

Distributed Processing of Projections of
Large Datasets: A Preliminary Study

By Brian G. Maddox
1

Open-File Report 03-117

1 Mid-Continent Mapping Center, Rolla, MO 65401

U.S. Department of the Interior

1

U.S. Geological Survey

Contents

Key Words ..1
Abstract ...1
Introduction ..2
Background ..2
Method...5

Equipment ...5
Data ...6
Software ...6

Testing ...7
Discussion ..11
Conclusion ..15
Future Work ...16
References ...17

Tables

Table 1 Average interpolator error on a one-degree by one-degree area........................... 7

Figures

Figure 1 Runtime comparisons for a DOQQ ... 9
Figure 2 Timings for UTM to Transverse Mercator conversion... 10
Figure 3 Timings for UTM to Polyconic conversion ... 11
Figure 4 Polyconic runtime predictions. ... 12

Any use of trade, product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government

i

Key Words

Distributed Processing, Large Datasets, Beowulf, Map Projections

Abstract

Modern information needs have resulted in very large amounts of data being used in
geographic information systems. Problems arise when trying to project these data in a
reasonable amount of time and accuracy, however. Current single-threaded methods can
suffer from two problems: fast projection with poor accuracy, or accurate projection with
long processing time. A possible solution may be to combine accurate interpolation
methods and distributed processing algorithms to quickly and accurately convert digital
geospatial data between coordinate systems. Modern technology has made it possible to
construct systems, such as Beowulf clusters, for a low cost and provide access to
supercomputer-class technology. Combining these techniques may result in the ability to
use large amounts of geographic data in time-critical situations.

1

Introduction

It is becoming common for geospatial applications to require very large amounts of data.
Projects may need multiple-band, remotely sensed data with file sizes measured in
gigabytes. Or, they may need hundreds of megabytes of tiled aerial photographs for their
study areas. True decision support systems also require enormous amounts of data and
processing facilities to perform their activities.

The problem with using this much data is that as file sizes get larger the processing
becomes more difficult. This can be especially problematic in hazards-response
situations, where digital data need to be quickly and accurately projected between
coordinate systems within a bounded time frame. Some scientists working for hazard
response during Hurricane Mitch found that large amounts of data often took very large
amounts of time to project to different coordinate systems. A problem encountered was
that any errors required another period of time to process, and hurricanes do not slow
down for processing.

Modern technology now provides low-cost systems with supercomputer-class processing
capabilities. Systems such as Beowulf distributed processing clusters can be constructed
out of commodity hardware and give users huge amounts of processor and input/output
(I/O) handling facilities. Commodity hardware includes standard off-the-shelf
components that are less expensive than those required for traditional high-end
workstations. Such a system would seem ideally suited for processing large amounts of
geospatial data.

This paper describes a preliminary effort in speeding up the projection of gigabyte-sized
data while keeping the accuracy within reasonable tolerances. The work concentrated on
distributing pure pixel-by-pixel processing and interpolations over a Beowulf cluster.
Issues with this type of processing are also discussed for those who may be interested in
implementing such a system.

Background

The use of interpolations in projecting geospatial data is nothing new. The mathematics
of map projections can be quite complex, and interpolations are often used to find
functions that are easier to calculate and close approximations of the original equations.
Software today typically uses both one- and two-dimensional mesh-based interpolations.
The two-dimensional interpolations have accuracy on their side but can be slow. One-
dimensional interpolations can be very fast but can also leave the projected data lacking
in accuracy.

The target data for this study had a one-meter resolution, and it was therefore decided to
ignore pure one-dimensional and nearest neighbor methods. These interpolation methods
generally have problems fitting a surface through multi-dimensional data. To examine
the accuracy of two-dimensional methods, several common interpolators were chosen:
bilinear, bicubic, least squares plane, and bicubic splines. These interpolations will be

2

briefly described here, as more in-depth explanations can be found in most numerical
methods texts.

Bilinear interpolation is a one-dimensional linear interpolation performed in two
directions. Each directional linear interpolation performs its approximation by passing a
line segment through known points. It has the benefit of being computationally simple.
However, bilinear interpolation generally requires a denser mesh of input points to
achieve higher accuracy.

Bicubic interpolation, in contrast to bilinear interpolation, is a pure two-dimensional
interpolation that fits a cubic surface through the input points. Although more accurate,
bicubic interpolation suffers from increased computational intensity because it requires a
grid of points to solve for the surface coefficients. In addition, bicubic interpolation can
suffer from stability issues as the mesh of input points becomes denser.

Least squares plane finds the statistical minimum error plane fit to the input points. It is a
relatively fast interpolation to compute, but it is inaccurate in this situation as many of the
projection functions are nonlinear. It can also suffer the same stability issues of bicubic
interpolation with dense meshes.

Bicubic splines interpolation is performed in much the same way as bilinear
interpolation, except that instead of linear functions, the interpolation uses cubic splines
to interpolate within an area. Cubic splines are functions defined on a smaller interval
where “the resulting piecewise curve and its first and second derivatives are all
continuous on the larger interval” (Matthews 1992). Cubic splines have the advantage of
producing smooth, second-order continuous functions. However, to achieve this
continuity, cubic splines must identify the second derivatives at the two end points of the
spline. Since these second derivatives are unknown for a given map projection, they
must be estimated to perform the interpolation, leading to further inaccuracy.
Additionally, though cubic splines are guaranteed to pass through each input point, the
spline itself may curve radically between points, often producing significant error in
order to satisfy the continuity constraint.
Parallel processing is defined to “specifically refer to the simultaneous execution of
concurrent tasks on different processors” (Nichols 1998). It is important to note from the
definition that concurrency is a requirement in parallel processing. Concurrent
processing is defined as “environments in which the tasks we define can occur in any
order. One task can occur before or after another, and some or all tasks can be performed
at the same time” (Nichols 1998). In other words, parallel processing involves tasks that
can not only run at the same time, but that can run independently of order. This is
important, as there are typically no ways to guarantee that the operating system will
schedule tasks to run in any specific order. Without the concurrency requirement, an
application would run parts of itself at the same time but produce incorrect results.

Distributed processing is a type of parallel processing that involves using multiple
computers or processors to run an application. It can be defined as the concurrent
execution of multiple tasks on multiple processors over multiple computers. This usually
involves taking a large problem and breaking it down into several smaller problems.
These smaller problems are then run concurrently on multiple machines with the goal of

3

finishing the task in a shorter amount of time than it would take a single machine. These
machines are usually connected through their own private high-speed network to
minimize network traffic that could interfere with processing.

Distributed processing has some advantages over traditional parallel processing in
multiprocessor machines. It can offer more memory, processor capability, and permanent
storage space than a typical multiprocessor system can. In a multiprocessor machine,
each processor can operate concurrently, but they have to share common systems in the
machine, such as memory and permanent storage systems. Only one processor or
software process can access many of these systems at a time; all of the others must wait
until the resource becomes available. In a numerically intensive environment, this could
mean a large number of processes are left waiting in line. In a distributed processing
environment, the processing nodes have independent processor, memory, and other such
systems in each machine. The resource contention in each node is reduced, as there are a
smaller number of processes running on each node that may need access to various
resources.

The primary disadvantage of distributed processing comes from all inter-node
communication occurring over the network. This is because the network can only
communicate at speeds that are an order of magnitude slower than the system bus
provides. While this may not be a problem for compute-bound applications, it can
become a major problem for data-bound applications. Communication over a network is
prone to collisions, where multiple machines try to transmit at the same time. When this
happens, all machines must resend their information over the network. This can happen
several times before a computer can successfully transmit its information. Factors such
as these tend to force software designs where communication between nodes must be
minimal compared with communication between processors in a multiprocessor system.

A type of distributed processing system known as Beowulf clusters has become popular
in recent years. Developed by researchers at the NASA Goddard Space Flight Center, a
Beowulf cluster is “a kind of high-performance massively parallel computer built
primarily out of commodity hardware components” (Sitaker 2000). This has the
advantage that equipment costs are minimized, as no specialized hardware is used. It is
very common to construct low-cost Beowulf-class clusters out of used or surplus
equipment. These clusters also typically use a modified Open Source operating system to
handle the interoperability between nodes. Communication is performed by passing
messages between nodes on the network. The message-passing systems are set up so that
almost any type of data can be encoded in the message packets.

There are two major message-passing systems in use today. The Parallel Virtual
Machine (PVM) implementation was developed at the Oak Ridge National Laboratories
as “a byproduct of an ongoing heterogeneous network computing research project” (Oak
Ridge 2000). PVM is a software library that provides various functions to the user for
passing messages in a cluster environment. PVM also provides features such as simple
load balancing, transparent hardware access, and dynamic scalability for adding or
removing nodes on the system. The other major method involves software libraries that
implement the specification set by the Message Passing Interface (MPI) Forum. The MPI
Forum is an “open group with representatives from many organizations that define and

4

maintain the MPI standard” (Message Passing Forum). The MPI is a standard that details
how messages should be passed in a clustered environment. There are several libraries
that implement this specification. The main difference between these two methods is that
PVM provides more facilities to treat the cluster as a single working unit instead of a
series of independent nodes.

Method

To test the accuracy of the system, a control had to be chosen for the generated
geographic coordinates. The General Cartographic Transformation Package C (GCTPC)
package was chosen as the control for this project. This package has been debugged and
tested over the years and is used by many software packages. All points generated by the
interpolators would be compared with those same points generated by GCTPC to
determine the error over the dataset. The requirement for the interpolators was that the
average error over the entire dataset must be less than one meter to match the accuracy of
the input data.

The method used to increase the speed of the coordinate system transformation
processing was to distribute the work of generating the output scanlines of the raster
image. This method involved having each node generate an output scanline in the new
raster image by performing a reverse projection through GCTPC to determine which
pixel in the input image the node needed. This technique would have the greatest
accuracy of all as it was performing the full projection equations on each cell in the
output image.

Mathematical interpolations were also chosen as a means for generating geographic
coordinates. Interpolation, which is used in many geographic information system (GIS)
software packages, is an algorithmic method to quickly calculate conversions between
coordinate systems. If used properly, interpolation can maintain accuracy within the
tolerances of the data products used. The goal of this project was to determine if the
combination of interpolations and distributed algorithms could derive a system that could
project large amounts of data quickly and accurately. For this study, mesh-based
interpolations were chosen as they allow smaller, local-area interpolations on different
parts of the data.

Equipment

The equipment used for this study was the Beowulf cluster housed at the USGS Mid-
Continent Mapping Center (MCMC). The cluster at the time of study was a refurbished
sixteen-node system that was connected by a private 100-megabit Ethernet switch. Each
node consisted of an AMD K6-2 500-MHz processor on an FIC VA-503+ motherboard
with 128 megabytes of PC-100 system memory. The permanent storage in each node
was upgraded to a nine-gigabyte U2W SCSI hard drive connected to a Tekram 395 U2W
SCSI controller. Each machine kept its 100-megabit 3Com Ethernet network card and
video card, as they had already been upgraded prior to being placed into surplus. They
all ran a modified version of the RedHat Linux 6.2 distribution. This distribution
contained the necessary PVM message-passing libraries for the cluster environment. The

5

modifications to the stock distribution included replacing the Linux kernel with the 2.2.17
version and using the vendor-supplied drivers from Tekram and 3Com.

Data

Control data had to be chosen for testing the accuracy of the processing. For the initial
testing and debugging, several digital orthophoto quarter-quadrangles (DOQQ) of the
Manhattan, Kansas, area were selected. These quadrangles have multiple Global
Positioning System (GPS) verified control points in them and are used by MCMC for
accuracy testing. These DOQQs were converted into GeoTIFF format and loaded into
several GIS packages to confirm the accuracy of the control point data.

Sample data were also needed that would simulate real-world processing of large
amounts of data. To fulfill this requirement, the GRASS GIS was used to generate a one-
degree by one-degree mosaic of DOQQ data in the area covered by the control data. This
mosaic was then converted to a TIFF file, with an accompanying Arc Info world file
holding the georeferencing information, and was then converted into a 1.3-gigabyte
GeoTIFF for testing. This GeoTIFF was loaded into several packages to verify the
coordinates of the control points after merging the files.

Software

Experimental software had to be developed to perform the study. This software was
initially designed as a single-threaded system. Debugging is far easier on a single-
threaded system than on a distributed system as there is only one memory space that must
be examined. The design for the interpolator engine was to use a grid-based system with
GCTPC used to generate the grid points. An in-house developed mathematics library
provided a series of interpolators to the software system. The software had the ability to
either interpolate the chosen points or use GCTPC to project each point directly. This
allowed comparisons between the GCTPC-generated points and those generated by the
interpolations. It also allowed for time comparisons between distributing pure GCTPC-
based projections and distributing interpolation-based projections.

The software was then redesigned to run over a cluster. Although there are several
options available, the master/slave design was chosen for this initial study. This design
utilizes a master node that will assign work units to be processed and receive the finished
data. The slave nodes simply process any data assigned to them. This is a common
design in parallel processing and also had the advantage of being easily implemented
within the project’s time constraints.

In this setup, the master node pre-computes the area of the output image. When it has the
geographic and raster bounds of the image, it sends this information to the slave nodes so
they can store the coordinates for future processing. The master node then dispatches the
work units to the slave nodes. These work units are the y-values of the scanlines of the
output image. The slave nodes will then use either interpolation or straight GCTPC calls
to generate their assigned scanlines. They do this by performing a series of reverse
projections. The coordinates are converted to raster space and then generated from the
original image data. When finished, the slave nodes return their processed scanline to

6

the master node, which outputs it to a GeoTIFF file. If any work remains, the master
node will continue to dispatch scanlines until the output projection is finished.

Testing

The first test of any interpolation system is to check its accuracy against several known
values. Mesh-based interpolation of geospatial data works by defining a mesh of a fixed
set of input points that are obtained by projecting them with GCTPC and then using a
subset of these points to interpolate the rest of the values in each local area. Generally,
the points within a grid cell are interpolated on the basis of grid-cell corner point values.
The number of input points and the geographic size of the mesh then affect the accuracy
and stability of the particular interpolator used. To get a good range of accuracy tests for
each interpolator, a comparison test was constructed in which control points were
projected first with mesh-based interpolation and then compared with the same point
projected with GCTPC. After projection, the distance (Euclidean norm) was computed
between the interpolator-projected point and the GCTPC-projected point. This test was
repeated for each interpolator examined using several map projections, different mesh
sizes, and various numbers of input grid points.

Table 1. Average interpolator error on a one-degree by one-degree area

Interpolator
Type Grid Size

Average Error in
Meters

Bicubic 4x4 2.17E-04
Bilinear 500x500 2.70E-04
Least Squares Plane 500x500 3.76E-04
Bicubic 10x10 1.35E-03
Bicubic 100x100 1.51E-03
Bilinear 100x100 6.87E-03
Bicubic 500x500 8.81E-03
Least Squares Plane 100x100 9.56E-03
Bilinear 10x10 8.31E-01
Least Squares Plane 10x10 1.16E+00
Bilinear 4x4 7.48E+00
Least Squares Plane 4x4 1.04E+01
Bicubic Splines 4x4 1.24E+06
Bicubic Splines 10x10 1.79E+06
Bicubic Splines 100x100 2.03E+06
Bicubic Splines 500x500 2.03E+06

7

Table 1. Average interpolator error on a one-degree by one-degree area

Interpolator
Type Grid Size

Average Error in
Meters

Bicubic 4x4 2.17E-04
Bilinear 500x500 2.70E-04
Least Squares Plane 500x500 3.76E-04
Bicubic 10x10 1.35E-03
Bicubic 100x100 1.51E-03
Bilinear 100x100 6.87E-03
Bicubic 500x500 8.81E-03
Least Squares Plane 100x100 9.56E-03
Bilinear 10x10 8.31E-01
Least Squares Plane 10x10 1.16E+00
Bilinear 4x4 7.48E+00
Least Squares Plane 4x4 1.04E+01
Bicubic Splines 4x4 1.24E+06
Bicubic Splines 10x10 1.79E+06
Bicubic Splines 100x100 2.03E+06
Bicubic Splines 500x500 2.03E+06

The above table is sorted from best to worst accuracy. It illustrates how well some of the
interpolation methods are able to approximate the projection equations. The average
error is mathematically calculated by taking the average error of the same area projected
to different coordinate systems. The grid size is the mesh size that was used in the
interpolation.

To assess the relative speed of each interpolator a similar test was formulated. In this
test, a DOQQ from the Manhattan data was projected to different systems using various
interpolators with a fixed number of input mesh points. The same DOQQ was then
projected using GCTPC, and the time required to complete both operations was
compared. These tests used the DOQQ files for the relative speeds as they allowed
testing to be completed in a reasonable amount of time.

8

Figure 1. Runtime comparisons for a DOQQ.

Figure 1 shows the differences in the relative speeds of the interpolation methods for
various projections. Each interpolation method differs in terms of mathematical
complexity that becomes amplified as the numbers of mesh nodes increase. Bilinear
interpolation, for example, scales fairly well with increasing grid sizes. Others, such as
bicubic and least squares, tend to experience an almost exponential increase in runtime as
the number of grid points is increased.

With the error and time results, a determination could be made as to which interpolation
method provided the best accuracy and fastest runtime. For accuracy, bilinear and
bicubic interpolations provide the lowest mathematical error. The deciding factors, then,
are speed and scalability. As can be seen in Figure 1, bilinear interpolation scales very
well as the grid size increases. Bicubic interpolation, while producing the lowest error, is
also much more computationally intensive than bilinear methods. These issues led to the
decision to use bilinear interpolation as the method of choice for all of the distributed
time trials.

The next test compared the relative speed increase between the distributed and
conventional designs in real-world data processing. In this test, the 1.3-gigabyte
composite GeoTIFF of the Manhattan dataset was used as the input to the system. This
image was projected to several different coordinate systems, and the time between
distributed and conventional designs was compared. However, speed trials performed in
this test used only the best (speedup vs. accuracy) interpolator, as well as GCTPC with no
interpolation. Additionally, timings on the cluster were done with varied numbers of
processing nodes to examine how the addition of processing nodes affected overall
runtime. The following charts show the results of the time trials for the cluster, as well as
for single-threaded applications.

9

Figure 2. Timings for UTM to Transverse Mercator conversion.

Figure 2 shows the timings for performing a coordinate conversion from the Universal
Transverse Mercator (UTM) to a different Transverse Mercator projection for the large
GeoTIFF. The data points show the timings for various numbers of nodes, and the curves
are power regression curves fit through the data points. Along the left edge of the figure,
the timings for a single-threaded version of the conversion software are also shown. The
curve fit functions allow for a rough estimate of the speed increase gained by adding a
certain number of nodes.

Figure 2 illustrates some common traits of parallelism. Many data-bound parallel
applications will follow such a curve, where the speed increases of parallelism begin to
level off past a certain number of nodes. This directly follows the Law of Diminishing
Returns (Cannan 2001), where the cost of adding more nodes will eventually begin to
outweigh the benefits of adding more nodes. The figure also shows that a master node
with one processing node will take more time to run than a single-threaded version of the
software. This is a direct result of the overhead that is occurred by processing the data
over the network and will be further discussed later in this paper.

10

Figure 3. Timings for UTM to Polyconic conversion.

The data points in Figure 3 show that the GCTPC timings are different from those for the
UTM to Transverse Mercator projection conversions. This is expected, as the pure
GCTPC cell-by-cell conversions have to perform different mathematical equations for the
different projection systems. These equations have differing levels of complexity that
will affect the amount of time it takes them to run on a processor.

The bilinear interpolation, on the other hand, runs in almost exactly the same amount of
time for both the Polyconic and the Transverse Mercator coordinate conversions. This is
also expected, as the interpolations are running through the same series of mathematical
approximations for both conversions. This is the benefit of function approximation.
Instead of performing different equations for each projection system, the interpolator is
merely performing a best fit to the input data, regardless of the type of coordinate system.

Discussion

Varying the number of nodes during processing produced power curves that allowed
predictions of runtime improvements that were based on the number of nodes added. The
next figure presents these data, and there are some interesting observations and comments
to be made about increasing the number of nodes.

11

Figure 4. Polyconic runtime predictions.

As more nodes are added to the cluster, they begin to have a diminishing impact on the
overall runtime of the system. Figure 4 shows the runtime curve for the conversion from
the UTM to Polyconic coordinate systems predicted to forty-five nodes. The curves
become nearly asymptotic as they approach a certain minimum runtime. They also both
get fairly close to one another as more and more nodes are added. This suggests that
given enough nodes, pure GCTPC-based projection conversions may be done in almost
the same time that it takes to interpolate them. The curves, however, may well be
misleading.

The graph of runtimes per number of nodes is more than likely that of a very flattened
parabola than that of a power curve. The reason is that up to a certain point, adding more
nodes will approach a minimum runtime and overpower the effects of network overhead.
But as more and more nodes are added, the complexity of the system increases. The
overhead from transmitting data over the network may begin to have a significant impact
on the runtime. When a certain point is reached, the cumulative overhead may actually
begin to increase the runtime of the system. A small-scale example of this may be when
there is only one processing node combined with the master node. As Figure 3 shows,
this setup is actually less efficient at processing than a single-threaded system owing to
the increased network overhead.

Several questions arose when designing the distributed version of the software. The
primary issue was how to efficiently distribute the processing. The main options were
either to develop distributed versions of the map projection algorithms or to distribute the
data processing among the nodes. Runtime was a major constraint on what method to
use, but consideration of the problem produced other reasons not to distribute the map
projection algorithms themselves.

12

Distributed processing works best when there is a natural partitioning of the problem and
each partition can be processed in a relatively independent manner. This is the
concurrency requirement discussed earlier. As an example, consider the problem of
summing all of the numbers from one to 100 billion. A natural partitioning scheme here
would be to break the problem into smaller sums and add all of the sums at the end. Ten
nodes could each sum ten billion numbers and add the sums together at the end. The key
is that while the nodes are summing their partition, they do not require any results from
the other processing nodes. Only at the end is there a communication of results.

With the map projection equations, such a partitioning does not exist. The
implementation of these projections is a chain of algorithms that are used to go from one
coordinate system to another. There is a very tight coupling between the inputs of one
algorithm and the results of the previous algorithm. Also, a lot of looping is involved in
the code, where a loop pass depends on the values of the previous passes. This would
seriously degrade performance, as the output from one part of an algorithm would need to
be encoded and transmitted to another node that is performing the next part of the
algorithm. It may even be the case that parallelizing the map projection algorithms on a
multiprocessor machine may be inefficient due to communications overhead between
steps. The overhead of transmission would be very great if done each time the individual
algorithms are run.

Another problem was discovered during this study concerning network congestion. In
the case of converting a DOQQ from the UTM system to a State Plane Coordinate
System, the nodes were finishing their processing so quickly that they ended up flooding
the network when trying to return their processed scanlines to the master node. Flooding
is a term used to describe a condition in which a network is suffering from a massive
number of transmission collisions. A collision occurs when multiple nodes try to send
data over the network at the same time. In the case of an Ethernet switch, the other nodes
must wait until the node they are trying to communicate with finishes its current
transmission or reception. This resulted in such an extreme slowdown in processing that
a single-threaded projection program finished much faster than the distributed version.
Flooding was also observed when performing other coordinate system conversions and
could have led to a processing slowdown in those cases as well.

There are several possible solutions to this problem, but none appear to be the proverbial
“silver bullet.” Multiple input/output nodes could be used for the data processing.
Ethernet switches can support multiple node-to-node communications at the same time.
Multiple I/O nodes would allow multiple processing nodes to return their data at the same
time, but all of the other nodes would still be stalled as they waited to get a connection to
an I/O node. Flooding would still be an issue, as some of the nodes would be vying with
each other for access to their assigned I/O node. This also means that there would be
fewer nodes available to do the actual processing work.

Another option would be for each node to hold its results until the master node requests
them. This would work by storing the processed scanlines in a temporary file, as there
would be too much data to cache them in physical memory. The problem with this
method comes from the fact that the master node would suffer from data starvation while

13

trying to create the output file. This happens because the main node must wait for
requested data to be sent from the slave nodes.

The fundamental problem is that efficiently processing large amounts of data over a
network requires further study. Methods exist that work well in providing the capability
to handle large numbers of I/O requests, but these methods often are not suitable for
handling very large amounts of data that must be passed over the network. The problem
arises because these methods typically split a file across multiple disks on multiple
machines. This can cause multiple I/O machines to hold the parts that several processing
nodes need, generating increased network traffic as there are more nodes that must
communicate.

There were also some problems noticed with how the Linux 2.2 series kernel handled
virtual memory. Most modern operating systems implement some type of virtual
memory, commonly known as swap files. Virtual memory systems use permanent
storage to free up physical memory by allowing the operating system to temporarily
move processes from physical memory to the permanent storage device. These are
generally processes that have not run in a long time or that are waiting for some other
event to happen. Operating systems also use as much physical memory as possible to
cache data that have been read from permanent storage. This allows faster access to the
information if a process tries to read it again. The size of this cache usually shrinks as the
memory demands of running processes increase.

In the case of the Linux 2.2 kernel installations on the cluster, the operating system
seemed to be spending a large amount of time swapping processes in and out of virtual
memory. It was observed that the disk cache constantly stayed at a very large size
instead of shrinking as process memory demands grew. The resulting swapping
sometimes took up a significant amount of processor time.

There is another relevant theory concerning processing large amounts of data. Dedkov
and Eadline have proposed that given two multiple processor machines that are identical
except one has slower processors, the slower machine will process I/O-dominant
applications more efficiently than the machine with the faster processors. Although this
may seem counterintuitive, it can be explained by understanding the inner workings of a
computer. Everything in a computer is connected by a system bus, including the
processors on a multiprocessor machine. Multiple processors must spend a lot of time
synchronizing with each other over this bus. With high-speed processors, there is a great
deal more traffic per time period than with slower processors. The problem arises
because the data to be processed must also travel over this system bus, whether such data
come from a network device or from a permanent storage medium. The greater amount
of cross-processor traffic with high-speed processors reduces the amount of bandwidth
that is available for passing data along the bus. This could result in data starvation as the
high-speed processors end up waiting for data to reach them. Slower speed processors
would not flood the bus as much and would therefore more efficiently process the large
amounts of data passed to them.

14

Conclusion

Technology has finally reached the point where it can offer large amounts of computing
power for the processing of digital geospatial data. By using modern technology such as
Beowulf clusters, these data can be processed much faster than is possible with typical
workstation computers in use today. Processing time can be critical for applications such
as hazard response or planning.

The increased processing facilities of distributed processing also allow larger digital
datasets to be more easily processed than was possible before. Not only can larger areas
be examined, but finer resolution data can also be processed more easily. This type of
processing can benefit activities such as urban dynamics modeling and prediction
activities. These activities can benefit because the increase in resolution and detail can
produce better predictions of urbanization.

Several issues must be examined when developing these types of systems. The first issue
is how to distribute processing across a network. Although many techniques are
available, the master/slave approach is well suited for data-bound distributed processing
applications. As map projection algorithms are very tightly coupled, there is no easy way
to distribute the projection algorithms themselves. As a result, a better approach may be
to distribute the actual data processing.

The primary issue is distributed processing of geospatial data involves large amounts of
data that must be dealt with. Processing these data over a network can lead to severe
congestion problems that can actually slow down the runtime of an application. As a
result, the systems may not be processing information as efficiently as possible. This is
an important issue to research, as most of the computer science work in distributed
processing has dealt primarily with processor-bound applications. Solutions to the
network congestion problem can lead to systems that can process digital data more
quickly than is currently possible with today’s clusters.

Care must be taken when designing a cluster to project digital geospatial data.
Purchasing a large number of high-end machines can result in a cluster that performs no
better than one that was built for a fraction of the cost with half the number of machines.
Many techniques will begin to see diminishing speed improvements past a certain
number of processing nodes on the cluster. Because of this, organizations must first
evaluate what they intend to do with their system before they begin throwing machines at
a problem.

Distributed processing is a technique that can offer many advantages to processing digital
geospatial data. The runtime improvements that it can bring to projecting data can assist
projects from hazards planning to decision support systems. Remote sensing systems
have evolved to the point that more information is being produced than a typical desktop
system can easily process. This is especially true as the size of typical datasets increases
from megabytes to gigabytes of information.

15

Future Work

More research is needed on efficient methods for the distributed processing of large
amounts of data. Finding ways to overcome the problem of massive network collisions
will enable large datasets to be more efficiently processed. In the case of map
projections, the only way to effectively speed up processing is to increase the efficiency
of data passing between nodes on the network.

Research into using parameterized matrix operations for certain coordinate systems
conversions should also be investigated more thoroughly. This method may well work
for certain coordinate conversions at certain scales. Coordinate system transformations
such as UTM to State Plane may benefit from this type of algorithm. A cluster-based
system might be better able to handle large numbers of small-scale matrix operations that
are necessary to treat certain conversions as an image processing application.

16

References

Cannan, Edward, 2001, The Origin of the Law of Diminishing Returns: McMaster

University. <http://socserv2.mcmaster.ca/~econ/ugcm/3ll3/cannan/ cannan003.html>.

Dedkov, Anatholy F. and Eadline, Douglas J., Performance Considerations for I/O

Dominant Applications on Parallel Computers: Paralogic Corporation.
<ftp://www.plogic.com/pub/papers/exs-pap6.ps>.

Matthews, John H., 1992, Numerical Methods for Mathematics, Science, and

Engineering, 2
nd

 ed.: New Jersey, Prentice-Hall, Inc.

Message Passing Forum, Message Passing Interface (MPI) Forum Homepage

<http://www.mpi-forum.org/>.

Nichols, Bradford, Buttlar, Dick, and Farrell, Jacqueline Proulx, 1998, Pthreads

Programming: O’Reilly.

Oak Rdge National Laboratories, 2000, PVM: Parallel Virtual Machine.

<http://www.epm.ornl.gov/pvm/pvm_home.html>.

Sitaker, Kragen, 2000, Beowulf Mailing List FAQ, version 2: Kent State University.

<http://dune.mcs.kent.edu/~farrell/equip/beowolf/beowulf-faq.txt>.

USGS Eros Data Center, 1998, gctpc Announcement. <http://edc.usgs.gov/

programs/sddm/lasdist/contrib/gctpdisclaimer.html>.

17

	Open-File Report 03-117
	Key Words
	Abstract
	Equipment
	Data
	Software

	Interpolator Type
	Grid Size
	Average Error in Meters
	Interpolator Type
	Grid Size
	Average Error in Meters
	Future Work

