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Abstract  
  
Modern information needs have resulted in very large amounts of data being used in 
geographic information systems.  Problems arise when trying to project these data in a 
reasonable amount of time and accuracy, however.  Current single-threaded methods can 
suffer from two problems: fast projection with poor accuracy, or accurate projection with 
long processing time.  A possible solution may be to combine accurate interpolation 
methods and distributed processing algorithms to quickly and accurately convert digital 
geospatial data between coordinate systems.  Modern technology has made it possible to 
construct systems, such as Beowulf clusters, for a low cost and provide access to 
supercomputer-class technology.  Combining these techniques may result in the ability to 
use large amounts of geographic data in time-critical situations.  
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Introduction  
 
It is becoming common for geospatial applications to require very large amounts of data.  
Projects may need multiple-band, remotely sensed data with file sizes measured in 
gigabytes.  Or, they may need hundreds of megabytes of tiled aerial photographs for their 
study areas.  True decision support systems also require enormous amounts of data and 
processing facilities to perform their activities.  
  
The problem with using this much data is that as file sizes get larger the processing 
becomes more difficult.  This can be especially problematic in hazards-response 
situations, where digital data need to be quickly and accurately projected between 
coordinate systems within a bounded time frame.  Some scientists working for hazard 
response during Hurricane Mitch found that large amounts of data often took very large 
amounts of time to project to different coordinate systems.  A problem encountered was 
that any errors required another period of time to process, and hurricanes do not slow 
down for processing.  
  
Modern technology now provides low-cost systems with supercomputer-class processing 
capabilities.  Systems such as Beowulf distributed processing clusters can be constructed 
out of commodity hardware and give users huge amounts of processor and input/output 
(I/O) handling facilities.  Commodity hardware includes standard off-the-shelf 
components that are less expensive than those required for traditional high-end 
workstations.  Such a system would seem ideally suited for processing large amounts of 
geospatial data.  
  
This paper describes a preliminary effort in speeding up the projection of gigabyte-sized 
data while keeping the accuracy within reasonable tolerances.  The work concentrated on 
distributing pure pixel-by-pixel processing and interpolations over a Beowulf cluster.  
Issues with this type of processing are also discussed for those who may be interested in 
implementing such a system.  
 
Background 
 
 
The use of interpolations in projecting geospatial data is nothing new.  The mathematics 
of map projections can be quite complex, and interpolations are often used to find 
functions that are easier to calculate and close approximations of the original equations.  
Software today typically uses both one- and two-dimensional mesh-based interpolations.  
The two-dimensional interpolations have accuracy on their side but can be slow.  One-
dimensional interpolations can be very fast but can also leave the projected data lacking 
in accuracy.  
  
The target data for this study had a one-meter resolution, and it was therefore decided to 
ignore pure one-dimensional and nearest neighbor methods.  These interpolation methods 
generally have problems fitting a surface through multi-dimensional data.  To examine 
the accuracy of two-dimensional methods, several common interpolators were chosen:  
bilinear, bicubic, least squares plane, and bicubic splines.  These interpolations will be 
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briefly described here, as more in-depth explanations can be found in most numerical 
methods texts.  
  
Bilinear interpolation is a one-dimensional linear interpolation performed in two 
directions.  Each directional linear interpolation performs its approximation by passing a 
line segment through known points.  It has the benefit of being computationally simple.  
However, bilinear interpolation generally requires a denser mesh of input points to 
achieve higher accuracy.    
  
Bicubic interpolation, in contrast to bilinear interpolation, is a pure two-dimensional 
interpolation that fits a cubic surface through the input points.  Although more accurate, 
bicubic interpolation suffers from increased computational intensity because it requires a 
grid of points to solve for the surface coefficients.  In addition, bicubic interpolation can 
suffer from stability issues as the mesh of input points becomes denser.  
    
Least squares plane finds the statistical minimum error plane fit to the input points.  It is a 
relatively fast interpolation to compute, but it is inaccurate in this situation as many of the 
projection functions are nonlinear.  It can also suffer the same stability issues of bicubic 
interpolation with dense meshes.  
  
Bicubic splines interpolation is performed in much the same way as bilinear 
interpolation, except that instead of linear functions, the interpolation uses cubic splines 
to interpolate within an area.  Cubic splines are functions defined on a smaller interval 
where “the resulting piecewise curve and its first and second derivatives are all 
continuous on the larger interval” (Matthews 1992).  Cubic splines have the advantage of 
producing smooth, second-order continuous functions.  However, to achieve this 
continuity, cubic splines must identify the second derivatives at the two end points of the 
spline.  Since these second derivatives are unknown for a given map projection, they 
must be estimated to perform the interpolation, leading to further inaccuracy.  
Additionally, though cubic splines are guaranteed to pass through each input point, the 
spline itself may curve radically between points, often producing significant error in 
order to satisfy the continuity constraint.  
Parallel processing is defined to “specifically refer to the simultaneous execution of 
concurrent tasks on different processors” (Nichols 1998).  It is important to note from the 
definition that concurrency is a requirement in parallel processing.  Concurrent 
processing is defined as “environments in which the tasks we define can occur in any 
order.  One task can occur before or after another, and some or all tasks can be performed 
at the same time” (Nichols 1998).  In other words, parallel processing involves tasks that 
can not only run at the same time, but that can run independently of order.  This is 
important, as there are typically no ways to guarantee that the operating system will 
schedule tasks to run in any specific order.  Without the concurrency requirement, an 
application would run parts of itself at the same time but produce incorrect results.  
  
Distributed processing is a type of parallel processing that involves using multiple 
computers or processors to run an application.  It can be defined as the concurrent 
execution of multiple tasks on multiple processors over multiple computers.  This usually 
involves taking a large problem and breaking it down into several smaller problems.  
These smaller problems are then run concurrently on multiple machines with the goal of 
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finishing the task in a shorter amount of time than it would take a single machine.  These 
machines are usually connected through their own private high-speed network to 
minimize network traffic that could interfere with processing.  
  
Distributed processing has some advantages over traditional parallel processing in 
multiprocessor machines.  It can offer more memory, processor capability, and permanent 
storage space than a typical multiprocessor system can.  In a multiprocessor machine, 
each processor can operate concurrently, but they have to share common systems in the 
machine, such as memory and permanent storage systems.  Only one processor or 
software process can access many of these systems at a time; all of the others must wait 
until the resource becomes available.  In a numerically intensive environment, this could 
mean a large number of processes are left waiting in line.  In a distributed processing 
environment, the processing nodes have independent processor, memory, and other such 
systems in each machine.  The resource contention in each node is reduced, as there are a 
smaller number of processes running on each node that may need access to various 
resources.  
  
The primary disadvantage of distributed processing comes from all inter-node 
communication occurring over the network.  This is because the network can only 
communicate at speeds that are an order of magnitude slower than the system bus 
provides.  While this may not be a problem for compute-bound applications, it can 
become a major problem for data-bound applications.  Communication over a network is 
prone to collisions, where multiple machines try to transmit at the same time.  When this 
happens, all machines must resend their information over the network.  This can happen 
several times before a computer can successfully transmit its information.  Factors such 
as these tend to force software designs where communication between nodes must be 
minimal compared with communication between processors in a multiprocessor system.  
  
A type of distributed processing system known as Beowulf clusters has become popular 
in recent years.  Developed by researchers at the NASA Goddard Space Flight Center, a 
Beowulf cluster is “a kind of high-performance massively parallel computer built 
primarily out of commodity hardware components” (Sitaker 2000).  This has the 
advantage that equipment costs are minimized, as no specialized hardware is used.  It is 
very common to construct low-cost Beowulf-class clusters out of used or surplus 
equipment.  These clusters also typically use a modified Open Source operating system to 
handle the interoperability between nodes.  Communication is performed by passing 
messages between nodes on the network.  The message-passing systems are set up so that 
almost any type of data can be encoded in the message packets.  
  
There are two major message-passing systems in use today.  The Parallel Virtual 
Machine (PVM) implementation was developed at the Oak Ridge National Laboratories 
as “a byproduct of an ongoing heterogeneous network computing research project” (Oak 
Ridge 2000).  PVM is a software library that provides various functions to the user for 
passing messages in a cluster environment.  PVM also provides features such as simple 
load balancing, transparent hardware access, and dynamic scalability for adding or 
removing nodes on the system.  The other major method involves software libraries that 
implement the specification set by the Message Passing Interface (MPI) Forum.  The MPI 
Forum is an “open group with representatives from many organizations that define and 
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maintain the MPI standard” (Message Passing Forum).  The MPI is a standard that details 
how messages should be passed in a clustered environment.  There are several libraries 
that implement this specification.  The main difference between these two methods is that 
PVM provides more facilities to treat the cluster as a single working unit instead of a 
series of independent nodes.  
  
Method 
 
To test the accuracy of the system, a control had to be chosen for the generated 
geographic coordinates.  The General Cartographic Transformation Package C (GCTPC) 
package was chosen as the control for this project.  This package has been debugged and 
tested over the years and is used by many software packages.  All points generated by the 
interpolators would be compared with those same points generated by GCTPC to 
determine the error over the dataset.  The requirement for the interpolators was that the 
average error over the entire dataset must be less than one meter to match the accuracy of 
the input data.  
  
The method used to increase the speed of the coordinate system transformation 
processing was to distribute the work of generating the output scanlines of the raster 
image.  This method involved having each node generate an output scanline in the new 
raster image by performing a reverse projection through GCTPC to determine which 
pixel in the input image the node needed.  This technique would have the greatest 
accuracy of all as it was performing the full projection equations on each cell in the 
output image.  
  
Mathematical interpolations were also chosen as a means for generating geographic 
coordinates.  Interpolation, which is used in many geographic information system (GIS) 
software packages, is an algorithmic method to quickly calculate conversions between 
coordinate systems.  If used properly, interpolation can maintain accuracy within the 
tolerances of the data products used.  The goal of this project was to determine if the 
combination of interpolations and distributed algorithms could derive a system that could 
project large amounts of data quickly and accurately.  For this study, mesh-based 
interpolations were chosen as they allow smaller, local-area interpolations on different 
parts of the data.  
  
Equipment  
  
The equipment used for this study was the Beowulf cluster housed at the USGS Mid-
Continent Mapping Center (MCMC).  The cluster at the time of study was a refurbished 
sixteen-node system that was connected by a private 100-megabit Ethernet switch.  Each 
node consisted of an AMD K6-2 500-MHz processor on an FIC VA-503+ motherboard 
with 128 megabytes of PC-100 system memory.  The permanent storage in each node 
was upgraded to a nine-gigabyte U2W SCSI hard drive connected to a Tekram 395 U2W 
SCSI controller.  Each machine kept its 100-megabit 3Com Ethernet network card and 
video card, as they had already been upgraded prior to being placed into surplus.  They 
all ran a modified version of the RedHat Linux 6.2 distribution.  This distribution 
contained the necessary PVM message-passing libraries for the cluster environment.  The 
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modifications to the stock distribution included replacing the Linux kernel with the 2.2.17 
version and using the vendor-supplied drivers from Tekram and 3Com.  
  
Data  
  
Control data had to be chosen for testing the accuracy of the processing.  For the initial 
testing and debugging, several digital orthophoto quarter-quadrangles (DOQQ) of the 
Manhattan, Kansas, area were selected.  These quadrangles have multiple Global 
Positioning System (GPS) verified control points in them and are used by MCMC for 
accuracy testing.  These DOQQs were converted into GeoTIFF format and loaded into 
several GIS packages to confirm the accuracy of the control point data.  
  
Sample data were also needed that would simulate real-world processing of large 
amounts of data.  To fulfill this requirement, the GRASS GIS was used to generate a one-
degree by one-degree mosaic of DOQQ data in the area covered by the control data.  This 
mosaic was then converted to a TIFF file, with an accompanying Arc Info world file 
holding the georeferencing information, and was then converted into a 1.3-gigabyte 
GeoTIFF for testing.  This GeoTIFF was loaded into several packages to verify the 
coordinates of the control points after merging the files.  
  
Software  
  
Experimental software had to be developed to perform the study.  This software was 
initially designed as a single-threaded system.  Debugging is far easier on a single-
threaded system than on a distributed system as there is only one memory space that must 
be examined.  The design for the interpolator engine was to use a grid-based system with 
GCTPC used to generate the grid points.  An in-house developed mathematics library 
provided a series of interpolators to the software system.  The software had the ability to 
either interpolate the chosen points or use GCTPC to project each point directly.  This 
allowed comparisons between the GCTPC-generated points and those generated by the  
interpolations.  It also allowed for time comparisons between distributing pure GCTPC-
based projections and distributing interpolation-based projections.  
  
The software was then redesigned to run over a cluster.  Although there are several 
options available, the master/slave design was chosen for this initial study.  This design 
utilizes a master node that will assign work units to be processed and receive the finished 
data.  The slave nodes simply process any data assigned to them.  This is a common 
design in parallel processing and also had the advantage of being easily implemented 
within the project’s time constraints.  
  
In this setup, the master node pre-computes the area of the output image.  When it has the 
geographic and raster bounds of the image, it sends this information to the slave nodes so 
they can store the coordinates for future processing.  The master node then dispatches the 
work units to the slave nodes.  These work units are the y-values of the scanlines of the 
output image.  The slave nodes will then use either interpolation or straight GCTPC calls 
to generate their assigned scanlines.  They do this by performing a series of reverse 
projections.  The coordinates are converted to raster space and then generated from the 
original image data.   When finished, the slave nodes return their processed scanline to 
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the master node, which outputs it to a GeoTIFF file.  If any work remains, the master 
node will continue to dispatch scanlines until the output projection is finished.  
  
Testing 
 
The first test of any interpolation system is to check its accuracy against several known 
values.  Mesh-based interpolation of geospatial data works by defining a mesh of a fixed 
set of input points that are obtained by projecting them with GCTPC and then using a 
subset of these points to interpolate the rest of the values in each local area.  Generally, 
the points within a grid cell are interpolated on the basis of grid-cell corner point values.  
The number of input points and the geographic size of the mesh then affect the accuracy 
and stability of the particular interpolator used.  To get a good range of accuracy tests for 
each interpolator, a comparison test was constructed in which control points were 
projected first with mesh-based interpolation and then compared with the same point 
projected with GCTPC.  After projection, the distance (Euclidean norm) was computed 
between the interpolator-projected point and the GCTPC-projected point.  This test was 
repeated for each interpolator examined using several map projections, different mesh 
sizes, and various numbers of input grid points.  
  

Table 1. Average interpolator error on a one-degree by one-degree area 
  

  

Interpolator 
Type  Grid Size 

Average Error in 
Meters  

Bicubic  4x4  2.17E-04 
Bilinear  500x500 2.70E-04 
Least Squares Plane 500x500 3.76E-04 
Bicubic  10x10  1.35E-03 
Bicubic  100x100 1.51E-03 
Bilinear  100x100 6.87E-03 
Bicubic  500x500 8.81E-03 
Least Squares Plane 100x100 9.56E-03 
Bilinear  10x10  8.31E-01 
Least Squares Plane 10x10  1.16E+00 
Bilinear  4x4  7.48E+00 
Least Squares Plane 4x4  1.04E+01 
Bicubic Splines  4x4  1.24E+06 
Bicubic Splines  10x10  1.79E+06 
Bicubic Splines  100x100 2.03E+06 
Bicubic Splines  500x500 2.03E+06 
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The above table is sorted from best to worst accuracy.  It illustrates how well some of the 
interpolation methods are able to approximate the projection equations.  The average 
error is mathematically calculated by taking the average error of the same area projected 
to different coordinate systems.  The grid size is the mesh size that was used in the 
interpolation.  

  
To assess the relative speed of each interpolator a similar test was formulated.  In this 
test, a DOQQ from the Manhattan data was projected to different systems using various 
interpolators with a fixed number of input mesh points.  The same DOQQ was then 
projected using GCTPC, and the time required to complete both operations was 
compared.  These tests used the DOQQ files for the relative speeds as they allowed 
testing to be completed in a reasonable amount of time. 
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Figure 1.  Runtime comparisons for a DOQQ. 
 
 
Figure 1 shows the differences in the relative speeds of the interpolation methods for 
various projections.  Each interpolation method differs in terms of mathematical 
complexity that becomes amplified as the numbers of mesh nodes increase.  Bilinear 
interpolation, for example, scales fairly well with increasing grid sizes.  Others, such as 
bicubic and least squares, tend to experience an almost exponential increase in runtime as 
the number of grid points is increased.  
  
With the error and time results, a determination could be made as to which interpolation 
method provided the best accuracy and fastest runtime.  For accuracy, bilinear and 
bicubic interpolations provide the lowest mathematical error.  The deciding factors, then, 
are speed and scalability.  As can be seen in Figure 1, bilinear interpolation scales very 
well as the grid size increases.  Bicubic interpolation, while producing the lowest error, is 
also much more computationally intensive than bilinear methods.  These issues led to the 
decision to use bilinear interpolation as the method of choice for all of the distributed 
time trials.  
  
The next test compared the relative speed increase between the distributed and 
conventional designs in real-world data processing.  In this test, the 1.3-gigabyte 
composite GeoTIFF of the Manhattan dataset was used as the input to the system.  This 
image was projected to several different coordinate systems, and the time between 
distributed and conventional designs was compared.  However, speed trials performed in 
this test used only the best (speedup vs. accuracy) interpolator, as well as GCTPC with no 
interpolation.   Additionally, timings on the cluster were done with varied numbers of 
processing nodes to examine how the addition of processing nodes affected overall 
runtime.  The following charts show the results of the time trials for the cluster, as well as 
for single-threaded applications.  
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Figure 2.  Timings for UTM to Transverse Mercator conversion.  

 
Figure 2 shows the timings for performing a coordinate conversion from the Universal 
Transverse Mercator (UTM) to a different Transverse Mercator projection for the large 
GeoTIFF.  The data points show the timings for various numbers of nodes, and the curves 
are power regression curves fit through the data points.  Along the left edge of the figure, 
the timings for a single-threaded version of the conversion software are also shown.  The 
curve fit functions allow for a rough estimate of the speed increase gained by adding a 
certain number of nodes.  
  
Figure 2 illustrates some common traits of parallelism.  Many data-bound parallel 
applications will follow such a curve, where the speed increases of parallelism begin to 
level off past a certain number of nodes.  This directly follows the Law of Diminishing 
Returns (Cannan 2001), where the cost of adding more nodes will eventually begin to 
outweigh the benefits of adding more nodes.  The figure also shows that a master node 
with one processing node will take more time to run than a single-threaded version of the 
software.  This is a direct result of the overhead that is occurred by processing the data 
over the network and will be further discussed later in this paper.  
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Figure 3.  Timings for UTM to Polyconic conversion.  

 
The data points in Figure 3 show that the GCTPC timings are different from those for the 
UTM to Transverse Mercator projection conversions.  This is expected, as the pure 
GCTPC cell-by-cell conversions have to perform different mathematical equations for the 
different projection systems.  These equations have differing levels of complexity that 
will affect the amount of time it takes them to run on a processor.  
  
The bilinear interpolation, on the other hand, runs in almost exactly the same amount of 
time for both the Polyconic and the Transverse Mercator coordinate conversions.  This is 
also expected, as the interpolations are running through the same series of mathematical 
approximations for both conversions.  This is the benefit of function approximation.  
Instead of performing different equations for each projection system, the interpolator is 
merely performing a best fit to the input data, regardless of the type of coordinate system.  
  
Discussion 
 
 
Varying the number of nodes during processing produced power curves that allowed 
predictions of runtime improvements that were based on the number of nodes added.  The 
next figure presents these data, and there are some interesting observations and comments 
to be made about increasing the number of nodes.  
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Figure 4.  Polyconic runtime predictions. 
 
As more nodes are added to the cluster, they begin to have a diminishing impact on the 
overall runtime of the system.  Figure 4 shows the runtime curve for the conversion from 
the UTM to Polyconic coordinate systems predicted to forty-five nodes.  The curves 
become nearly asymptotic as they approach a certain minimum runtime.  They also both 
get fairly close to one another as more and more nodes are added.  This suggests that 
given enough nodes, pure GCTPC-based projection conversions may be done in almost 
the same time that it takes to interpolate them.  The curves, however, may well be 
misleading.  
  
The graph of runtimes per number of nodes is more than likely that of a very flattened 
parabola than that of a power curve.  The reason is that up to a certain point, adding more 
nodes will approach a minimum runtime and overpower the effects of network overhead.  
But as more and more nodes are added, the complexity of the system increases.  The 
overhead from transmitting data over the network may begin to have a significant impact 
on the runtime.  When a certain point is reached, the cumulative overhead may actually 
begin to increase the runtime of the system.  A small-scale example of this may be when 
there is only one processing node combined with the master node.  As Figure 3 shows, 
this setup is actually less efficient at processing than a single-threaded system owing to 
the increased network overhead.  
  
Several questions arose when designing the distributed version of the software.  The 
primary issue was how to efficiently distribute the processing.  The main options were 
either to develop distributed versions of the map projection algorithms or to distribute the 
data processing among the nodes.  Runtime was a major constraint on what method to 
use, but consideration of the problem produced other reasons not to distribute the map 
projection algorithms themselves.  
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Distributed processing works best when there is a natural partitioning of the problem and 
each partition can be processed in a relatively independent manner.  This is the 
concurrency requirement discussed earlier.  As an example, consider the problem of 
summing all of the numbers from one to 100 billion.  A natural partitioning scheme here 
would be to break the problem into smaller sums and add all of the sums at the end.  Ten 
nodes could each sum ten billion numbers and add the sums together at the end.  The key 
is that while the nodes are summing their partition, they do not require any results from 
the other processing nodes.  Only at the end is there a communication of results.  
  
With the map projection equations, such a partitioning does not exist.  The 
implementation of these projections is a chain of algorithms that are used to go from one 
coordinate system to another.  There is a very tight coupling between the inputs of one 
algorithm and the results of the previous algorithm.  Also, a lot of looping is involved in 
the code, where a loop pass depends on the values of the previous passes.  This would 
seriously degrade performance, as the output from one part of an algorithm would need to 
be encoded and transmitted to another node that is performing the next part of the 
algorithm.  It may even be the case that parallelizing the map projection algorithms on a 
multiprocessor machine may be inefficient due to communications overhead between 
steps.  The overhead of transmission would be very great if done each time the individual 
algorithms are run.  
  
Another problem was discovered during this study concerning network congestion.  In 
the case of converting a DOQQ from the UTM system to a State Plane Coordinate 
System, the nodes were finishing their processing so quickly that they ended up flooding 
the network when trying to return their processed scanlines to the master node.  Flooding 
is a term used to describe a condition in which a network is suffering from a massive 
number of transmission collisions.  A collision occurs when multiple nodes try to send 
data over the network at the same time.  In the case of an Ethernet switch, the other nodes 
must wait until the node they are trying to communicate with finishes its current 
transmission or reception.  This resulted in such an extreme slowdown in processing that 
a single-threaded projection program finished much faster than the distributed version.  
Flooding was also observed when performing other coordinate system conversions and 
could have led to a processing slowdown in those cases as well.  
  
There are several possible solutions to this problem, but none appear to be the proverbial 
“silver bullet.”  Multiple input/output nodes could be used for the data processing.  
Ethernet switches can support multiple node-to-node communications at the same time.  
Multiple I/O nodes would allow multiple processing nodes to return their data at the same 
time, but all of the other nodes would still be stalled as they waited to get a connection to 
an I/O node.  Flooding would still be an issue, as some of the nodes would be vying with 
each other for access to their assigned I/O node.  This also means that there would be 
fewer nodes available to do the actual processing work.  
  
Another option would be for each node to hold its results until the master node requests 
them.  This would work by storing the processed scanlines in a temporary file, as there 
would be too much data to cache them in physical memory.  The problem with this 
method comes from the fact that the master node would suffer from data starvation while  
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trying to create the output file.  This happens because the main node must wait for 
requested data to be sent from the slave nodes.  
  
The fundamental problem is that efficiently processing large amounts of data over a 
network requires further study.  Methods exist that work well in providing the capability 
to handle large numbers of I/O requests, but these methods often are not suitable for 
handling very large amounts of data that must be passed over the network.  The problem 
arises because these methods typically split a file across multiple disks on multiple 
machines.  This can cause multiple I/O machines to hold the parts that several processing 
nodes need, generating increased network traffic as there are more nodes that must 
communicate.  
  
There were also some problems noticed with how the Linux 2.2 series kernel handled 
virtual memory.  Most modern operating systems implement some type of virtual 
memory, commonly known as swap files.  Virtual memory systems use permanent 
storage to free up physical memory by allowing the operating system to temporarily 
move processes from physical memory to the permanent storage device.  These are 
generally processes that have not run in a long time or that are waiting for some other 
event to happen.  Operating systems also use as much physical memory as possible to 
cache data that have been read from permanent storage.  This allows faster access to the 
information if a process tries to read it again.  The size of this cache usually shrinks as the 
memory demands of running processes increase.  
  
In the case of the Linux 2.2 kernel installations on the cluster, the operating system 
seemed to be spending a large amount of time swapping processes in and out of virtual 
memory.  It was observed that the disk cache constantly stayed at a very large size 
instead of shrinking as process memory demands grew.  The resulting swapping 
sometimes took up a significant amount of processor time.  
  
There is another relevant theory concerning processing large amounts of data.  Dedkov 
and Eadline have proposed that given two multiple processor machines that are identical 
except one has slower processors, the slower machine will process I/O-dominant 
applications more efficiently than the machine with the faster processors.  Although this 
may seem counterintuitive, it can be explained by understanding the inner workings of a 
computer.  Everything in a computer is connected by a system bus, including the 
processors on a multiprocessor machine.  Multiple processors must spend a lot of time 
synchronizing with each other over this bus.  With high-speed processors, there is a great 
deal more traffic per time period than with slower processors.  The problem arises 
because the data to be processed must also travel over this system bus, whether such data 
come from a network device or from a permanent storage medium.  The greater amount 
of cross-processor traffic with high-speed processors reduces the amount of bandwidth 
that is available for passing data along the bus.  This could result in data starvation as the 
high-speed processors end up waiting for data to reach them.  Slower speed processors 
would not flood the bus as much and would therefore more efficiently process the large 
amounts of data passed to them.  
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Conclusion 
 
Technology has finally reached the point where it can offer large amounts of computing 
power for the processing of digital geospatial data.  By using modern technology such as 
Beowulf clusters, these data can be processed much faster than is possible with typical 
workstation computers in use today.  Processing time can be critical for applications such 
as hazard response or planning.  
  
The increased processing facilities of distributed processing also allow larger digital 
datasets to be more easily processed than was possible before.  Not only can larger areas 
be examined, but finer resolution data can also be processed more easily.  This type of 
processing can benefit activities such as urban dynamics modeling and prediction 
activities.  These activities can benefit because the increase in resolution and detail can 
produce better predictions of urbanization.  
  
Several issues must be examined when developing these types of systems.  The first issue 
is how to distribute processing across a network.  Although many techniques are 
available, the master/slave approach is well suited for data-bound distributed processing 
applications.  As map projection algorithms are very tightly coupled, there is no easy way 
to distribute the projection algorithms themselves.  As a result, a better approach may be 
to distribute the actual data processing.  
  
The primary issue is distributed processing of geospatial data involves large amounts of 
data that must be dealt with.  Processing these data over a network can lead to severe 
congestion problems that can actually slow down the runtime of an application.  As a 
result, the systems may not be processing information as efficiently as possible.  This is 
an important issue to research, as most of the computer science work in distributed 
processing has dealt primarily with processor-bound applications.  Solutions to the 
network congestion problem can lead to systems that can process digital data more 
quickly than is currently possible with today’s clusters.  
  
Care must be taken when designing a cluster to project digital geospatial data.  
Purchasing a large number of high-end machines can result in a cluster that performs no 
better than one that was built for a fraction of the cost with half the number of machines.  
Many techniques will begin to see diminishing speed improvements past a certain 
number of processing nodes on the cluster.  Because of this, organizations must first 
evaluate what they intend to do with their system before they begin throwing machines at 
a problem.  
  
Distributed processing is a technique that can offer many advantages to processing digital 
geospatial data.  The runtime improvements that it can bring to projecting data can assist 
projects from hazards planning to decision support systems.  Remote sensing systems 
have evolved to the point that more information is being produced than a typical desktop 
system can easily process.  This is especially true as the size of typical datasets increases 
from megabytes to gigabytes of information. 
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Future Work 
  
More research is needed on efficient methods for the distributed processing of large 
amounts of data.  Finding ways to overcome the problem of massive network collisions 
will enable large datasets to be more efficiently processed.  In the case of map 
projections, the only way to effectively speed up processing is to increase the efficiency 
of data passing between nodes on the network.  
  
Research into using parameterized matrix operations for certain coordinate systems 
conversions should also be investigated more thoroughly.  This method may well work 
for certain coordinate conversions at certain scales.  Coordinate system transformations 
such as UTM to State Plane may benefit from this type of algorithm.  A cluster-based 
system might be better able to handle large numbers of small-scale matrix operations that 
are necessary to treat certain conversions as an image processing application.  
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