its immediate utility in applied settings is limited.  Therefore, we 

R*

R*

R*

R*
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investigate the constituent parts of  to help focus field research on those parameters most 

important to disease invasion in structured populations.  
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Many studies addressing R0 in structured populations incorporate host movement via a 

phenomenological mixing approach, whereby hosts do not move among groups but 

simultaneously infect others locally and at a distance (Ball et al. 1997; Dobson & Foufopoulos 

2001; Fulford et al. 2002; Keeling 1999; Park et al. 2001).  Phenomenological mixing models are 

often analytically tractable, but they overlook the fact that between-group movements are 

discrete (and possibly rare) events, which can be crucial to understanding the stochastic 

dynamics of disease invasion (Cross et al. 2005) and the role of superspreaders in fueling an 

epidemic (Lloyd-Smith et al. 2005b).  An alternative approach is to model host movement 

mechanistically, explicitly tracking the movement of individuals between groups (eg. Cross et al. 

2005; Hess 1996a; Keeling & Rohani 2002; Thrall et al. 2000).   

Previously, we used mechanistic models to show that disease invasion across a 

metapopulation depends crucially on the relative timescales of host movement and recovery from 

disease (Cross et al. 2005).  We showed that R0>1 was insufficient for disease invasion when the 

product of the average group size and the expected number of between-group movements made 

by each individual while infectious (i.e. the ratio of movement rate to recovery rate) was less 

than one (Cross et al. 2005).  This previous study addressed settings where the rate host 

population turnover was negligible relative to the rate of disease processes of infection and 

recovery.  

Here we expand the earlier analysis to a much broader set of disease-host relationships, 

exploring settings where the duration of immunity ranges from transient to lifelong, or where 

demographic processes occur on comparable (or faster) timescales to disease processes.  Rapid 

replenishment of susceptibles allows qualitatively different dynamics compared to the earlier 
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study, including the possibility for diseases to remain endemic within a local group even if 

movement is infrequent.  Given R
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0>1, we investigate additional factors that help explain the 

remaining variation in whether or not a disease will become a pandemic.  We also examine how 

these additional factors alter the structure of epidemics through their effect on the frequency of 

superspreading events (Lloyd-Smith et al. 2005b).  

 

2. METHODS 

(a) Model structure 

We use two individual-based, stochastic, discrete-time SIR models that extend our 

previous work (Cross et al. 2005).  These models differ from each other and our previous 

analyses only in the mechanism by which the susceptible pool is replenished.  In the SIRS 

model, immunity is transient so recovered individuals can return to the susceptible state; in the 

SIR_BD model, immunity is permanent but births introduce new susceptibles, while deaths keep 

the population size constant.  In simulations of each model, we track each individual’s spatial 

position (group membership) and disease class (S-susceptible, I-infected, R-recovered)  

In each model four processes occur: infection, recovery of infected hosts, creation of new 

susceptibles, and movement among groups.  We take disease transmission to be frequency-

dependent (Getz & Pickering 1983), whereby the instantaneous rate of infection for each 

susceptible individual in group i is βIi/ni, where β is the transmission coefficient, Ii is the number 

of infected individuals in group i, and ni is the total number of individuals in group i.  Because 

our models operate in discrete time, the expression ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

i

i

n
I

βexp1  is used to depict the 

saturating probability of infection per time step for each susceptible individual (implicitly  

assuming that the force of infection is constant within each time step).  All disease transmission 
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is assumed to occur within local groups, and contact among groups occurs only by movement of 

individual hosts.  We assume that infected individuals recover from infection to an immune class 

with a constant probability γ  per time step.  We model movement among groups in a density-

independent fashion such that all individuals have a constant probability μ of leaving their 

current group in each time step.   In the SIRS model, recovered individuals lose their immunity 

with probability ρ per time step, and births and deaths do not occur.  In the SIR_BD model, all 

individuals have probability δ of dying and being replaced by a susceptible individual in the 

same group. 

Groups are organized on a square lattice with periodic boundary conditions (i.e. 

movement is on a torus), where individuals move to one of their four nearest-neighboring 

groups, chosen at random. Each simulation starts with one infected individual and all groups 

begin with the same number of individuals.  Except where otherwise noted, we ran simulations 

on an 11 x 11 array of groups.  Since our spatial model was symmetric, group sizes remained 

relatively constant during the course of each run.  Thus, our assumption of frequency-dependent 

transmission is approximately equivalent to a rescaling of density-dependent transmission.  

In the continuous-time analogues of our models, γβ ′′=0R  for SIRS and 16 

)( δγβ ′+′′=0R  for SIR_BD (Anderson & May 1991; McCallum et al. 2001). The prime 

indicates that, in continuous time, these variables are rates rather than probabilities.  For the 

discrete-time models used here, the ratio of β/γ is an approximation of R
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0 that works well when 

the timestep is small and group sizes are relatively large.  These slight approximations do not 

change our qualitative conclusions, so for succinctness we refer to these ratios as R0.  Note that 

in the SIR_BD model, increasing δ reduces R0 because death removes individuals from the 

infectious class.  To allow full comparison of the SIRS and SIR_BD models while varying ρ or 
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δ, we present SIR_BD results for scenarios both where β is fixed (so R0 changes with δ) and 

where β is adjusted so that R
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(b) Simulations and analyses 

Using the models described above, we explore how different parameter interactions affect 

the outcome of disease introductions.  Past studies of this model structure indicate that, for the 

parameter ranges we explore, most introductions result in extinction within the initial group or 

relatively complete invasion of the entire metapopulation, i.e. a “pandemic” (Cross et al. 2005).  

As a binary measure of invasion success we declare an invasion to be successful if >90% of 

groups are ever infected following a single disease introduction.  This definition of a pandemic 

does not count disease persistence within a single patch as successful invasion, because we are 

focused on disease spread at the broader metapopulation scale. 

To capture the effect of a finite, diminishing pool of susceptibles, we calculate empirical 

 and  values during the simulations. In contrast to the theoretical R0R̂ *R̂ 0 values calculated from 

model parameters, these estimates are based upon individual simulation results.  For each 

simulation we calculate the individual reproductive number, ν (Lloyd-Smith et al. 2005b), by 

tracking the number of infections caused by the index case and then averaging ν over many 

simulations to calculate  (Cross et al. 2005).  Similarly, to calculate  we take the average 

over 

0R̂ *R̂

*ν , which in turn is calculated by tracking the number of groups infected by individuals 

from the index group.  As estimates from model output, ν, 

18 

*ν , 0R̂  and  all incorporate the 

effects of spatial structure, stochasticity, host movement, and depletion of the susceptible pool 

within the infectious period of the index case (or group).  We consider ν, 

*R̂19 

20 

*ν , 0R̂  and  to be 

‘emergent’ quantities since they can only be estimated once the initial generations of a disease 

invasion have occurred.  Following Lloyd-Smith et al. (2005b), we assess the frequency of SSEs 

*R̂21 

22 

23 
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in different population structures by constructing a histogram of infections caused by each index 

case to calculate the proportion of the distribution beyond the point corresponding to the 99
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th 

percentile of a Poisson distribution with the same mean.  Since the distribution is not Poisson this 

tail will not necessarily contain 1% of individuals, but rather y%.  The superspreading load (SSL) 

is the observed number of SSEs divided by the expected based upon a Poisson distribution that, 

when greater than one, predicts reduced invasion rates but more intense epidemics once invasion 

occurs (Getz & Lloyd-Smith 2006; Lloyd-Smith et al. 2005b). 

We used classification and regression tree analyses to explore which factors influence the 

variation in disease invasion outcomes (Breiman et al. 1984).  Classification tree analyses have 

been used extensively in clinical risk assessments (e.g. Begg 1986; Steadman et al. 2000), and 

are becoming more common in the ecological literature (e.g. Brose et al. 2005; De'ath & 

Fabricius 2000; Karels et al. 2004; Usio et al. 2006).  Classification trees divide data in a 

hierarchical manner using binary rules based upon single predictor variables. Threshold criteria 

are then chosen to partition the response variable into groups that are as homogeneous as 

possible.  We used the Gini index as the splitting criterion.  Since larger trees will always predict 

the learning dataset better, we used 10-fold cross-validation and the 1−SE rule to guide in the 

choice of the ‘best’ tree size.  This is a method to minimize the amount of prediction error on 

testing data (not used in the construction of the tree) while also incorporating a penalty for 

increasing tree size (Breiman et al. 1984).  Since the classification analysis is intended to be 

heuristic, for clarity of presentation we present trees that are slightly simpler than those trees 

chosen according to the 1−SE rule, but resulted in only a minor increase in misclassification 

(details on alternative trees are presented in the supplementary material).  We explored three 

different sets of explanatory variables for the classification analysis: 1) six raw model parameters 

(β, γ, ρ, δ, μ and n), 2) five aggregate model parameters (β/γ, ρn/γ, μn/γ, ρ/γ and ρn), and 3) the 
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five aggregate model parameters as well as ν and *ν .  Although we report results for all analyses 

in Table 1, only the classification tree using the aggregate model parameters is shown in the 

main text: the others are illustrated in the supplementary material.   
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We compare the criteria for invasion from the classification tree analysis to more 

traditional thresholds using a vocabulary taken from literature on diagnostics, where one assesses 

the utility of a diagnostic tool according the proportion of times it yields false-positive and false-

negative results.  In the case presented here, false-positives occur when the criteria for invasion 

are met but the disease does not actually invade.  False-negatives occur when the criteria for 

invasion are not met and yet the disease does invade (recall that a successful invasion is defined 

as the disease infecting individuals in over 90% of the groups of the metapopulation).  Note that 

R0>1 and >1 are theoretical thresholds determining when disease invasions are possible; in 

stochastic models (or a stochastic world), satisfying these criteria does not guarantee that 

invasion will occur.  The misclassification rate summarizes how well these thresholds work 

when used to predict invasion in a single instance of the disease.  

*

We generated simulation data for the classification tree analyses using a range of 

parameter values chosen to reflect a diversity of disease/host systems.  The length of the time 

step in the model is arbitrary, but with a time step of one day in mind the average infectious 

periods, 1/γ, ranged from 10 days to 2.7 years (γ = [0.001 – 0.1]).  Group sizes were relatively 

small (n = [3 -300]), and rates of movement between groups ranged from once every ten days to 

once (or less) in a lifetime (μ = [0.0001 – 0.1]). The theoretical R0 (as described in Section 2a) 

ranged from 0 to 19, while the probability of losing immunity (ρ) or dying (δ) ranged from 

0.0001 to 0.1.  All parameters were sampled on a log scale to emphasize low parameter values 

where the disease is more likely to be near the invasion threshold.  We simulated each model 
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with 6000 different parameter sets and ran each until the disease went extinct or every group of 

the metapopulation had been infected.   

Because the model was stochastic, we conducted many runs of each parameter set for 

most analyses to determine average behaviour.  For the classification tree analysis, however, we 

conducted only one run of each parameter set.  We chose this approach to highlight the binary 

and stochastic nature of the invasion process: for real disease outbreaks, it is very rare to have 

sufficient replicates of an invasion process to estimate the probability of success.  Rather, we 

were interested in the accuracy of different predictors in the stochastic context of single 

outbreaks.  This strategy also allowed us to sample the parameter space more intensively since 

we ran each parameter set only once.  Classification trees based on half as many runs were 

identical in structure and similar in threshold values to those presented, so we feel confident that 

this sampling approach was sufficient to yield robust results.  All model simulations were run in 

MATLAB 7.2 (Mathworks, Inc. 2006), which called spatial models written in C.  Classification 

tree analyses were conducted in R using the Rpart package (R Core Development Team 2005; 

Therneau & Atkinson 2005).    

 

3. RESULTS 

 Successful invasion of a disease into a host metapopulation is determined by many 

factors in addition to the necessary, but not sufficient, threshold of R0>1.  As in our earlier study 

(Cross et al 2005b), we find that the likelihood of a pandemic exhibits a clear threshold in the 

ratio of movement rate to recovery rate (corresponding to the expected number of between-group 

movements during each individual’s infectious period).  However, the location of this threshold 

depends upon the recruitment of new susceptibles to the population (ρ/γ in the SIRS model and 

δ/γ in the SIR_BD model), whereby faster recruitment of susceptibles results in lower movement 
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thresholds because the disease persists longer in each group (Fig. 1, top row). When β is fixed 

for the SIR_BD model, the probability of a pandemic is influenced by δ via its effect upon R
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but δ does not alter the movement threshold (Fig. 1, second column).  Results are generally 

similar between the two model structures (SIRS and SIR_BD) when β is scaled so that R0 values 

are equal between the models (Fig. 1, first and third columns).  The SIRS and SIR_BD models 

also yield similar results for the classification tree analyses.  Thus, we present only the SIRS 

model results, but provide the SIR_BD model results in the supplementary material. 

Inspection of Fig. 1 illustrates that  is not a reliable predictor of pandemics when group 

sizes are small and movement between groups is limited, regardless of susceptible replenishment 

rate.  In many cases >1 but the disease invasion fails because movement among groups is too 

infrequent compared to the infectious period of the disease (Cross et al. 2005).  The quantity , 

on the other hand, is strongly associated with successful disease invasions across the 

metapopulation, for all levels of susceptible recruitment (Fig. 1).  Note in Fig. 1 that  is less 

than R

0R̂

0R̂

*R̂

0R̂

0 (i.e. β/(γ+δ) or β/γ ), primarily due to susceptible depletion effects that becomes 

important in small groups.  In the first and third columns of Fig. 1, R0 predicts that the index case 

will infect five others, on average, but the realized number of infections ( ) is lower owing to 

competition among infectors for the limited pool of susceptibles. Depletion of the susceptible 

pool also affects .  When μ/γ is small, movement among groups is the limiting factor for , 

and  increases with μ/γ (Fig. 1).  As μ/γ approaches 10, however,   declines due to 

competition among groups to infect other groups.  

0R̂

*R̂ *R̂

*R̂ *R̂

Although  may not be analytically tractable, we can consider its constituent parts.  The 

probability that a disease propagates through a structured population depends upon at least two 

factors: the frequency of between-group movements and the total duration that the disease 

R*
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persists within a given group.  The total infectious time (i.e. the sum of infectious host days in a 

single isolated group) increases with group size and with susceptible recruitment (Fig. 2a).  If 

immune individuals are replaced by susceptibles sufficiently quickly, the disease can become 

endemic even in small groups.  In Figure 2, the average infectious period per individual (1/γ) is 

100 time steps.  When the per capita infectious time is 1000 time steps, each individual has been 

infected 10 times on average, which we use as an indication that the disease is endemic within a 

single group (though note that the choice of 10 infections is somewhat arbitrary; Fig. 2b). 

The total infectious time within a group determines the threshold movement rate for a 

pandemic.  For example, when n = 10 and ρ/γ is low (say, 10-3), the total infectious time is 

roughly 800 time steps (Fig. 2a).  In order for the expected number of between-group movements 

of infectious individuals to exceed one, the movement probability per time step for each 

individual (μ) must exceed 1/800, or 0.00125.  When the recovery rate (γ) is 0.01, a threshold of 

μ/γ > 0.125 is predicted, exactly as seen in Figure 1 for an SIRS model with low ρ/γ.  Similarly, 

when n =10 and ρ/γ  is high (say, 10), the total infectious time is ~105 time steps, so the predicted 

threshold for μ/γ is 10-5/0.01 = 10-3, again corroborated by Figure 1.  

The classification tree analysis (Fig. 3a) indicates that disease-host combinations must 

satisfy several criteria for a pandemic to be likely.  First, the disease must be able to spread 

successfully within the initially-infected group.  Traditionally this is assessed using the 

theoretical threshold R0>1, above which invasion occurs with non-zero probability (Diekmann & 

Heesterbeek 2000).  In the statistical context, however, a higher threshold of R0≥2 minimizes the 

amount of misclassification error, although it increases the probability of a false-negative result 

where disease extinction is predicted but the disease actually invades (Fig. 3a, Table 1).  If R0 is 

sufficiently high to favour within-group transmission, then the disease still needs to propagate 

between groups, a process that depends upon group size, movement and the length of the 
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infectious period (yielding a threshold of μn/γ ≥ 2.7).  Similar to R0, the classification threshold 

for μn/γ exceeds the criterion μn/γ >1 that we proposed in an earlier simulation study (Cross et 

al. 2005).  If the relative amount of movement between groups is low, then the disease may still 

be able to invade the entire metapopulation if the recruitment of new susceptibles (ρn or δn) 

scaled by the recovery rate (γ) is high.  In the case we present, the classification threshold for 

ρn/γ is ~7.2; this can be considered a loose statistical criterion for endemicity, above which the 

disease persists long enough in each group that even infrequent between-group movements are 

sufficient to maintain the disease. 
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The specific thresholds presented here are likely to depend upon the model structure and 

parameter ranges used.  Similar to previous work (Cross et al. 2005), we also simulated the 

disease model using a ‘non-spatial’ array of groups where individuals could move to any other 

group in one step (Supplementary Material).  We found that the statistical threshold of μn/γ in 

the classification tree was lower (1.8 compared to 2.7) for the non-spatial array compared to 

nearest-neighbor movement model, but the structure of the classification tree was the same 

(compare Fig. 3a and Fig. E1).  In addition, we simulated the SIRS model with only one group 

and conducted a classification analysis on whether greater than 90% of that group was ever 

infected.  The best statistical threshold for disease invasion was R0 ≥ 2.4, which is similar to the 

criteria for the multi-group metapopulation model. 

To investigate the effect of different parameters on the classification tree analysis, we 

constructed new classification trees using subsets of the data corresponding to particular ranges 

of certain parameter values.  The relative amount of error explained by different variables 

depended upon the parameter space used, but the overall classification tree structure and 

threshold values were very similar.  For example, in all 6000 runs of the SIRS model the disease 

invaded the metapopulation in 41.1% of the simulations.  This percentage represents the total 
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amount of error associated with a classification tree with no nodes.  Inclusion of the first node, 
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0 ≥ 2, decreases the error rate to 25%, for a relative error rate of 0.62 (i.e. 0.25/0.41).  Adding 

the second node, μn/γ ≥ 2.7, reduces the relative error rate to 0.38.  The length of each branch of 

the classification tree is proportional to the reduction in prediction error associated with that node 

(Fig. 3).  When we analyzed only the subset of the data where group sizes were greater than 100, 

the first node alone, R0 ≥ 1.9, became a more important predictor, reducing the error rate from 

0.46 to 0.16 (relative error = 0.34 compared to 0.616 with all group sizes) and the second node, 

μn/γ ≥ 3.8, only led to a marginal improvement (Fig. 3b).  Thus, loosely stated, the predictive 

ability of R0 increased with larger group sizes while the importance of movement decreased.  

Note, however, that the threshold values remained similar (Fig. 3a,b).  When we analyzed the 

subset of the dataset with shorter infectious period (γ > 0.01) the predictive power of R0 

decreased while the importance of μn/γ increased (data not shown).  Thus, for acute diseases 

movement becomes a more important predictor of disease invasion (Cross et al. 2004; Cross et 

al. 2005). 

The theoretical threshold of R0 >1 determines when a disease invasion is possible in an 

infinite population.  In a large, but finite, population this threshold holds to close approximation 

(Lloyd-Smith et al. 2005a), which makes it unsurprising that R0>1 resulted in no false-negatives 

in our simulations.  However, at least for the parameter ranges we explored, the disease did not 

invade in 35% of the simulations where R0 was greater than one.  These invasion failures 

correspond to stochastic extinctions of the disease, but are counted as false-positive predictions 

when  R0>1 is interpreted as a predictor.  Our previous rule of thumb, μn/γ >1, also resulted in 

few false-negatives (2%) but many false-positive (42%).  The false-positive rate is reduced when 

using R0>1 and μn/γ >1 in combination, but these rules still do not account for the recruitment of 

new susceptible individuals (Table 1).   
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All the classification trees we analyzed yielded lower misclassification rates on test data 

(13-18%) than either R

1 
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4 
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6 

0>1 or μn/γ >1 (24-44%; Table 1).  The ‘best’ classification tree, as 

determined by the ‘1-SE rule’, was only marginally better at predicting disease invasion than the 

reduced tree shown in Fig. 3a (13% vs. 14%, Table 1).  The classification tree based upon the 

raw model parameters β, γ, μ, and n did not perform quite as well as those based on aggregate 

parameters β/γ, μn/γ and ρn/γ  (19% vs. 14%,  Table 1).  Threshold criteria based on the 

emergent quantities ν and ν*  produced the lowest misclassification rate in the case of ν* , which 

was twice as good as that of ν (10% vs. 20%, Table 1).  Our counting rules for ν
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∗ did not account 

for the possibility that the index group could lose the infection (all infected members moving 

out) and then become re-infected (those same infected members moving back in, without having 

transmitted in their new group) before finally going on to spread the infection.  As a result, a few 

simulations led to invasions when ν∗ = 0, which is at odds with the theoretical definition on ν∗, 

but this low probability event (33 out of 6000 simulations) does not change our overall 

conclusions (Fig. 1, Table 1)   

The analysis of individual reproductive numbers (Fig. 4) illustrates the strong influence 

of population structure on SSEs.  Owing to the constant recovery probability assumed in our 

model, there is substantial individual variation in infectious periods.  In a single large population, 

this leads an overdispersed distribution of ν and numerous SSEs (31 SSEs out of 500 

simulations).  Compared to an expected 5 SSEs out of 500 individuals for a homogeneous 

population, by our definition of an SSE, this yields a superspreading load of 31/5 or 6.2.  In a 

metapopulation of small populations (n = 10), the frequency of SSEs depends upon the 

movement of hosts among groups.  When movement rates are high (μ/γ =10), there were 56 

SSEs for a superspreading load of 11, whereas when μ/γ equaled 0.001 there were 12 SSEs, 

representing an SSL of just 2.4.  The recruitment rate of new susceptibles did not have 
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significant impact upon SSEs (data not shown).  

 

4. DISCUSSION 

In socially or spatially structured host populations, R0>1 is a necessary but not sufficient 

condition for a pandemic.  As R0 increases beyond one the probability of disease invading the 

initially-infected host group increases; but additional criteria are important to determining the 

probability that the disease spreads to other groups.  Disease transmission among groups depends 

on the transmission rate among individuals (β), the frequency of individual host movement (μ) 

and the duration of time (measured cumulatively over all infected hosts) the disease persists 

within each group.  Within-group persistence times increase due to longer individual infectious 

periods (1/γ), greater group sizes (n), or faster replenishment of the susceptible pool (Bartlett 

1957; Bjornstad et al. 2002; Grenfell et al. 2002; Lloyd-Smith et al. 2005a).  To synthesize, the 

disease is increasingly likely to invade the entire population for increasing R0>1 and μn/γ >1; 

when movement is infrequent relative to host recovery (μn/γ <1), a pandemic requires that the 

recruitment of susceptible individuals is sufficiently fast to allow the disease to persist 

endemically in infected groups (Figs. 1 and 3). 

To our knowledge classification and regression tree analyses have not been used to 

understand disease invasions, yet we found that the method was naturally suited to analyzing 

simulation results and illustrating the hierarchical nature of disease invasion criteria.  After 

experimenting with many combinations of predictor variables (Supplementary Material), we 

focused on a set of aggregate parameters that were most informative, hence resulting in small 

trees, and corresponded to relevant biological processes: within-group transmission, R0 (β/γ in 

SIRS or β/(γ +δ) in SIR_BD); movement, μn/γ ; and recruitment of new susceptibles, ρn/γ and 

δn/γ.  The classification tree analyses corroborated our previous rule of thumb (Cross et al. 2005) 
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that when transmission and recovery processes are fast relative to the recruitment of new 

susceptibles, μn/γ must exceed one for a pandemic to occur (Fig. 3a). Our expanded models, 

however, revealed that the effects of low movement rates can be compensated for by faster 

susceptible recruitment (e.g. ρn/γ > 7, Fig. 3a). 

Theoretical ecologists often search for thresholds or bifurcation  points where system 

behaviour qualitatively changes.  The threshold R0 > 1 demarcates when a disease outbreak is 

possible, but as a predictor will lead to false-positive when the disease is predicted to invade but 

goes extinct due to initial stochastic events.  Thus R0>1 is a conservative threshold for predicting 

disease outbreaks and circumstances exist where more accurate (but less conservative) 

predictions of invasion are useful. In 35% of simulations we conducted, the R0>1 criterion was 

satisfied but the disease failed to invade (Table 1).  The combined threshold of R0>1 and μn/γ >1 

resulted in fewer misclassifications (24%) but the classification tree criteria were more reliable, 

misclassifying only 14 ± 0.5% (SD) of all simulations that were not used in the tree construction 

(Table 1).  We emphasize, though, that all the ‘thresholds’ we describe are necessarily fuzzy due 

to the stochastic nature of disease invasion (Lloyd-Smith et al. 2005a).  
 
All the criteria we applied, with the exception of *ν >1, resulted in more false-positives 

than false-negatives due to the high probability of stochastic extinction in the early generations 

of disease invasion.  The 

17 

18 

*ν  metric was the best predictor because it includes information on 

initial stochastic events as well as the movement of infectious individuals among groups.  

Predictions based on real empirical data are likely to suffer greater misclassification error rates 

than the simulated data we present due to process-based variation and sampling error.  Despite 

these difficulties, our results emphasize the importance of understanding host movement and 

those processes that allow diseases to persist for longer in spatially or socially structured host 

populations.   
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Superspreading events (SSEs) result from heterogeneities in host, environment and 

parasite factors (Lloyd-Smith et al. 2005b).  Our analysis focuses on the interaction between 

heterogeneity in the host factor of infectious period and in the environmental factor of contact 

with susceptible individuals.  In our simulations, all infectious individuals had constant and 

identical probabilities per time step of recovering from disease, as well as moving between 

groups, resulting in geometric distributions for the duration of infectiousness and the number of 

groups visited while infectious.  The heterogeneities embodied by these geometrically-

distributed quantities create the conditions necessary for SSEs; that is, they lead to distributions 

of individual reproductive numbers that are overdispersed relative to the Poisson distribution 

predicted when all infectious individuals (and their environments) are identical.  Given these 

individual heterogeneities, the frequency of SSEs may be constrained or facilitated by the 

population structure where the individual resides.  In a large or panmictic population, 

transmission is not constrained by the supply of susceptible individuals.  In contrast, when 

groups are small and movement is infrequent, the number of potential contacts is limited and the 

opportunity for SSEs is reduced even for individuals with extraordinarily long infectious periods.  

The same qualitative effect would arise for individual heterogeneity in transmission rates, as 

access to susceptibles is a prerequisite for transmission.  The potential for superspreading in 

structured populations would be amplified if positive correlations existed between movement 

rates (and hence access to more susceptibles) and high transmissibility or slow recovery.  Further 

subtleties may arise if movement itself is linked to transmission (as in SSEs aboard airliners) or 

increased risk of death (as in some wildlife systems). 

The utility of simple, within-group calculations of R0 as a predictive measure of disease 

invasion is limited in systems where transmission between groups may be the primary factor 

regulating the probability of a pandemic.  Examples include many wildlife populations 
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(Woolhouse et al. 2001), livestock based on small holdings (Keeling et al. 2001; Woolhouse et 

al. 2005), and human populations with small, weakly connected groups of susceptible individuals 

(Feikin et al. 2000; Salmon et al. 1999).  While further research should aim to advance analytic 

theory, classification trees provide an effective means of connecting real-world, measurable 

variables to the likelihood of invasion, particularly in structured populations where system 

dynamics are governed by hierarchy of contributing factors. Our analyses have focused on a 

relatively idealized system of equal group sizes and simplistic movement rules.  Future work 

should aim to extend our findings to more realistic, heterogeneous settings, and to link the ideas 

presented here with empirical evidence from the field.  
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Figure 1. Percentage of the metapopulation infected, , and  all depend upon host movement 

(μ), disease recovery (γ), and replenishment of the susceptible pool (indexed by ρ or δ for the 

SIRS and SIR_BD models, respectively).  Each point shows the mean of 200 simulations with 10 

individuals in each group and a recovery probability (γ) of 0.01. In the first and third columns 

R

*R̂ 0R̂

0=5; in the second column R0 varies from 0.45 to 5 depending on the value of δ. 

 

Figure 2. The total infectious time (sum of infectious host days) and per capita infectious time in 

a single group of individuals.  Infectious time increases due to the flow of new susceptibles, 

which is a function of group size (n) and the probability that a recovered individual returns to 

susceptibility (ρ).  Above the dotted line individuals are infected more than 10 times, on average, 

indicating that the disease is endemic within the local group.  Each point is the mean of 100 

simulations of the SIRS model with a recovery probability (γ) of 0.01 and R0=5.  In the endemic 

range, simulations were stopped when infectious time was limited by the arbitrary maximum 

duration of the simulation.  

 

Figure 3. Classification trees predicting the invasion or extinction of a disease introduced into a 

metapopulation using the SIRS model using all the simulation data (A) and only those runs with 

group sizes greater 100 (B).  Threshold criteria are labeled above each node of the tree, and 

instances that satisfy the criteria are split off to the left.  Labels underneath the terminal leaves 

indicate the number of simulations (out of 6000 for figure A and 1956 for figure B) resulting in 

invasions and extinctions, respectively, and in text the majority outcome for that set of 

classification rules.   
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Figure 4. Histograms of ν, the individual reproductive number (i.e. the number of individuals 

infected by the initial case), for different movement probabilities (μ) scaled by the probability of 

disease recovery (γ = 0.01) using the SIRS model. Mean values of ν are indicated by diamonds.  

Superspreaders are defined as those individuals beyond the 99th percentile of the Poisson 

distribution (vertical lines) with the same mean.  Each parameter set was simulated 500 times 

with ρ = 0.00001 and β = 0.05 on an 11 x 11 toroidal array with 10 individuals in each group, 

with the exception of the top row which was one group of 1210 individuals.  
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1  
Table 1. The proportion of SIRS model simulations where the disease invades the metapopulation and whether that invasion was 
predicted by theoretical thresholds or the classification tree analyses.  
 

Rules for invasion 

Correctly 
predicted 
invasions 

Correctly 
predicted 

extinctions 
False-

positive1
False-

negative2
Total 

misclassified 
Cross-validated 

misclassification3 SD3

R0 > 1 0.411 0.240 0.353 0 0.353 -- -- 
μn/γ >1 0.390 0.174 0.416 0.020 0.436 -- -- 
R0 > 1 and μn/γ > 1 0.390 0.366 0.224 0.020 0.244 -- -- 
Best classification tree4 0.383 0.485 0.104 0.028 0.132 0.141 0.0045 
reduced classification tree5 0.390 0.469 0.120 0.021 0.141 0.144 0.0045 
raw parameter tree6 0.327 0.485 0.105 0.084 0.188 0.205 0.0052 
ν  > 1, emergent7 0.355 0.444 0.145 0.056 0.201 -- -- 

*ν  > 1, emergent7 0.352 0.551 0.039 0.059 0.097 -- -- 
1

 Rules predicted invasions when the disease actually went extinct. 
2 Rules predicted extinctions when the disease actually invaded.  
3 Average and standard deviation of error rates on test data not used in the construction of the classification tree using 10-fold 
cross-validation. 
4 Using aggregate parameters not including ν and *ν .  The best tree had four nodes, further subdividing the 257/165 branch of the 
reduced tree (Fig. 3a), but this did little to improve accuracy.  See Figure E2. 
5 Using the aggregate parameters not including ν and *ν . See Figure 3. 
6 Using raw parameters not including ν and *ν . See Figure E1. 
7 ν and ν * are considered emergent because they can only be estimated after the epidemic has begun and thus have an advantage 
over other metrics included in the table  

2  
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