

Using Mosix for Wide-Area Compuational
Resources

By Brian G. Maddox
1

Open-File Report 2004-1091

1 USGS Mid-Continent Mapping Center, Rolla, MO, 65401

U.S. Department of the Interior
U.S. Geological Survey

1

Contents

Key Words .. 1
Abstract... 1
Introduction .. 2
Background .. 2

Beowulf... 2
Mosix... 3
Wine Is Not an Emulator.. 4
Emulators.. 5

Methods and Testing .. 5
Discussion .. 8
Future Work.. 10
Conclusion .. 11
REFERENCES .. 12

i

Key Words

Mosix, Distributed Processing, Beowulf

Abstract

One of the problems with using traditional Beowulf-type distributed processing clusters
is that they require an investment in dedicated computer resources. These resources are
usually needed in addition to pre-existing ones such as desktop computers and file
servers. Mosix is a series of modifications to the Linux kernel that creates a virtual
computer, featuring automatic load balancing by migrating processes from heavily loaded
nodes to less used ones. An extension of the Beowulf concept is to run a Mosixenabled
Linux kernel on a large number of computer resources in an organization. This
configuration would provide a very large amount of computational resources based on
pre-existing equipment. The advantage of this method is that it provides much more
processing power than a traditional Beowulf cluster without the added costs of dedicating
resources.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement
by the U.S. Government.

1

Introduction

Distributed processing has seen increased use in recent years as a way to use multiple
machines to speed the processing of computationally intensive applications. The most
common form of distributed processing, Beowulf clusters, have become famous for
providing near supercomputer-class processing performance for a price that can be
several orders of magnitude lower than an actual supercomputer. Built with commodity
components, they are typically dedicated to compute tasks.

The problem with such a setup is that machines usually need to be dedicated to a cluster,
requiring either additional computers to be purchased or redirecting machines to be
dedicated to the cluster. For some organizations, purchasing additional hardware is not a
problem. Others, however, may not be able to make use of this technology due to
dwindling information technology budgets.

Emerging technologies, such as Mosix, might pave the way for organizations to use their
existing computer infrastructure in a distributed processing environment. These
technologies would lead to a wide-area processing cluster with all the advantages of
distributed processing while lowering the overall implementation cost. A large
percentage of an organization's computers could provide a much greater amount of
processing power than would be available with a typical Beowulf cluster. Also, existing
emulation and translation technologies could allow non-distributed and non-Linux
applications to take advantage of the increased processing power.

This paper describes several emerging technologies and how they might be used to
build a new type of system that can provide new methods of performing distributed
processing. It also details research that led to using several technologies to create
organization-wide processing clusters with existing desktop computers. Each
technology, along with its actual research and experimentation, is briefly discussed
before the wide-area cluster concept is presented.

Background

Beowulf

The first major technology that can enable organization-wide distributed processing is a
Beowulf cluster. Beowulf clusters have brought distributed processing to the masses by
using commercial off-the-shelf components in their construction. The idea behind a
Beowulf originated in 1993 when Donald Becker and Thomas Sterling began to sketch
the outline of a commodity-based cluster system that was designed as a cost-effective
alternative to large supercomputers (Merkey). Supercomputer time was, and still is, very
expensive to rent if an organization lacks one of its own. Distributed processing was not a

new concept at this time, but usually was relegated to high-end UNIX®
1

workstations.

1 UNIX is a registered trademark of The Open Group in the United States and other countries.

2

A Beowulf is characterized by a dedicated high-speed network for communication with
nodes that are dedicated to processing tasks for the cluster. Typically the system runs on a
personal computer architecture with a Linux kernel and distribution. Systems are
normally homogeneous with the types of equipment in each compute node. These
configurations simplify administration and cost as configurations are the same and
hardware can be purchased in bulk at a discount. Homogeneous hardware is also
important for certain algorithms and load balancing, which will be discussed below.

Distributed processing on these clusters involves running subsets of a problem on
different computing nodes. A common form of processing involves the master-slave
model, where the master node controls what work is done while the slave nodes are
purely computational. Processes are spawned remotely (usually due to some manual
configuration) and communication is accomplished by message passing between
systems.

The homogeneity of the compute nodes comes into play because issues such as load
balancing are typically done by hand on these systems. If certain nodes finish processing
out of order or faster than others, some algorithms might fail. Because of this, care is
taken to ensure that the small pieces of processing can be done independently of others or
that the work can run sequentially on the slave nodes.

Although working together, it is important to note that Beowulf-class systems are still
treated as a collection of separate computers. Memory and process spaces are separate
and non-visible between systems. Software must be specially developed for these
systems. Existing software cannot simply be dropped in and run on them; it must be
modified or completely redesigned to work in the message-passing environment. The
modifications also include porting the software to run on Linux instead of some other
operating system such as Microsoft Windows. In other words, one cannot simply take an
existing application such as a Geographic Information System (GIS) package and have it
take advantage of the power of a Beowulf without a lot of additional work.

Mosix

Another method for distributed processing involves treating the various processing nodes
as part of a larger virtual computer by providing common memory and file system access.
This technique goes one step beyond a Beowulf where each computer is still independent
of the rest of the system. Mosix takes this approach and is the second enabling
technology to organization-wide clustering. Mosix is a series of patches to a Unix-like
kernel (currently Linux) that allows resource sharing between the various nodes in a
cluster. This is done by

“migrating processes from one node to another, pre-emptively and
transparently, for load-balancing and to prevent thrashing due to memory
swapping. The goal is to improve the overall (cluster-wide) performance
and to create a convenient multi-user, time-sharing environment for the
execution of both sequential and parallel applications.”(Barak).

3

Mosix has been in various forms of development for over two decades now, and is
currently used in many different applications and organizations.

The central idea behind Mosix is that it can dynamically balance the virtual computer's
load by migrating processes between machines. Process migration works by taking the
process's entire memory space and moving it across the network to another machine
whenever the local machine's processing load reaches a certain level. On the originating
machine, a small “stub”process is created by the operating system that the now-remote
process uses to communicate with the originating machine. This process migration is
transparent to not only the process itself, but also to anything communicating with that
process, as the stub handles local communication on the originating machine. Mosix also
allows access to every machine in the cluster through a common file system so that
remote running processes can easily access storage across the system.

Because process migration and load balancing occurs at the operating system kernel
level with Mosix, it has some interesting characteristics that Beowulf clusters do not
possess. Any process under Mosix is a candidate for migration and does not need any
special modifications to run in this fashion. The remote process is still able to access
local resources on the originating machine by going through the stub process. It can also
directly access resources on the remote machine. Mosix allows traditional batch-
processing applications to benefit from distributed processing by starting them on a
single node then migrating them across the cluster nodes to balance the load so that they
run in parallel instead of serially.

Mosix also provides some flexibility that a traditional Beowulf system lacks. Machines
can enter and leave a Mosix cluster on demand without interrupting processing. When a
Mosix node goes through a normal shutdown process, it will offload remote tasks to
another node. A node can be added to a Mosix cluster at any time to augment processing.
Traditional message-passing systems typically are static in that machines have to be
allocated ahead of time and stay as part of the currentjob until processing is complete.

Wine Is Not an Emulator

The third enabling technology is the WINE project. WINE, which stands for WINE Is
Not an Emulator, is an Open Source project that translates Win32 calls to native Unix
calls at runtime, thus allowing some Windows-based software to run under Linux (WINE
Headquarters). It is important to note that WINE will NOT run all Windows software
under Linux. Some software contains system calls that have not been implemented in
WINE. Others are specifically tied to a Windows-based kernel and therefore cannot run.
WINE is implemented in several parts. The first is a front end that loads the Win32
application and then runs it through the translation system. The second part is a series of
libraries that simulate their Win32 counterparts but run directly on the local system.
These libraries are loaded by the application just as they would be under Windows, but
skip the translation step as they are implemented natively. Additionally, actual Windows
libraries can be used in place of their WINE counterparts for situations where different
functionality is necessary.

4

Emulators

The final technology that is necessary for organization-wide clusters deals with the issue
of how applications that absolutely must run under Windows are handled. Other Unix
applications can in many cases be easily ported to run under Linux. Some Windows
applications can be run under WINE. However, sometimes an application has a tight
dependency on an actual Windows kernel. In these cases, an emulator such as VMWare
can run Windows on top of the Linux system.

Emulators are different from WINE in that they emulate computer hardware at the lowest
level instead of translating operating system calls at the application level. In the VMWare
case, operating systems such as Windows are installed on top of the virtual hardware. The
operating system inside the emulator sees no difference between the virtual machine
(VM) and a real computer. With Windows actually running, applications that depend on
the Win32 kernel can function, whereas they might fail with WINE as it is translating
calls at run time.

If one can actually run Windows on Linux using an emulator, why not use emulation
entirely instead of a translator such as WINE? In the WINE case, applications are
actually running on Linux. Even though WINE is translating system calls in real time,
each Windows program through WINE is viewed as a separate process. In the emulator
case, the emulator is the only process visible to the base operating system. Multiple
processes may be “running”in the virtual machine, but the entire system is still a single
process. When running on Mosix, this makes a significant difference. Multiple WINE
applications can be migrated around the cluster. Multiple applications within an
emulator cannot, as they are not separate processes.

Methods and Testing

As part of a Geography Discipline Prospectus project, in 2002 the USGS Mid-Continent
Mapping Center (MCMC) conducted research in combining Mosix technology and
traditional Beowulf clusters. The idea was that this combination could provide a “best of
both worlds”approach to distributed processing. While Beowulf uses commodity
components in a distributed processing cluster, Mosix provides automatic kernel-level
process migration and load balancing to turn the cluster of individual machines into a
single virtual machine. The combined technologies worked very well together, as slave
processes could simply be started on a single machine and Mosix could then
automatically migrate them around the cluster to balance the processing load. This
method was much simpler than the manual configuration and tuning required from
traditional message-passing protocols. Extending Beowulf Clusters, USGS Open File 03-
203 describes more information on these experiments.

In 2003, Beowulf and Mosix were combined to test an organization-wide cluster using
desktop machines on the existing MCMC cluster. The first part of this testing examined
ways to enable Win32 (Microsoft Windows) programs to run under Linux using
translation or emulation. This configuration would open the possibility of using Mosix

5

to distribute the processing of some Windows applications so they would not only run
under Linux, but also be migrated. Many critical production systems, such as orthophoto
production for the 133 Urban Areas project, are Windows applications. Running such
programs in a distributed manner can greatly speed processing run times.

WINE was installed on the head node of the cluster. The head node was the only node
running the X Window System that WINE needs for graphical applications. It was only
installed on the head node to check that Mosix could migrate the entire process space
without needing additional software installed on the other nodes. This capability would
verify that large amounts of software would not need to be installed on each node in an
organization-wide cluster, thus reducing installation complexities. After installation, the
author ran some sample applications such as Windows notepad and regedit to test initial
functionality.

With WINE installed and running on the head node, the author tested several applications
in common use at MCMC. Process migration was turned off during the initial
compatibility testing. Functional testing was performed to check that the applications
loaded and were able to perform their major tasks. ArcView version 3.3 was tested and
found to function fairly normally with some sample datasets. A font problem occurred
and several TrueType fonts had to be installed so that the application text was readable.
Add-on packages such as Spatial Analyst failed to install. However, the extensions that
come with the main package functioned normally. ERDAS Imagine was tested next, but
would not install due to problems with the license manager. As a side note, this is an
example of how some applications that need low-level Windows functionality might not
run under WINE. Global Mapper was tested and found to run under WINE. The author
tested Lotus Notes for functionality, which also depends on TrueType fonts for
readability.

Once initial testing was completed, the project focused on applications that were used
on the 133 Urban Areas project. Much of this processing is done in batch, yet it is
performed sequentially. The process at MCMC involves a combination of command-
line and graphical applications from ZI Imaging. The graphical applications had
installation problems that were similar to Imagine and were therefore not tested. Some
of the command-line applications, however, ran perfectly under WINE. These
applications included mkov.exe for making overviews of the images to be processed
and mr_file.exe for tiling the images.

These two applications were initially tested without Mosix in an environment that
mimicked the production one. Data was staged on both local and remote storage and
output was written locally. The author wrote a shell script that would run the
applications in parallel under WINE and tested both remote and local data input.
Testing in this case showed a 25 to 45-percent speed increase under WINE and Linux.
It should be noted, however, that the Linux kernel used on this test machine included
several low-latency and pre-emptible kernel patches to increase system throughput.

A similar test was then performed on the Beowulf/Mosix cluster with process migration

6

enabled. The data was staged on the head node and on a remote node. The author then
wrote a script to run the applications through several iterations using both remote and
local storage. Instead of being run sequentially, however, the script was set to run the
command-line programs in background mode so that Mosix could migrate them across
the cluster.

To a point, a similar speedup to the previous testing was observed. However, the data-
bound processes suffered from minor starvation problems as they were all trying to read
data from a single file-server node. This was observed by monitoring the file-server node
and tracking how successfully it was completing requests by checking the process list and
Ethernet timeouts and resets. This problem was somewhat alleviated by using multiple
file-server nodes and changing the batch script to point different processes to the different
servers.

The next testing involved the performance of emulators while running on a cluster. The
author chose VMWare for this test as it has actually been in use on his desktop machine
for over a year. During this time, the following Windows applications have been tested
and run successfully: Microsoft Visual C++, Microsoft Office 2000, Rational Rose,
ArcView, Global Mapper, Adobe Acrobat, Mozilla, OpenOffice, Lotus Notes, and
several others.

Testing involved checking that these applications work under normal usage patterns. For
example, Visual C++was tested to see that it could generate Win32 executables that run
on a native Windows system. Files created from office and desktop publishing
applications were loaded into software running natively under Windows and checked to
see that they were valid. The GIS applications were checked by loading several
GeoTIFF files and performing common operations such as data overlays and merges.
During this time, all applications performed normally. The only problems the author
observed were periodic lags in the movement of the mouse due to interaction between
VMWare and the native operating system. VMWare can run in full screen mode so that
it appears to the user that Windows is actually the native operating system. This appears
to sometimes help with the mouse lag.

During 2003 testing, the author installed VMWare on several MCMC Beowulf machines
to test how it would run in combination with Mosix. Three dual-processor Dell
workstations were used as they had sufficient computational capacity when compared to
the older machines that make up the MCMC cluster. The workstations also all have more
modern and high-end video cards as compared to the older ISA text-only cards that are in
the original sixteen Beowulf machines at the center. The virtual machines on each install
were created identically. After this was done, the author installed Windows 2000
Professional under one of the VMWare systems. This installation was then cloned to the
remaining VMWare test nodes.

Some of the applications bundled with Windows 2000 were tested on VMWare running
on the cluster to check for functionality. The image viewers were run to check that
graphically intensive applications would perform normally. Files were loaded into

7

Wordpad to check that it could read and write correctly. Full-screen mode was turned
on and off under VMWare to verify that it was working properly with the Linux nVidia
graphics drivers. Also, the VMWare tools were installed inside the virtual machine to
check functions such as copy and paste between the X Window System and VMWare
itself.

Initially, the author discovered that VMWare should not be allowed to migrate to other
nodes of the cluster. Any graphical application in general should not be allowed to
migrate due to the extreme slowdown it would suffer. When migrated, the graphical
application can still communicate with its home machine through the stub process.
However, graphical applications still display to the originating screen, which requires an
extreme amount of bandwidth. Remote processes would become bottlenecked by trying
to transmit all of this data through the slower network instead of the much faster system
bus.

Once configured, VMWare was left running on the workstations in the cluster. Some
applications were started that would consume processor time. VMWare on the head
node of the cluster was used interactively during testing. The author used this test to
check how much processor load VMWare would put on the computers and determine
how Mosix would interact with it (for example, would Mosix migrate applications to a
node that was running VMWare?).

Testing then began by running several applications on the cluster while VMWare was
active. Data was loaded on several nodes so that the test applications could be directed
to one or more computers for file access. The above-mentioned 133 Urban Areas
software and doq2geotiff were then started in parallel batch mode on different nodes
while VMWare was running. Mosix began process migration, and would actually
migrate processes to the nodes running VMWare. When the VMWare task itself began
to consume large amounts of processor time, Mosix would attempt to migrate the remote
processes to another machine in an attempt to balance the system load. The Windows
applications running under WINE appeared to migrate without any problems, even to
those machines that did not have WINE installed.

There are a few things worth noting from the tests regarding performance. First,
Windows inside VMWare would experience occasional small lag when the base Linux
system was heavily loaded. This lag was noticeable when mouse movements inside of
VMWare would appear to “freeze.” When a node was dynamically added to Mosix, it
would not immediately begin processing due to synchronization with the rest of the
system. Extending Beowulf Clusters details previous Mosix experiences, especially
situations where there are more processes than processing nodes.

Discussion

Up to this point, this research appears to answer many questions. Traditional distributed
processing applications can run under Mosix and can indeed benefit from the added
flexibility that Mosix provides. The author tested nodes by adding and removing them

8

dynamically while processes were running. When nodes leave, the only effect is on any
processes that are running on the node that is exiting the cluster as they migrate to
another node. Added nodes will start processing after a short delay to synchronize with
the rest of the Mosix cluster. Some Windows applications will also run under WINE and
then be able to take advantage of distributed processing, especially those that are
designed to run in batch.

The testing demonstrated that it is possible to combine all of these technologies so they
co-exist on a processing cluster. During runtime, Mosix proved that it could indeed
migrate applications, thus showing that some Windows applications could benefit from
distributed processing using this method. While speedup was noticeable, it could be
improved by studying different data access patterns. Migrating I/O intensive applications
can create the situation that multiple machines are trying to access a single file server.
This situation can introduce data starvation problems when the file server temporarily
becomes flooded with requests. More information on prior research into data-bound
processing can be found in Processing Large Remote Sensing Image Data Sets on
Beowulf Clusters, USGS Open-File 03-216.

With all of these technologies in place, we can finally begin to combine them to make a
wide-area computing cluster a reality. The first step would be to install a Linux
distribution as the base operating system on the desktop computers that will be part of
the wide-area cluster. These systems would then be outfitted with a Mosix-enabled
kernel and set up with a list of all the other Mosix machines in the organization. WINE
could be installed for people who need to run some Windows applications under Linux.
For others, VMWare could be installed for those who need to keep a full installation of
Windows. VMWare could be run in full-screen mode so that the desktop user does not
need to know or care that Linux is the real operating system on the machine. This
insulates them from any knowledge that their computer is a part of the overall Mosix
cluster, allowing them to continue their work as usual.

Once this configuration is in place, processes could be run on the cluster to take
advantage of the Mosix process distribution. Existing batch processes could be ported to
Linux and modified so that they run in parallel instead of sequentially. Batch jobs could
be started on any machine that is a part of the Mosix cluster and migrated to machines
throughout the cluster. Windows applications through WINE could also be started on any
Mosix node and migrated to the other nodes. This method would provide current software
systems with distributed processing capabilities without modifying those systems.

If applications such as ERDAS Imagine and Arc/INFO could be made to run under
WINE, then this could provide a great benefit to Geographic Information System
(GIS) work in the Discipline. These applications can use subtasks that run separately
from the main application. These subtasks would be visible to the Mosix kernel and
could therefore take advantage of process migration. GIS applications could then use
distributed processing capabilities to work on larger datasets and work on other
datasets more quickly.

9

This setup differs from methods such as grid computing and Internet-distributed models
like those used by SETI@home. These schemes have more in common with Beowulf-
type systems, where applications have to be specifically written for the system. They also
take advantage of idle time, where the user manually joins the processing system or it
runs through some application such as a screen saver when the computer has been idle for
a preset time. Mosix allows the computer to be used simultaneously with user
applications as it has a more advanced load-balancing scheme. Many times, even if a
computer is in use, the processor is not fully loaded. This means that there are still spare
processor cycles that could be used for other purposes. Mosix would allow a better
utilization of these resources, as the load-balancing scheme would work to keep each
processor running at its full capacity.

Once deployed, the wide-area Mosix cluster would provide distributed processing
capabilities to anyone, anywhere, in the organization. Anyone who is on a machine that is
a part of the Mosix cluster could start processes on the system. Traditional applications
could run without modification. This system could also be used to provide processing
capabilities for applications such as web map services.

Future Work

There are several areas that should be examined in the future for creating organization-
wide processing clusters. The first issue should be how normal network traffic can affect
process migration. Some internal networks are incredibly busy. For example, a one-
minute sample on the author's computer at MCMC recorded 722 individual network
packets while the computer was not sending any network traffic itself. Testing should be
done to determine whether a separate private network should be installed to provide
maximum processing performance.

Work should also be done in combining low-latency and kernel pre-emption patches
with the Mosix kernel. The Mosix patches touch many parts of the kernel and change
the source code fairly drastically in some places. The low latency and pre-emptible
kernel patches help to increase system throughput and response by lowering the time it
takes for the operating system to respond to certain events. In the Mosix case, these
patches could benefit process migration and disk access by increasing the system
throughput. These patches are currently incompatible with the Mosix kernel due to the
large number of changes that Mosix makes to the standard Linux kernel.

Finally, the author suggests work to improve the interoperability of certain Windows
applications and WINE to run them under Mosix. For example, Codeweavers is a
commercial company that sponsors WINE and also offers a commercial version that is
designed to easily run Windows applications on Linux. They also can be contracted to
get specific Windows applications running through WINE. We could use such a
mechanism to make sure some applications would run and that they would be able to be
distributed as individual processes instead of running through an emulator.

10

Conclusion

While Beowulf clustering does provide high-end performance for a relatively low cost,
it comes with some disadvantages. Applications must be specifically written to work in
the message-passing environment on clusters. Each machine is still treated as a separate
entity, thus requiring some resource duplication between machines. Load balancing and
other issues must be done manually.

Mosix, when combined with Beowulf technologies, allows a much more flexible solution
to distributed processing. By transparently migrating processes at the operating system
kernel level, Mosix performs automatic load balancing across all of the machines in a
cluster, treating them as one large virtual machine. When run on large numbers of
machines in an organization, Mosix can then provide a wide-area distributed processing
cluster.

Windows applications could also use this distributed processing power. Translation such
as that done by the WINE project could allow them to natively run under Linux as
separate processes that could be migrated. For other users, an emulator such as VMWare
would run Windows and Windows-dependentapplications with the emulator's process
space. However, applications within an emulator would not migrate as they are not
separate applications and instead run inside the emulator process.

11

REFERENCES

Barak, Amnon, Mosix: The Hebrew University of Jerusalem. <http://www.mosix.org>.

Barak, Amnon, Orlen La' adan, and Amnon Shiloh. Scalable Cluster Computing with

MOSIX for LINUX: The Hebrew University of Jerusalem.
<http://www.mosix.org/ftps/mosix4linux.ps.gz>.

Codeweavers, LLC, WINE Headquarters, <http://www.winehq.org>.

Crane, M., Steinwand, S., Beckmann, T., Krpan, G., Liu, S., Nichols, E., Haga, J.,

Maddox, B., Bilderback, C., Feller, M., Hamer, G., 2001, A Parallel-Processing
Approach to Computing for the Geographic Sciences: Applications and System
Enhancements, USGS Open-File Report 01-465.

Grid Computing Info Centre, Grid Computing Info Centre (GRID Infoware),

<http://www.gridcomputing.com>.

Merkey, Phil, Beowulf History: Scyld Computing Corporation.

<http://www.beowulf.org/beowulf/history.html>.

Steinwand, D., Maddox, B., Beckmann, T., and Hamer, G., 2002, Extending Beowulf

Clusters: USGS Open-File Report 03-208.

Steinwand, D., Maddox, B., Beckmann, T., Schmidt, G., 2003, Processing Large Remote

Sensing Image Data Sets on Beowulf Clusters. USGS Open-File Report 03-216.

12

	Open-File Report 2004-1091
	Key Words
	Mosix, Distributed Processing, Beowulf
	Abstract

