
Extending Beowulf Clusters to the Desktop

By George Hamer 1 and Daniel R. Steinwand2

Open-File Report 03-432

U.S. Department of the Interior
U.S. Geological Survey

1 Department of Computer Science, South Dakota State University, Brookings, SD 57007.
2 USGS, EROS Data Center, SAIC, Sioux Falls, SD 57198-0001. Work performed under U.S.
Geological Survey contract 03CRCN0001

1

Contents

Key Words…………………………………………………………………… 3

Abstract………………………………………………………………..……… 3

Introduction…………………………………………………………………… 4

Clustering Methodologies…………………………………………………… 4

Parallel Virtual Machine – PVM …………………………………………… 5

Condor…………………………………………………………………… 5

Globus…………………………………………………………………… 6

Other Solutions………………………………………………………… 7

All Possible Regressions Algorithm ……………………………………… 7

Parallel Regression Algorithm ….………………………………………… 7

Test Results ………………………………………………………………… 8

Future Work ………………………………………………………………… 9

References……………………………………………………………….….. 10

Illustrations

Table 1. Run-times for combinations of up to 4 variables and 15 nodes… 8

Table 2. Run-times for combinations of up to 8 variables and 76 nodes… 9

2

Abstract

Existing Beowulf clusters are normally limited to the actual number of compute
nodes physically connected to the cluster’s network switch. At some point, it may
become necessary to extend the size of the cluster beyond the capacity of the
switch. By using existing computers on a campus network, one can extend the
computing power of the cluster by including these machines during times they
would normally be idle. We have done a survey of methods for extending
clusters and devised a parallel solution to a computationally complex all-possible-
regressions algorithm and tested it by using idle computing power on the campus
network.

Key Words

Parallel Processing, Beowulf Clusters, High-Performance Computing

Any use of trade, product, or firm names is for descriptive purposes only and
does not imply endorsement by the U.S. Government.

3

Introduction

Most companies have many computers that for the most part are underutilized a
large percentage of the time. After normal working hours (or during work
breaks), this represents a tremendous computing resource. Exploiting this idle
resource makes sense as an attempt to increase the available computing power
in a Beowulf cluster (Sterling and others, 1999). Idle computers can be exploited
during normal working hours by polling the CPU and checking for load. As long
as this load is below a predefined threshold, the CPU can be used.

To test this idea, we modified an all-possible-regressions algorithm to run as a
parallel algorithm. The original algorithm exhibits O(2n) growth characteristics,
which limits its use for large numbers of variables. This algorithm was tested
using 32 variables on a Dell 530 Rambus 1.6 GHz dual processor Xeon machine
with 1 Gigabytes of main memory. The test ran for approximately 8 weeks on a
single machine.

The goal of this work was to show that it is possible to create a parallel
implementation of a computationally complex algorithm with minimal coding
using idle CPUs. Additionally, this task should be performed with minimal
software installation on users’ workstations. The tests use the Parallel Virtual
Machine (PVM) software that is installed on each workstation.

The rest of the paper is organized as follows. In section 2 we examine
techniques for extending the cluster to the desktop. In section 3 we describe the
parallel algorithm used in the testing of the concept. Section 4 gives the
performance results, and section 5 suggests future work.

Clustering Methodologies

Many methods can be used to extend a cluster. These range from the use of
PVM (www.csm.ornl.gov/pvm), one of the simplest methods, to the use of the
Globus Toolkit (www.globus.org), a more complex method. The Condor system
(www.cs.wisc.edu/condor/description.html) from the University of Wisconsin is a
middle-ground solution that uses an existing underlying network and offers
scheduling and authentication services. Using PVM places most of the work on
the programmer to allocate and deallocate compute nodes, while the Globus
toolkit allows the grid designer to hide this complexity.

The Message Passing Interface (MPI) (www.lam-mpi.org) was not utilized in this
study, even though it is a widely used parallel programming methodology, since
at the time of this writing a version for Linux that supported the dynamic
allocation of nodes was not available. This is to be supported in MPI version 2.

4

http://www.csm.ornl.gov/pvm
http://www.lam-mpi.org/
http://www.cs.wisc.edu/condor/description.html
http://www.globus.org/

Parallel Virtual Machine – PVM

PVM was one of the first technologies for performing parallel computations on a
cluster of workstations. PVM was developed at Oak Ridge National Laboratory
in 1989 by Vaidy Sunderam and Al Geist. The first public release occurred in
1991, with the help of the University of Tennessee. It has been continuously
updated since that time. Version 3.4.4, which was released in late 2001, was
used for this study.

PVM is designed to create a parallel computer that runs on heterogeneous
hardware and supports multiple operating systems. This can be used to create a
loosely coupled supercomputer. Each node runs a daemon process that allows
the remote execution of tasks on that node. PVM uses the message-passing
model to allow distributed parallel computing.

The installation process is well documented, and the installer needs to make only
two decisions. One is whether to use the remote commands rsh, rlogin, and rcp
or their secure replacements ssh, slogin, and scp. This decision can be based
on the security level needed. The second is how to support a single user on
multiple machines. User accounts can be handled in one of two ways. The
Network File System (NFS) can be used to mount all users’ directories on all
machines or, as an alternative, a single “pvm_user” account can be created on
each machine. NFS, however, has the disadvantage of increasing network traffic
when performing file reads and writes. If one is careful to write all temporary
output to the local /tmp directory, this traffic can be minimized.

Condor

The University of Wisconsin’s Computer Science Department has been involved
in distributed resource sharing for more than 15 years. Dr. Myron Livny has lead
his research team in investigating High Throughput Computing (HTC), which is
defined to be the number of floating point calculations executed per year. High-
performance computing is concerned with the number of floating point operations
per second, but HTC concerns itself with problems that may have compute times
measured in months.

Computers on the University of Wisconsin’s main campus run the Condor system
and allow idle computers to be used in distributed computing problems. Currently
more than 1000 computers are linked together through software that provides
650 CPU days of computing power to campus researchers on an average day
(www.globus.org/about/faq/general.html). Condor can be used to manage an
existing Beowulf cluster or extended to search out idle computers that can be
added to the computing pool.

5

Condor has an extensive set of features and provides flexibility for both the users
and the owners of machines. The two most important features are remote
procedure calls and check-pointing. The remote procedure calls feature allows a
master node to execute tasks on a remote machine using a set of primitive calls.
Check pointing allows parts of a parallel job to be executed on one machine and
then moved to another if the CPU becomes busy. The job then resumes at that
stopped point on the new processor.

Globus

Condor was designed to share resources within a single network and works best
with homogeneous hardware. Conversely, the I-way project was started by
Argonne National Laboratories (ANL), the University of Illinois at Chicago, and
the National Center for Super-Computing Applications (NCSA) as a way to
connect 10 networks into 1 computing environment. Ian Foster and Steven
Tuecke of ANL later received funding to begin the Globus Toolkit project.

The Globus Toolkit is characterized by the following set of protocols and tools:

1. Globus Resource Allocation Manager (GRAM) – allows users to submit
grid-enabled jobs to the cluster(s).

2. Gridftp – provides support for high-performance, secure, and reliable data
transfers.

3. GSI-enabled SSH – allows authorized users and administrators to login to
the front-end node of a cluster.

4. Grid Resource Information Services (GRIS) – collects and publishes
information about grid resources.

5. Grid Security Infrastructure (GSI) – provides a single sign-on system for
authentication.

6. Monitoring and Discovery System (MDS) – an extension to the Lightweight
Directory Access Protocol (LDAP) that provides a uniform method for
accessing grid nodes.

7. Heartbeat monitor – allows system administrators or normal users to
evaluate the overall state of the grid at a high level.

Each component of the toolkit provides the user with an API written in C. In most
cases, command line tools and Java classes are provided for the programmer.

The Globus developers hope to create for grid computing what Apache has
created for Web servers. Their plan for the future is to have a production-ready
system derived from their current research project; that system is currently in the
beta testing stage. Globus is currently being used in test environments at
TerraGrid, the Department of Energy’s Science Grid, the European DataGrid,
and GriPhyN (the grid physics network).

6

Other Solutions

OSCAR (www.openclustergroup.org/), Grid-in-a-Box (www.ncsa.uiuc.edi/
TechFocus/Deployment/GiB/overview.html), and Condor-G (Frey and others,
2001) are other open source distributed computing solutions that are currently
available. Parabon, Entropia, and United Devices have commercial solutions
available for users who wish to leverage multiple computers and do not have
access to them. These solutions were not investigated but were left as future
work.

All Possible Regressions Algorithm

The all-possible-regressions algorithm (Neter and others, 1996), typically used in
the experimental design process, is used to find potentially good subsets of
variables from a larger set of experimental variables. It lets the designer ask the
question: Are all predictor variables needed in this experiment or is a subset
adequate?

Consider, for example, that N variables were collected during an experiment.
The all-possible-regressions algorithm could be used to fit all 2N combinations of
variables and identify the best (based on some criteria) combinations of variables
for further analysis.

Our algorithm will consider datasets with up to 32 variables—the largest dataset
the algorithm can handle as implemented. Each combination of variables is fit
with a least squares routine implemented using QR factorization and
Householder transformations (Golub and Van Loan, 1989). The goodness-of-fit
criterion implemented are the SSEp and MSEp Criteria (Neter and others, 1996).

Parallel Regression Algorithm

The conversion to a parallel algorithm went quickly since the original serial
algorithm exhibits a high degree of parallelism. This means that the work can be
subdivided into many subtasks without the need for much communication
between nodes. In essence, each node performs 1/Nth of the work. The basic
parallelization is as follows:

1. Check to see if I am the master node; if true spawn N-1 new jobs;
otherwise proceed to step 2.
2. Determine the group id number of the node.
3. Open an output file in /tmp, avoiding the need to write to an NFS
mounted directory.
4. For each iteration of the main loop, check to see if the remainder of the

loop control variable divided by the number of hosts is my group id.

7

http://www.ncsa.uiuc.edi/ TechFocus/Deployment/GiB/overview.html
http://www.ncsa.uiuc.edi/ TechFocus/Deployment/GiB/overview.html
http://www.openclustergroup.org/

If this is true, perform the regression for this value of the loop
control variable; otherwise, another node will perform this
calculation. Write the answer in the temp file.

5. Close the temporary file.
6. If I am the master node, gather all the temp files and merge into a final

result file.

Test Results

To test for correctness, we ran the serial version of the algorithm using
combinations of up to 4 variables (from the 32 variables available). Then the
same run was done with the parallel version using four machines. These tests
were run on Pentium 4 processors running at 1.8 GHz with 256 megabytes of
RAM memory using the RedHat Linux version 7.3 operating system running
kernel 2.14.18-10. The serial algorithm required 31 minutes to complete, and the
parallel version required approximately14 minutes of computation.

After verifying the results from the output of the previous test, we ran the next
test using combinations of 4 variables on 8 and 15 nodes, respectively. The
results are shown in table 1.

Table 1. Run-times for combinations of up to 4 variables and 15 nodes.

The results seemed disappointing until it was discovered that the original
algorithm requires 13 minutes to iterate over all 232 values in the loop. Therefore,
13 minutes is the minimum time required for the algorithm to execute in all cases.

Extending the amount of work (computations) led to increased speed-ups.
Running a series of tests using combinations of up to eight variables in the
regression gave the following results shown in table 2.

8

Elapsed
Time

Speed-up

1 node 30:55 0
4 nodes 13.37 2.3
8 nodes 13.22 2.3
15 nodes 13:19 2.3

Elapsed Time Speed-up
1 node 746m16.314s 0
8 nodes 303m5s 2.46
15 nodes 58m44.3s 12.71
30 nodes 48m42s 15.33
40 nodes 27m14.2s 27.40
76 nodes 21m17.4s 35.05

Table 2. Run-times for combinations of up to 8 variables and 76 nodes.

As a test of heterogeneous hardware platforms, the program was run using an
18-node Beowulf cluster running PIII 500 MHz machines and 15 Pentium 4 1.8
GHz machines for a total of 33 CPUs. The results showed the difference in
processing speeds between the two different types of processing nodes. The P4
nodes finished their task in 30 minutes, while the PIII nodes required 80 minutes
to complete the task. Two important results should be noted here: first, the ease
with which new nodes can be added to the cluster through the use of PVM
system calls, and second, the need to load-balance the algorithm.

The final test was to use 76 P4 machines on the South Dakota State University
campus network and consider all 32 variables. This test required 111 hours to
run to completion. It was hoped that the run time would be reduced to less than
63 hours so that the program could be run over the weekend (5 p.m. Friday thru
8 a.m. Monday) when all computers would be idle in a workplace. With the
addition of more machines, this time constraint can probably be met.

As a test of creating quick parallel programs for computationally intense
problems, this experiment is considered a success. It showed that with minimal
coding and hardware configuration complexity it is possible to leverage the use of
idle CPUs with very little effort. The only software needed on user workstations
was the installation of the PVM daemon.

Future Work

The next step is to use the SETI@home model (setiathome.ssl.berkeley.edu) to
extend the calculation to occur whenever a CPU is idle. When a node goes idle
and a screen saver activates, the node will make a request of the server to be
given a work packet to calculate. This work is currently in progress and is seen
as a natural way to load balance the algorithm. Each idle computer will be sent a
work packet and then report its results back to the server when completed.

9

References

Frey, James; Tannenbaum, Todd; Foster, Ian; Livny, Miron & Tuecke, Steve.
Condor-G: A computation management agent for multi-institutional grids. In
Proceedings of the Tenth IEEE Symposium on High Performance Distributed
Computing (HPDC), pages 7-9, San Francisco, California, August 2001

Golub, Gene H. and Van Loan, Charles F., Matrix Computations, 2nd Ed., John
Hopkins University Press, Baltimore, 1989.

Neter, J., Mutner, M., Nachtsheim, C., Wasserman, W., Applied Linear Statistical
Models, 4th Ed., WCB/McGraw-Hill, 1996.

Sterling, T., Salmon, J, Becker, D., & Savarse, D., “How to Build a Beowulf: A
Guide to the Implementation and Application of PC Clusters (Scientific and
Engineering Computation)”, MIT Press, 1999.

10

	Open-File Report 03-432
	Illustrations
	References

