Appendix B2

Draft ICCVAM Recommended Protocol for Future Studies Using the Mono Mac 6 (MM6)/Interleukin-6 (IL-6) Test Method [This Page Intentionally Left Blank]

1	Draft ICCVAM Recommended Protocol for Future Studies Using the Mono Mac 6
2	(MM6)/Interleukin-6 (IL-6) Test Method
3	
4	PREFACE
5	
6	This proposed protocol for the detection of pyrogenicity is based on information obtained
7	from 1) The European Centre for the Validation of Alternative Methods (ECVAM) MM6/IL-
8	6 Background Review Document (BRD) presented in Appendix A of the draft Interagency
9	Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Pyrogenicity
10	Test Method BRD, which includes ECVAM Standard Operating Procedures (SOPs) for the
11	MM6/IL-6 test method, and 2) Information provided to the National Toxicology Program
12	(NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods
13	(NICEATM) by Dr. Thomas Hartung, Head of ECVAM. The ECVAM SOPs are based on
14	the method published by Taktak et al. (1991). A table of comparison between the draft
15	ICCVAM recommended protocol and the ECVAM SOPs is provided in Table 1. Future
16	studies using the MM6/IL-6 test method may include further characterization of the
17	usefulness or limitations of the assay for regulatory decision-making. Users should be aware
18	that the proposed test method protocol might be revised based on additional optimization
19	and/or validation studies. ICCVAM recommends that test method users routinely consult the
20	ICCVAM/NICEATM website (<u>http://iccvam.niehs.nih.gov/</u>) to ensure that the most current
21	test method protocol is used.

22		
23		
24		
25		
26		
27		
28		
29		
30		
31		
32		
33		
34		
35	[This Page Intentionally Left Blank]	
36		
37		
38		

39 Table 1 Comparison of Draft ICCVAM Recommended Test Method Protocol with the ECVAM SOP for the Mono Mac

40

6 (MM6)/Interleukin-6 (IL-6) Pyrogen Test Method

Protocol Component	Draft ICCVAM Protocol	ECVAM SOP	ECVAM Validation SOP
Test Substance Test neat or at minimal dilution that produces no interference		Same as ICCVAM protocol	Test at MVD
	NSC (1)	Same as ICCVAM protocol	Same as ICCVAM protocol
	EC (5)	Same as ICCVAM protocol	Same as ICCVAM protocol
Incubation Plate	TS (14)	Same as ICCVAM protocol	TS (2) x EC (5) spikes
(number of control or test groups	$PPC^{1}(0)$	Same as ICCVAM protocol	PPC (2)
at n=4 each)	$NPC^{1}(0)$	Same as ICCVAM protocol	NPC (2)
	PC (0)	Same as ICCVAM protocol	PC (1)
	NC (0)	Same as ICCVAM protocol	NC (1)
ELISA Plate	Includes seven point IL-6 SC and blank in duplicate	Same as ICCVAM protocol	Same as ICCVAM protocol
Decision Criteria for Interference	0.5 x Median OD_{450}^2 of 1 EU/mL EC <2x Median OD_{450} of 1 EU/mL EC	Same as ICCVAM protocol	Not applicable (tested at MVD)
	Mean OD_{450}^{2} of PPC is 50% to 200% of 0.5 EU/mL EC	Same as ICCVAM protocol	Same as ICCVAM protocol
	Mean OD_{450} of NSC ≤ 0.15	Same as ICCVAM protocol	Mean OD_{450} of NSC ≤ 0.20
	Not included	Outliers rejected using Dixon's text (p≥0.5)	Outliers rejected using Dixon's text (p≥0.5)
Assay Acceptability Criteria	Not included	Mean OD_{450} EC > NSC (2SD with n- 1 weighting)	Mean OD ₄₅₀ PC>LOQ ³
	Quadratic function of IL-6 SC $r^2 \ge 0.95$	Same as ICCVAM protocol	Same as ICCVAM protocol
	EC SC produces OD ₄₅₀ values that ascend in a sigmoidal concentration response	Same as ICCVAM protocol	Mean OD_{450} of each EC > Mean OD_{450} of next lower EC concentration (minimum of 4 data points needed for valid SC)
Decision Criteria for Pyrogenicity	Mean OD ₄₅₀ ² of TS > Mean OD ₄₅₀ of 0.5 EU/mL EC	EC SC data transformed to 4- parameter logistical model by an in- house program and the linear mean square is calculated. TS pyrogen content is compared with the ELC ⁴ using confidence limits for significance. Dixon's test is used to reject outliers.	EC SC data transformed to 4- parameter logistical model by an in- house program and the linear mean square is calculated. TS pyrogen content is compared with the ELC ⁴ using confidence limits for significance. Dixon's test is used to reject outliers.

- 41 Abbreviations: EC = Endotoxin control; ELC = Endotoxin Limit Concentration; LOQ = Limit of Quantification; MVD = Maximum Valid Dilution; NC =
- 42 Negative Control; NPC = Negative Product Control; NSC = Normal saline control; PC = Positive control; PPC = Positive Product Control; SC = Standard curve;
- 43 SD = Standard Deviation; TS = Test substance
- 44 ¹ PPC and NPC are evaluated during the interference test.
- 45 ² Median or mean OD₄₅₀ values are corrected (i.e., reference filter reading, if applicable, and NSC are subtracted).
- 46 ³ LOQ is the mean OD_{450} of the NSC + 10xSD mean OD_{450} of the NSC.
- 47 ⁴ Where unknown, the ELC is calculated (e.g., Based on a rabbit sensitivity of 5 EU/kg, for a product injected at 10 mL/kg, the detection limit is 5 EU/10 mL/kg
- 48 49 or 0.5 EU/mL/kg, or an ELC of 0.5 EU/mL).
- 50

51 **1.0 PURPOSE AND APPLICABILITY**

52 The purpose of this protocol is to describe the procedures used to evaluate the presence of a 53 pyrogen (i.e., Gram-negative endotoxin) in a test substance. The presence of Gram-negative 54 endotoxin is detected by its ability to induce cytokine IL-6 release from MM6 cells. The 55 quantity of IL-6 released is obtained using an enzyme-linked immunosorbent assay (ELISA) 56 that includes monoclonal or polyclonal antibodies specific for IL-6. Release of this cytokine 57 is measured by incubation of the MM6 cells with test substances or controls (i.e., positive, 58 negative). The amount of pyrogen present is determined by comparing the values of 59 endotoxin equivalents produced by MM6 cells exposed to the test substance to those exposed to an internationally-harmonized Reference Standard Endotoxin (RSE)¹ or an equivalent 60 standard expressed in Endotoxin Units (EU)/mL. Based on a rabbit threshold pyrogen dose of 61 62 0.5 EU/mL, which was established in a retrospective evaluation of rabbit pyrogen test (RPT) 63 data, a test substance is considered pyrogenic if it induces a level of IL-6 release equal to or 64 greater than 0.5 EU/mL.

65 The focus of this protocol is on the use of the MM6/IL-6 test method specifically for the

detection of Gram-negative endotoxin in parenteral pharmaceuticals. The relevance and
reliability for non-endotoxin pyrogens (e.g., lipoteichoic acid) has not been demonstrated in a
formal validation study.

69 2.0 SAFETY AND OPERATING PROCEDURES

All procedures for procurement of eligible blood donors and blood donations should follow the regulations and procedures set forth by institutional guidelines for utilization of human substances, which include but are not limited to blood, tissues, and tissue fluids. Standard laboratory precautions are recommended, including the use of laboratory coats, eve

¹ RSEs are internationally-harmonized reference standards (e.g., WHO *E. coli* Lipopolysaccharide [LPS] 94/580 [0113:H10:K-]; USP RSE Lot G3E069; FDA Lot EC-6). Equivalent endotoxins include commercially available *E. coli*-derived LPS Control Standard Endotoxin (CSE) or other *E. coli* LPS preparations that have been calibrated with an appropriate RSE.

- 74 protection, and gloves. If necessary, additional precautions required for specific study
- substances or hazardous chemicals will be identified in the Material Safety Data Sheet

76 (MSDS).

- 77 The stop solution used in the ELISA kit is acidic and corrosive and should be handled with
- the proper personal protective devices. If this reagent comes into contact with skin or eyes,
- 79 wash thoroughly with water. Seek medical attention, if necessary.
- 80 Tetramethylbenzidine (TMB) solution contains a hydrogen peroxide substrate and 3, 3', 5,
- 5'-TMB. This reagent is a strong oxidizing agent and a suspected mutagen. Appropriate
- 82 personal protection should be used to prevent bodily contact.
- 83 Bacterial endotoxin is a toxic agent (i.e., can induce sepsis, shock, vascular damage,
- 84 antigenic response) and should be handled with care. Skin cuts should be covered and
- 85 appropriate personal protective devices should be worn. In case of contact with endotoxin,
- 86 immediately flush eyes or skin with water for at least 15 min. If inhaled, remove the affected
- 87 individual from the area and provide oxygen and/or artificial respiration as needed. Skin
- 88 absorption, ingestion, or inhalation may produce fever, headache, and hypotension.

89 **3.0 MATERIALS, EQUIPMENT AND SUPPLIES**

90 **3.1** Source of Cells

91 The MM6 cell line is a human monocytic cell line originally described by Professor H.W.L.

- 92 Ziegler-Heitbrock (Institute for Immunology, University of Munich, Munich, Germany). A
- 93 Master Cell Bank and a Working Cell Bank have been established at the National Institute
- 94 for Biological Standards and Control (NIBSC), from which the MM6 cells can be purchased.

95 **3.2** Equipment and Supplies

For all steps in the protocol, excluding the ELISA procedure, the materials that will be in
close contact with samples (e.g., pipet tips, containers, solutions) should be sterile and free
from detectable pyrogens.

99	3.2.1	Utilization of MM6 cells
100	3.2.1.1	Equipment
101		• Centrifuge
102		• Hemacytometer
103		• Hood; Bio-safety, laminar flow (recommended)
104		• Incubator; cell culture $(37\pm1^{\circ}C + 5\% CO_2)$
105		Inverted Microscope
106		• pH meter
107		• Pipetter; multichannel (8- or 12-channel)
108		• Pipetters; single-channel adjustable (20, 200, and 1000 μ L)
109		Repeating pipetter
110		• Vortex mixer
111		• Water bath
111 112	3.2.1.2	• Water bath <i>Consumables</i>
	3.2.1.2	
112	3.2.1.2	Consumables
112 113	3.2.1.2	<i>Consumables</i>Centrifuge tubes; nonpyrogenic, polystyrene (15 and 50 mL)
112 113 114	3.2.1.2	 <i>Consumables</i> Centrifuge tubes; nonpyrogenic, polystyrene (15 and 50 mL) Cryotubes; screw-cap (2 mL)
 112 113 114 115 	3.2.1.2	 <i>Consumables</i> Centrifuge tubes; nonpyrogenic, polystyrene (15 and 50 mL) Cryotubes; screw-cap (2 mL) Combitips; repeating pipetter (1.0 and 2.5 mL)
 112 113 114 115 116 	3.2.1.2	 <i>Consumables</i> Centrifuge tubes; nonpyrogenic, polystyrene (15 and 50 mL) Cryotubes; screw-cap (2 mL) Combitips; repeating pipetter (1.0 and 2.5 mL) Filters; sterile, 0.22 μm
 112 113 114 115 116 117 	3.2.1.2	 <i>Consumables</i> Centrifuge tubes; nonpyrogenic, polystyrene (15 and 50 mL) Cryotubes; screw-cap (2 mL) Combitips; repeating pipetter (1.0 and 2.5 mL) Filters; sterile, 0.22 μm Flasks; tissue culture
 112 113 114 115 116 117 118 	3.2.1.2	 <i>Consumables</i> Centrifuge tubes; nonpyrogenic, polystyrene (15 and 50 mL) Cryotubes; screw-cap (2 mL) Combitips; repeating pipetter (1.0 and 2.5 mL) Filters; sterile, 0.22 μm Flasks; tissue culture Phosphate buffered saline (PBS); sterile
 112 113 114 115 116 117 118 119 	3.2.1.2	 <i>Consumables</i> Centrifuge tubes; nonpyrogenic, polystyrene (15 and 50 mL) Cryotubes; screw-cap (2 mL) Combitips; repeating pipetter (1.0 and 2.5 mL) Filters; sterile, 0.22 μm Flasks; tissue culture Phosphate buffered saline (PBS); sterile Pipets; sterile, glass

123		• RPMI-1640 cell culture medium; supplemented as described in Section 4.3 to
124		yield RPMI-Complete (RPMI-C)
125		• Tips; pipetter, sterile, pyrogen-free (20 and 200 μL)
126		• Tubes; polystyrene
127	3.2.2	ELISA
128	3.2.2.1	Equipment
129		Microplate mixer
130		• Microplate reader (450 nm with an optional reference filter in the range of
131		540-590 nm)
132		Microplate washer (optional)
133		Multichannel pipetter
134	3.2.2.2	Consumables
135		Container; storage, plastic
136		• Deionized water; nonsterile
137		• Plates; microtiter, nonpyrogenic, 96-well, polystyrene, tissue culture
138		• Pyrogen-free water (PFW)
139		Reservoirs; fluid
140		• Tips; pipetter, nonsterile
141		• Tubes; polystyrene (12 mL)
140	2 2 2 2	

142 3.2.2.3 ELISA Kit

143 An ELISA that measures IL-6 release from MM6 cells is used. A variety of IL-6 ELISA kits

- 144 are commercially available and the IL-6 ELISA procedure outlined in this protocol is
- 145 intended to serve as an example for using an ELISA kit. If the user prefers to prepare an in-
- 146 house ELISA, then additional reagents would be required. The IL-6 ELISA should be
- 147 calibrated using an IL-6 international reference standard (e.g., WHO 89/548) prior to use.
- 148 The IL-6 cytokine assay kits do not provide the RSE or endotoxin equivalent; therefore, this

149 reagent must be purchased separately. Results obtained using these products are subject to

150 the assay acceptability and decision criteria described in **Sections 8.0** and **9.0**. IL-6 ELISA

151 kit components may include the following:

152	• ELISA plates coated with anti-human IL-6 capture antibody; monoclonal or
153	polyclonal
154	Buffered wash solution
155	• Dilution buffer
156	Enzyme-labeled detection antibody
157	• Human IL-6 reference standard
158	• Pyrogen-free saline (PFS)
159	• Stop solution
160	TMB/substrate solution
161	3.3 Chemicals
162	• Endotoxin (e.g., WHO E. coli LPS 2nd International Standard 94/580; USP
163	RSE E. coli LPS Lot G3E069; USP RSE E. coli Lot G; FDA E. coli Lot EC6)
164	3.4 Solutions
165	• RPMI-C cell culture medium
166	4.0 ASSAY PREPARATION
167	All test substances, endotoxin, and endotoxin-spiked solutions should be stored at 4°C.
168	4.1 Endotoxin Standard Curve
169	An internationally harmonized RSE or equivalent is used to generate the endotoxin standard
170	curve. The use of any other <i>E. coli</i> LPS requires calibration against a RSE using the
171	MM6/IL-6 test method.
170	
172 173	A standard endotoxin curve consisting of a Normal Saline Control (NSC) and five RSE concentrations (0.125, 0.25, 0.50, 1.0, and 2.0 EU/mL) are included in the incubation step

173 concentrations (0.125, 0.25, 0.50, 1.0, and 2.0 EU/mL) are included in the incubation step

- 174 (refer to **Table 4-1**) and then transferred to the ELISA plate. To prepare the endotoxin
- 175 standard curve, first obtain a 2000 EU/mL stock solution by addition of PFW to the
- 176 lyophilized content of the stock vial by following the instructions provided by the
- 177 manufacturer (e.g., for a vial containing 10,000 EU, 5 mL of PFW is added). To reconstitute
- 178 the endotoxin, the stock vial should be vortexed vigorously for at least 30 min or sonicated in
- a bath sonicator for 5 min. The stock solution is stable for 14 days when stored at 2 to 8°C.
- 180 An endotoxin standard curve is prepared by making serial dilutions of the stock solution in
- 181 PFS as described in **Table 4-1**.

182 **Table 4-1 Preparation of Endotoxin Standard Curve**

Stock Endotoxin EU/mL	μL of Stock Endotoxin	µL of PFS	Endotoxin Concentration EU/mL
$2000^{1,2}$	20	1980	20^{3}
20	100	900	2.0
2.0	500	500	1.0
1.0	500	500	0.50
0.50	500	500	0.25
0.25	500	500	0.125
0	0	1000	0

183 Abbreviations: EU = Endotoxin units; PFS = Pyrogen-free saline

184 Each stock tube should be vortexed vigorously prior to its use to make the subsequent dilution.

¹A 2000 EU/mL stock solution of endotoxin is prepared according to the manufacturer's instructions.

² The stock solution of USP RSE may be stored in aliquots and kept at -20°C for up to 6 months. Do not store

187 the endotoxin at -80° C.

188 ³ This concentration is not used in the assay.

189

1904.2Test Substances

191 Liquid test substances should be tested neat or, if interference is detected (see Section 4.2.1),

diluted in PFS. Solid test substances should be prepared as solutions in PFS or, if insoluble in

193 saline, dissolved in DMSO then diluted up to 0.5% (v/v) with PFS provided that this

194 concentration does not interfere with the assay. The test substances should be vortexed

195 vigorously for at least 30 min or sonicated in a bath sonicator for 5 min.

196 4.2.1 Interference Testing

- 197 Interference testing must be carried out on any test sample for which no interference
- 198 information is available. The purpose of the interference test is to determine the lowest
- 199 dilution (i.e., highest concentration) of a test substance from which an endotoxin spike can be

detected (i.e., based on the decision criteria described in Section 4.2.1.2). However, to ensure
a valid test, a test substance should not be diluted beyond its Maximum Valid Dilution
(MVD).

- 203 For many marketed products, values for the MVD and the Endotoxin Limit Concentration
- 204 (ELC) are published in the U.S. Pharmacopeia, the European Pharmacopoeia, and/or Food
- and Drug Administration (FDA) guidelines. However, if one or both of these values are not
- available, then calculation of the MVD is dependent on the ELC (see Section 12.3). If
- 207 unknown, the ELC can be approximated by dividing the maximum hourly dose of the
- 208 product by the hourly dose received per patient. For example, if a product is used at an
- hourly dose of 100 mg per patient, then the ELC would be 350 EU/100 mg or 3.5 EU/mg.

210 4.2.1.1 Reference Endotoxin for Spiking Test Substances

211 The WHO-LPS 94/580 [E. coli O113:H10:K-] or equivalent international RSE (e.g., USP

212 G3E069, FDA EC-6) is recommended for preparation of the endotoxin control (EC). If a

- 213 different *E. coli* LPS is used and the potency relative to the RSE is not provided, then each
- lot must be calibrated against the RSE in the MM6/IL-6 test method. For interference testing,

an endotoxin standard curve (see Section 4.1) should be included on each plate.

- 216 4.2.1.2 Spiking Test Substances with Endotoxin
- 217 For interference testing, non-spiked and endotoxin-spiked test substances are prepared in
- 218 microplate wells (n=4 replicates) and an *in vitro* pyrogen test is performed. Either RPMI-C or
- a fixed concentration (a concentration selected from the middle of the EC standard curve) of
- the RSE (i.e., 1 EU/mL) in RPMI-C is added to the test substance in serial two-fold dilutions.
- 221 An illustrative example of endotoxin spiking solutions is shown in **Table 4-2.** For non-spiked
- solutions, 150 µL of RPMI-C and 50 µL of the test substance (neat or at serial dilution) are
- added to a well. Then, 50 µL of MM6 cells are added and the well contents mixed are mixed.
- 224 Endotoxin-spiked solutions are prepared by adding 100 μL of RPMI-C, 50 μL of the test
- substance (neat or at serial dilution), and 50 µL of an endotoxin spike solution (1.0 EU/mL).
- 226 MM6 cells (50 µL) are then added and the well contents are mixed (see example presented in
- 227 **Table 4-2**).

- 229 Table 4-2 Preparation of Endotoxin Spiked and Non-Spiked Solutions for
- 230 Determination of Test Substance Interference in the Incubation and
- 231 ELISA Test Systems

Samula Addition	Spiked	Non-spiked
Sample Addition	μL/we	
RPMI-C (containing 2% FCS)	100	150
Endotoxin spike solution ²	50	0
Test substance (neat and each serial dilution)	50	50
MM6 cells ³	50	50
Total ⁴	250	250

- Abbreviations: MM6 cells = Mono Mac 6 cells
- 233 ¹ n=4 replicates each

² Endotoxin concentration is 1.0 EU/mL in RPMI-C.

 235 ³ MM6 cells are resuspended in RPMI-C (2.5 x 10⁶ cells/mL).

 4 A total volume of 250 µL per well is used for the incubation.

237

The lowest dilution of the test substance that yields an endotoxin spike recovery of 50% to

239 200% in the pyrogen test is determined. The optical density (OD) values of the endotoxin-

spiked and non-spiked test substances are calibrated against the endotoxin calibration curve.

241 The resulting EU value of the non-spiked test substance is subtracted from the corresponding

EU value of the endotoxin-spiked test substance at each dilution. The % recovery for each

sample dilution is then determined from the endotoxin spike solution concentration set to

244 100%. For example, consider the following interference test results in **Table 4-3**:

245 Table 4-3 Example of Interference Data Used to Determine Sample Dilution for

246 Assay

Sample Dilution	% Recovery of Endotoxin Control
None	25
1:2	49
1:4	90
1:8	110

247

Based on these results, the dilution of the test substance used in the *in vitro* pyrogen test would be 1:4 (i.e., the lowest dilution between 50% and 200% of the 1.0 EU/mL EC).

- 250 4.2.2 Interference with ELISA
- 251 If the data obtained from the experiment in **Section 4.2.1** suggests the presence of
- 252 interference, then a subsequent experiment similar to that described in Section 4.2.1 would

253 need to be performed to confirm that the test substance(s) does not directly interfere with the 254 ELISA. For this experiment, an ELISA would be performed in the absence of MM6 cells. 255 4.3 **Cell Culture Medium** 256 MM6 cells are maintained in RPMI-C. For use in the ELISA procedure, the concentration of fetal calf serum (FCS) is reduced to 2%. Each medium is prepared and stored as described by 257 258 the manufacturer. 259 4.3.1 **RPMI-C** Bovine insulin; 0.23 IU/mL 260 • FCS; heat-inactivated (50 mL or a 10% final concentration) 261 ٠ 262 ٠ HEPES buffer; 20 mM 263 L-Glutamine; 2 mM ٠ 264 MEM non-essential amino acids; 0.1 mM ٠ Oxaloacetic acid; 1 mM 265 ٠ Penicillin/streptomycin (10,000 IU/mL penicillin, 10 mg/mL streptomycin) 266 ٠ RPMI-1640 medium (500 mL) 267 ٠ Sodium pyruvate; 1 mM 268 • 269 4.3.2 Starting a Culture of MM6 Cells 270 To initiate a culture of MM6 cells, remove a vial of the primary stock from liquid nitrogen. 271 Thaw the vial on ice. Gently mix and transfer the cells to a 50 mL centrifuge tube and add 10 272 mL of RPMI-C. Centrifuge at 100 x g for 5 min at room temperature (RT). Remove the 273 supernatant and resuspend the cells in ice-cold RPMI-C. Centrifuge at 100 x g for 5 min at RT. Remove the supernatant and resuspend the MM6 cells in 2 mL of RPMI-C. Add 8 mL of 274 RPMI-C to a 25 cm^2 tissue culture flask and transfer the cell suspension to the flask. Place 275 the flasks in a cell culture incubator and maintain the cells at $37\pm1^{\circ}C + 5\%$ CO₂. 276

277 4.3.3 Propagation of MM6 Cells

To propagate the MM6 cells, transfer the MM6 cells to a 50 mL tube. Centrifuge at 100 x g for 8 min at RT. Remove the supernatant, resuspend the cell pellet in 4 mL of RPMI-C, and gently pipet up and down to mix. Transfer an aliquot of the cell suspension to new tissue culture flasks and add fresh RPMI-C to obtain a final concentration of 2 x 10^5 cells/mL. Place the flasks in a cell culture incubator and maintain the cells at $37\pm1^{\circ}C + 5\%$ CO₂.

283 4.3.4 <u>Preparation of a MM6 Cell Bank</u>

To initiate a bank of MM6 cells, centrifuge the cell culture(s) at 100 x g for 8 min at 4°C.

285 Remove the supernatant and resuspend the cells in FBS at 4°C. Adjust the cell concentration

to 4×10^6 cells/mL and store on ice for 10 min. Add an equal volume of ice-cold FBS

287 containing 10% dimethylsulfoxide (DMSO) drop-wise to the cell suspension (final

288 concentration is 2×10^6 cells/mL with 5% DMSO). Transfer the cell suspension to sterile,

pyrogen-free cryotubes (1 mL/tube). Place the tubes in a well-insulated polystyrene box and

store at -80°C or below for greater than 48 hr and then transfer to a liquid nitrogen container.

291 **5.0 CONTROLS**

292 **5.1** Negative Control

A negative control (e.g., RPMI-C) is included in each experiment in order to detect
nonspecific changes in the test system, as well as to provide a baseline for the assay
endpoints.

2965.2Solvent Control

297 Solvent controls are recommended to demonstrate that the solvent is not interfering with the 298 test system when solvents other than PFS are used to dissolve test substances.

299 **5.3 Positive Control**

- 300 An internationally standardized EC (e.g., WHO 94/580; USP G3E069; 0.5 EU/mL) is
- 301 included in each experiment to verify that an appropriate response is induced.

302 5.4 Benchmark Control

303 Benchmark controls may be used to demonstrate that the test method is functioning properly,

304 or to evaluate the relative pyrogenic potential of chemicals (e.g., parenteral pharmaceuticals,

305 medical device eluates) of a specific class or a specific range of responses, or for evaluating

306 the relative pyrogenic potential of a test substance. Appropriate benchmark controls should

307 have the following properties:

- consistent and reliable source(s) for the chemicals (e.g., parenteral
 pharmaceuticals, medical device eluates)
- structural and functional similarities to the class of the substance being tested
- known physical/chemical characteristics
- supporting data on known effects in animal models
- known potency in the range of response

314 **5.5 Positive Product Control (PPC)**

The PPC is a test substance diluted to a level that does not interfere with the test method and

does not exceed the MVD. The PPC is obtained by spiking a test substance with a known EC

317 (e.g., 1 EU/mL) and demonstrating that 50% to 200% of the EC is recovered.

318 5.6 Negative Product Control (NPC)

319 The NPC is the test substance diluted to the MVD and then spiked with PFS. It is the

- 320 negative control for the PPC.
- 321 6.0 EXPERIMENTAL DESIGN

322 6.1 Incubation with Test Samples and Measurement of IL-6 Release

- 323 6.1.1 Preparation of MM6 Cells for the Incubation Plate
- To perform an ELISA on the following day, obtain 30 to 50 mL of MM6 cell suspension
- from propagation flasks and centrifuge at 100 x g for 8 min at RT. Remove the supernatant,
- 326 resuspend the cell pellet in 3-5 mL of RPMI-C (containing 2% FCS for all ELISA
- 327 procedures), and gently pipet up and down to mix. Transfer aliquots of cells to new culture

- flasks and add RPMI-C to obtain a concentration of 4×10^5 cells/mL. Place the flasks in a cell 328
- culture incubator and maintain the cells at $37\pm1^{\circ}C + 5\%$ CO₂. In general, each 96-well assay 329
- plate requires approximately 10 mL of cell suspension at 2.5 x 10^6 cells/mL. 330
- 331 6.1.2 **Incubation Plate**
- 332 Test substances are prepared at a level of dilution that did not show interference with the test
- 333 system or for which it is known that interference does not occur. Each incubation plate can
- 334 accommodate an endotoxin standard curve, a NSC, and 14 test substances (see Table 6-1).

335 Table 6-1 **Overview of Incubation Plate Preparation in the MM6/IL-6 Test Method**

Number of Wells	Sample	RPMI-C	EC	Test Sample	MM6 ¹	Mix the samples; incubate	Mix the samples; immediately
			l	μL		overnight at	transfer to an ELISA plate ⁴
20^{2}	EC	100	50	0	100	37±1°C in a humidified	and run
4	NSC	150	0	0	100	atmosphere	ELISA or store plate at
56 ³	Test samples (1-14)	100	0	50	100	with 5% CO ₂ .	-20°C or -80°C.

Abbreviations: EC = Endotoxin control; NSC = Negative saline control; MM6 = Mono Mac 6 cell line 336 337

¹ MM6 cell concentration is 2.5×10^6 cells/mL.

338 ² Five EC concentrations (0.125, 0.25, 0.50, 1.0, and 2.0 EU/mL) in quadruplicate.

339 3 14 test samples (n=4 each) per plate.

340 ⁴ An IL-6 standard curve is prepared in Columns 11 and 12 on the ELISA plate. Therefore, 80 wells are

341 available for test samples and controls on the incubation plate.

343	6.1.3	Incubation Assay for IL-6 Release
344		Step 1. Refer to the suggested incubation plate template presented in Table 6-2 .
345		Step 2. Using a pipetter, transfer 100 μ L of RPMI-C into each well.
346		Step 3. Transfer 50 μ L of test sample into the appropriate wells as indicated in the
347		template.
348		Step 4. Transfer 50 μ L of the EC (standard curve) and the NSC controls in
349		quadruplicate into the appropriate wells according to the template.
350		Step 5. Transfer 100 μ L of a well-mixed MM6 cell suspension into each well.

³⁴²

- 351 **Step 6.** Place the covered plate in a tissue culture incubator for 16 to 24 hr at
- 352 $37\pm1^{\circ}$ C in a humidified atmosphere containing 5% CO₂.
- 353 Step 7. Remove 150 μL of the supernatant from each well, without disrupting the
 354 cells, and transfer to a new 96-well 'transfer' plate for the IL-6 ELISA.

555 Tuble 0 2 Theubation Flate Sample and Control Template	355	Table 6-2	Incubation Plate - Sample and Control Template
--	-----	-----------	--

	1	2	3	4	5	6	7	8	9	10	11	12
A	EC^1 2.0	EC 2.0	EC 2.0	EC 2.0	TS3	TS3	TS3	TS3	TS11	TS11	Void ³	Void
В	EC 1.0	EC 1.0	EC 1.0	EC 1.0	TS4	TS4	TS4	TS4	TS11	TS11	Void	Void
С	EC 0.50	EC 0.50	EC 0.50	EC 0.50	TS5	TS5	TS5	TS5	TS12	TS12	Void	Void
D	EC 0.25	EC 0.25	EC 0.25	EC 0.25	TS6	TS6	TS6	TS6	TS12	TS12	Void	Void
Е	EC 0.125	EC 0.125	EC 0.125	EC 0.125	TS7	TS7	TS7	TS7	TS13	TS13	Void	Void
F	NSC	NSC	NSC	NSC	TS8	TS8	TS8	TS8	TS13	TS13	Void	Void
G	TS1 ²	TS1	TS1	TS1	TS9	TS9	TS9	TS9	TS14	TS14	Void	Void
Н	TS2	TS2	TS2	TS2	TS10	TS10	TS10	TS10	TS14	TS14	Void	Void

356 Abbreviations: EC = Endotoxin control; NSC = Negative saline control; TS = Test substance

 $357 = {}^{1}$ EC value (e.g., EC 2.0) represents the endotoxin concentration in EU/mL.

358 ² TS number (e.g., TS 1) represents an arbitrary sequence for individual test substances.

359 ³ Columns 11 and 12 are reserved for the IL-6 standard curve on the ELISA plate (see **Table 6-3**).

362

6.2

ELISA to Measure IL-6 Release

363 6.2.1 <u>IL-6 Standard Curve</u>

An IL-6 standard supplied with the ELISA kit is used. IL-6 standards are typically supplied
in lyophilized form and should be reconstituted according to the manufacturer's instructions.
The stock solution should be diluted in RPMI-C to the following concentrations: 0, 62.5, 125,
250, 500, 1000, 2000, and 4000 pg/mL in volumes of at least 500 µL. Each well on the
ELISA plate will receive 50 µL of an IL-6 blank or standard.

369 6.2.2 <u>ELISA</u>

370 The manufacturer's instructions provided with the ELISA kit should be followed and a 371 typical experimental design is outlined below. If the user prefers to prepare an in-house 372 ELISA, then appropriate modifications and validation of these changes would be necessary. 373 The ELISA should be carried out at RT and therefore all components must be at RT prior to 374 use. Do not thaw frozen specimens by heating them in a water bath. A suggested ELISA 375 plate template is shown in Table 6-3, which includes a five-point EC standard curve, a NSC, 376 an eight-point IL-6 standard curve (0 to 4000 pg/mL), and 14 test substances in 377 quadruplicate. The EC standard curve, the NSC, and the test sample supernatants are 378 transferred directly from the incubation plate. The IL-6 standard curve is prepared as 379 described in Section 6.2.1. An overview of the ELISA plate preparation is shown in Table 6-380 4. 381 Step 1. After pipetting up and down very carefully three times (avoid detachment 382 of the adherent MM6 cells) to mix the supernatant, transfer 50 µL from each well of the Incubation Plate (A1-10; H1-10) to the ELISA plate. 383 384 Step 2. Add 50 µL of each IL-6 standard (0 to 4000 pg/mL) into the respective 385 wells on the ELISA plate. 386 Step 3. Add 200 µL of the enzyme-labeled detection antibody (neat as supplied, or diluted, if necessary) to each of the wells. 387 388 **Step 4.** Cover the microtiter plate(s) with adhesive film and incubate for 2 to 3 hr 389 at 20 to 25°C.

390	Step 5. Decant and wash each well three times with 300 μ L Buffered Wash
391	Solution and then rinse three times with deionized water. Place the plates upside
392	down and tap to remove water.
393	Step 6. Add 200 μ L of TMB/Substrate Solution to each well and incubate at RT in
394	the dark for 15 min. If necessary, decrease the incubation time.
395	Step 7. Add 50 µL of Stop Solution to each well.
396	Step 8. Tap the plate gently after the addition of Stop Solution to aid in mixing.
397	Step 9. Read the OD_{450} within 15 min of adding the Stop Solution. Measurement
398	with a reference wavelength of 540 to 590 nm is recommended.
399	

400 Table 6-3

ELISA Plate - Sample and Control Template

	1	2	3	4	5	6	7	8	9	10	11	12
А	EC^1 2.0	EC 2.0	EC 2.0	EC 2.0	TS3	TS3	TS3	TS3	TS11	TS11	IL-6 ³ 0	IL-6 0
В	EC 1.0	EC 1.0	EC 1.0	EC 1.0	TS4	TS4	TS4	TS4	TS11	TS11	IL-6 62.5	IL-6 62.5
С	EC 0.50	EC 0.50	EC 0.50	EC 0.50	TS5	TS5	TS5	TS5	TS12	TS12	IL-6 125	IL-6 125
D	EC 0.25	EC 0.25	EC 0.25	EC 0.25	TS6	TS6	TS6	TS6	TS12	TS12	IL-6 250	IL-6 250
Е	EC 0.125	EC 0.125	EC 0.125	EC 0.125	TS7	TS7	TS7	TS7	TS13	TS13	IL-6 500	IL-6 500
F	NSC	NSC	NSC	NSC	TS8	TS8	TS8	TS8	TS13	TS13	IL-6 1000	IL-6 1000
G	TS1 ²	TS1	TS1	TS1	TS9	TS9	TS9	TS9	TS14	TS14	IL-6 2000	IL-6 2000
Н	TS2	TS2	TS2	TS2	TS10	TS10	TS10	TS10	TS14	TS14	IL-6 4000	IL-6 4000

401

Abbreviations: EC = Endotoxin control; NSC = Negative saline control; TS = Test substance ¹ EC value (e.g., EC 2.0) represents the endotoxin concentration in EU/mL. ² TS number (e.g., TS1) represents an arbitrary sequence for individual test substances. ³ IL-6 values in columns 11 and 12 are in pg /mL.

402

403

404

407 Table 6-4 Overview of ELISA Procedure

Material transfer from Incubation Plate (µL)	Enzyme- labeled Antibody (µL)	Cover the Incubation Plate and incubate for 2 to 3 hr at 20-25°C.	TMB/Substrate Solution (µL)	Incubate 15 min at RT in dark.	Stop Solution (µL)	Read optical density at 450 nm with a 540-590 nm wavelength reference
50	200	20 20 0.	200		50	filter.

408 RT = Room temperature 409

410

411 **7.0 EVALUATION OF TEST RESULTS**

412 **7.1 OD Measurements**

413 The OD of each well is obtained by reading the samples in a standard microplate

414 spectrophotometer (i.e., plate reader) using a visible light wavelength of 450 nm (OD₄₅₀) with

415 a 540 to 590 nm reference filter (recommended). OD_{450} values are used to determine assay

416 acceptability and in the decision criteria for the detection of endotoxin in a test substance (see

417 Sections 8.0 and 9.0).

418 8.0 CRITERIA FOR AN ACCEPTABLE TEST

419 Obtain the PPC and the corresponding NPC by interference testing of a test substance in the

420 presence and absence of a fixed quantity of endotoxin (i.e., 1 EU/mL) in quadruplicate. An

421 EC (five-point standard curve) and a NSC should be included in each experiment. An IL-6

422 standard curve should be included in each ELISA as shown in the template presented in

- 423 **Table 6-3**. An assay is considered acceptable only if the following minimum criteria are met:
- 424 The quadratic function of the IL-6 standard curve produces an $r \ge 0.95$ and the 425 OD₄₅₀ of the blank control is below 0.15.
- 426 The endotoxin standard curve produces OD₄₅₀ values that ascend in a
 427 sigmoidal concentration response.

428 9.0 DATA INTERPRETATION/DECISION CRITERIA

429 **9.1 Decision** Criteria for Determination of Pyrogenicity

430 The *t*-test is used to compare the data of a test sample against the data of the EC (0.5 EU/mL)

that is performed in parallel. If this test results in a significant *p*-value (i.e., smaller than 1%),

then the sample is considered to be non-pyrogenic, and as pyrogenic if otherwise (Hoffmann

433 et al., 2005), as long as the assay acceptability criteria in Section 8.0 has been met.

434 10.0 STUDY REPORT

435 The test report should include the following information:

436 Test Substances and Control Substances

- Name of test substance
- Purity and composition of the substance or preparation
- Physicochemical properties (e.g., physical state, water solubility)
- 440 Treatment of the test/control substances prior to testing (e.g., vortexing, sonication, warming, resuspension solvent)
- 442 Justification of the In Vitro Test Method and Protocol Used
- 443 *Test Method Integrity*
- The procedure used to ensure the integrity (i.e., accuracy and reliability) of the
 test method over time
- If the test method employs proprietary components, documentation on the
 procedure used to ensure their integrity from "lot-to-lot" and over time
- The procedures that the user may employ to verify the integrity of the
 proprietary components
- 450 Criteria for an Acceptable Test
- Acceptable concurrent positive control ranges based on historical data
- Acceptable negative control data

453	Test Conditions
454	• Cell system used
455	• Calibration information for the spectrophotometer used to read the ELISA
456	• Details of test procedure used
457	• Description of any modifications of the test procedure
458	• Reference to historical data of the model
459	Description of evaluation criteria used
460	Results
461	• Tabulation of data from individual test samples
462	Description of Other Effects Observed
463	Discussion of the Results
464	Conclusion
465	A Quality Assurance Statement for Good Laboratory Practice (GLP)-Compliant Studies
466	• This statement should indicate all inspections made during the study and the
467	dates any results were reported to the Study Director. This statement should
468	also confirm that the final report reflects the raw data.
469	If GLP-compliant studies are performed, then additional reporting requirements provided in
470	the relevant guidelines (e.g., OECD 1998; EPA 2003a, 2003b; FDA 2003) should be
471	followed.

472 **11.0 REFERENCES**

- 473 EPA. 2003a. Good Laboratory Practice Standards. Toxic Substances Control Act. 40 CFR
 474 792.
- 475 EPA. 2003b. Good Laboratory Practice Standards. Federal Insecticide, Fungicide, and
- 476 Rodenticide Act. 40 CFR 160.
- 477 FDA. 2003. Good Laboratory Practices for Nonclinical Laboratory Studies. 21 CFR 58.
- 478 Hoffmann S, Peterbauer A, Schindler S, Fennrich S, Poole S, Mistry Y, Montag-Lessing T,
- 479 Spreitzer I, Löschner B, van Aalderen M, Bos R, Gommer M, Nibbeling R, Werner-
- 480 Felmayer G, Loitzl P, Jungi T, Brcic M, Brügger P, Frey E, Bowe G, Casado J, Coecke S, de
- 481 Lange J, Mogster B, Næss LM, Aaberge IS, Wendel A, Hartung T. 2005. International
- 482 validation of novel pyrogen tests based on human monocytoid cells. J Immunol Methods
- 483 298:161-173.
- 484 Organization for Economic Cooperation and Development (OECD). 1998. OECD Series on
- 485 Principle of Good Laboratory Practice and Compliance Monitoring. No. 1. OECD Principles
- 486 of Good Laboratory Practice (as revised in 1997). Organization for Economic Co-operation
- 487 and Development (OECD), ENV/MC/CHEM(98)17. Paris: OECD.
- 488 Taktak YS, Selkirk S, Bristow AF, Carpenter A, Ball C, Rafferty B, Poole S. 1991. Assay of
- 489 pyrogens by interleukin-6 release from monocytic cell lines. J Pharm Pharmacol 43:578-582.

490 12.0 TERMINOLOGY AND FORMULA

491 12.1 Assay Sensitivity (λ)

492 For an *in vitro* cell-based assay, the variable λ is defined as the lowest statistically significant 493 point on the standard endotoxin concentration-response curve and represents the relative 494 sensitivity of the test method for the detection of endotoxin (i.e., level of detection).

49512.2Endotoxin Control (EC)

496 The EC is incubated with MM6 cells and serves as the positive control for the experiment.

497 The results should be compared to historical values to insure that it provides a known level of

498 cytokine release relative to the NSC.

499 **12.3** Endotoxin Limit Concentration (ELC)

500 The ELC is the maximum allowable concentration of endotoxin for a particular product and

501 is expressed in EU per volume (mL) or weight (mg). The ELC is defined by the FDA or

502 specified in the USP^2 . It is calculated as the product of K/M, where:

K is the threshold pyrogen dose for parenteral use in rabbits or humans (5.0 EU/kg). At an
injection volume of 10 mL/kg, K is equal to 0.5 EU/mL.

505 M is the larger of the rabbit dose or the maximum human dose administered in one hour as 506 defined below and varies with test substance³.

507 12.4 Maximum Valid Dilution (MVD)

508 The MVD is the maximum dilution of a test substance that can be tolerated in a test system

- 509 without exceeding the ELC, if the test substance must be diluted as a result of assay
- 510 interference. Dilutions beyond the MVD would not be valid for endotoxin detection in the

² ELC values for most marketed pharmaceutical products are provided in the USP or in other pharmacopoeial or regulatory publications (e.g., European Pharmacopoeia, Japanese Pharmacopoeia, Pharmacopoeial guidelines, FDA publications).

³ Values for most marketed pharmaceutical products are provided in the USP or in other pharmacopoeial or regulatory publications (e.g., European Pharmacopoeia, Japanese Pharmacopoeia, pharmacopoeial guidelines, FDA publications).

511	test system. Calculation of the MVD is dependent on whether or not the ELC for a test
512	substance is published. When the ELC is known, the MVD is:
513	MVD = (ELC x Product Potency [PP])/ λ
514	As an example, for "Cyclophosphamide Injection," the ELC is 0.17 EU/mg, PP is 20
515	mg/mL, and the assay sensitivity is 0.1 EU/mL. The calculated MVD would be 34. The test
516	substance can be diluted no more than 1:34 prior to testing.
517	If the ELC is not known, the MVD is:
518	MVD = PP/Minimum Valid Concentration (MVC)
519	where, MVC = $(\lambda \times M)/K$
520	where, M is the maximm human dose
521	As an example, for "Cylophosphamide Injection," the PP is 20 mg/mL, M is 30
522	mg/kg, and assay sensitivity is 0.1 EU/mL. The calculated MVC is 0.6 mg/mL and the MVD
523	is 33.3. The test substance can be diluted no more than 1:33 in the assay prior to testing.
524	12.5 Negative Product Control (NPC)
524 525	12.5 Negative Product Control (NPC)The NPC is a test sample to which PFS is added. The NPC is the baseline for determination
525	The NPC is a test sample to which PFS is added. The NPC is the baseline for determination
525 526	The NPC is a test sample to which PFS is added. The NPC is the baseline for determination of cytokine release relative to the endotoxin-spiked PPC.
525 526 527	 The NPC is a test sample to which PFS is added. The NPC is the baseline for determination of cytokine release relative to the endotoxin-spiked PPC. 12.6 Negative Saline Control (NSC)
525 526 527 528	 The NPC is a test sample to which PFS is added. The NPC is the baseline for determination of cytokine release relative to the endotoxin-spiked PPC. 12.6 Negative Saline Control (NSC) The NSC is MM6 cells (in RPMI-C) incubated with PFS (used for dilution of test substance)
525 526 527 528 529	 The NPC is a test sample to which PFS is added. The NPC is the baseline for determination of cytokine release relative to the endotoxin-spiked PPC. 12.6 Negative Saline Control (NSC) The NSC is MM6 cells (in RPMI-C) incubated with PFS (used for dilution of test substance) and is used as the blank.
525 526 527 528 529 530	 The NPC is a test sample to which PFS is added. The NPC is the baseline for determination of cytokine release relative to the endotoxin-spiked PPC. 12.6 Negative Saline Control (NSC) The NSC is MM6 cells (in RPMI-C) incubated with PFS (used for dilution of test substance) and is used as the blank. 12.7 Parenteral Threshold Pyrogen Dose (K)
 525 526 527 528 529 530 531 	 The NPC is a test sample to which PFS is added. The NPC is the baseline for determination of cytokine release relative to the endotoxin-spiked PPC. 12.6 Negative Saline Control (NSC) The NSC is MM6 cells (in RPMI-C) incubated with PFS (used for dilution of test substance) and is used as the blank. 12.7 Parenteral Threshold Pyrogen Dose (K) The value K represents the threshold pyrogen dose for parenteral products for rabbits and
 525 526 527 528 529 530 531 532 	 The NPC is a test sample to which PFS is added. The NPC is the baseline for determination of cytokine release relative to the endotoxin-spiked PPC. 12.6 Negative Saline Control (NSC) The NSC is MM6 cells (in RPMI-C) incubated with PFS (used for dilution of test substance) and is used as the blank. 12.7 Parenteral Threshold Pyrogen Dose (K) The value K represents the threshold pyrogen dose for parenteral products for rabbits and humans. Based on experimental data, K is fixed at 5.0 EU/kg. For intrathecal products, K is
 525 526 527 528 529 530 531 532 533 	 The NPC is a test sample to which PFS is added. The NPC is the baseline for determination of cytokine release relative to the endotoxin-spiked PPC. 12.6 Negative Saline Control (NSC) The NSC is MM6 cells (in RPMI-C) incubated with PFS (used for dilution of test substance) and is used as the blank. 12.7 Parenteral Threshold Pyrogen Dose (K) The value K represents the threshold pyrogen dose for parenteral products for rabbits and humans. Based on experimental data, K is fixed at 5.0 EU/kg. For intrathecal products, K is 0.2 EU/kg.

- endotoxin standard curve) to insure that the test system is capable of endotoxin detection inthe product as diluted in the assay.
- 539 **12.9 Product Potency (PP)**
- 540 The concentration for a test substance is the PP typically expressed as µg/mL or mg/mL.

541 **12.10** Rabbit Pyrogen Test Dose or Maximum Human Dose (M)

- 542 The variable M represents the rabbit test dose or the maximum human dose in 1 hr. The
- 543 variable M is expressed in mg/kg and varies with the test substance. For
- radiopharmaceuticals, M should be adjusted to account for product activity (radioactive
- 545 decay) at time administration. An average human standard weight of 70 kg is used for the
- 546 calculation. If a pediatric dose should be used and it is higher than the adult dose, then it
- 547 should be used in the formula.