1	
2	
3	
5	
4	
5	
6	
7	
8	
9	DRAFT ICCVAM TEST METHOD RECOMMENDATIONS
10	In Vitro Pyrogenicity Test Methods
11	
12	December 1, 2006
13	

13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	[This Page Intentionally Left Blank]

28				TABLE OF CONTENTS	
29					Page Number
30	1.0	ICCV	AM Dr	aft Recommendations for In Vitro Pyrogenicity Test Meth	ods7
31		1.1	Draft I	Recommended Test Method Uses	7
32		1.2	Draft I	Recommended Future Studies	9
33					
34	Appe	ndix A	Draft	Performance Standards for In Vitro	
35			Pyrog	enicity Test Methods	10
36	1.0	Purpo	ose and	Background of Performance Standards	12
37		1.1	Introdu	uction	12
38		1.2	Eleme	nts of ICCVAM Performance Standards	13
39		1.3	ICCV	AM Process for the Development of Performance Standards	13
40		1.4	ICCV	AM Development of Performance Standards for In Vitro	
41			Pyroge	enicity Test Methods	14
42			1.4.1	Current Regulatory Testing Requirements for Pyrogenicity	15
43			1.4.2	Test Methods for Assessing Pyrogenicity	15
44			1.4.3	Intended Regulatory Uses for In Vitro Pyrogenicity Test	
45				Methods	16
46			1.4.4	Similarities and Differences in the Endpoints of In Vitro	
47				Pyrogenicity Test Methods and Currently Recognized	
48				Pyrogenicity Test Methods	16
49	2.0	In Vit	<i>ro</i> Pyro	genicity Test Methods	17
50		2.1	Backg	round	17
51		2.2	Princip	ples of In Vitro Pyrogenicity Test Methods	17
52		2.3	Essent	ial Test Method Components for In Vitro Pyrogenicity	
53			Test M	1ethods	
54			2.3.1	In Vitro Cell Culture Conditions	19
55			2.3.2	Application of the Test Substances	20
56				2.3.2.1 Test Substance Preparation	20
57				2.3.2.2 Test Substance Application and Sample Collection	20

58		2.3.3	Control	Substances	21
59			2.3.3.1	Negative Control	21
60			2.3.3.2	Positive Control	21
61			2.3.3.3	Benchmark Controls	21
62		2.3.4	Cytokin	e Measurements	22
63		2.3.5	Interpre	tation of Results	22
64		2.3.6	Test Re	port	22
65	2.4	Refere	ence Subs	stances for In vitro Pyrogenicity Test Methods	24
66	2.5	Accur	acy and F	Reliability	25
67		2.5.1	Accurac	су	25
68		2.5.2	Reliabil	ity	
69			2.5.2.1	Intralaboratory Repeatability	27
70			2.5.2.2	Intralaboratory Reproducibility	27
71			2.5.2.3	Interlaboratory Reproducibility	29
72	3.0 Refer	ences			
73	Appendix B	Propo	osed In V	<i>itro</i> Pyrogenicity Test Method Protocols	B-1
74	B1	Cryop	reserved	Whole Blood (Cryo WB)/Interleukin-1 (IL-1β) In V	<i>itro</i>
75		Pyrog	en Test		B1 - 1
76	B2	Mono	Mac 6 (N	MM6)/Interleukin-6 (IL-6) In Vitro Pyrogen Test	B2-1
77	В3	Periph	neral Bloc	od Mononuclear Cell (PBMC)/Interleukin-6 (IL-6)	
78		In Viti	ro Pyroge	n Test	B3-1
79	B4	Whole	e Blood (V	WB)/Interleukin-1β (IL-1β) In Vitro Pyrogen Test	B4-1
80	B5	Whole	e Blood (V	WB)/Interleukin -6 (IL-6) In Vitro Pyrogen Test	B5-1
81					

82			
83		LIST OF TABLES	
84			Page Number
85	Table 1	Performance Statistics for In Vitro Pyrogenicity Test Methods	8
86	Table 2	Test Substances (Parenteral Drugs) Used in the Validation Studies	
87		for Determining Test Method Performance	8
88 89	Table 1-1	Summary of U.S. and European Legislation and Statutory Protocol Requirements for Pyrogenicity Testing	16
90	Table 2-1	Recommended Reference Substances for the In Vitro Pyrogenicity	
91		Test Methods	26
92	Table 2-2	Performance Statistics for In Vitro Pyrogenicity Test Methods	27
93	Table 2-3	Intralaboratory Reproducibility of In Vitro Pyrogenicity	
94		Test Methods	29
95	Table 2-4	Interlaboratory Reproducibility of In Vitro Pyrogenicity	
96		Test Methods	
97	Table 2-5	Interlaboratory Reproducibility of In Vitro Pyrogenicity	
98		Test Methods	31
99			
100			
101			

101	
102	
103	
104	
105	
106	
107	
108	
109	[This Page Intentionally Left Blank]
110	
111	

112	1.0 ICCVAM DRAFT RECOMMENDATIONS FOR <i>IN VITRO</i>
113	PYROGENICITY TEST METHODS
114	
115	1.1 Draft Recommended Test Method Uses
116	
117	ICCVAM has evaluated the validation status of the following in vitro test methods
118	proposed as replacements for the in vivo rabbit pyrogen test (RPT) only (i.e., not for the
119	bacterial endotoxin test [BET]):
120	• cryo WB/IL-1 (The Human Whole Blood/IL-1 In Vitro Pyrogen Test:
121	Application of cryopreserved human whole blood)
122	• MM6/IL6 (An Alternative In Vitro Pyrogen Test Using the Human
123	Monocytoid Cell Line MONO MAC-6 [MM6])
124	• PBMC/IL-6 (The Human Peripheral Blood Mononuclear Cell [PBMC]/IL-
125	6 In Vitro Pyrogen Test)
126	• WB/IL-1 (The Human Whole Blood [WB]/IL-1 <i>In Vitro</i> Pyrogen Test)
127	• WB/IL-6 (The Human Whole Blood/IL-6 <i>In Vitro</i> Pyrogen Test)
128	
129	There is sufficient information (see Table 1), based on validation studies with a limited
130	number of pharmaceuticals (see Table 2), to substantiate the use of these test methods
131	(PBMC/IL-6, cryo WB/IL-1 [96 well plate method], WB/IL-6, and MM6/IL-6) for the
132	detection of pyrogenicity mediated by Gram-negative endotoxin in materials that are
133	currently tested in the RPT, subject to product-specific validation to demonstrate
134	equivalency ^{1,2} . While the scientific basis of these test methods suggests that they have the
135	capability to detect pyrogenicity produced by a wider range of pyrogens (i.e., those
136	mediated by non-endotoxin sources), there is insufficient data to support this broader
137	application.
138	

¹ Equivalent methods can be regulated under 21 CFR 610.9 as alternatives to the currently accepted test method(s).

² There are substances other than endotoxin that may induce the cellular release of IL-1 β and/or IL-6. For this reason, users of these test methods should be aware of the potential for a false positive result, suggesting that endotoxin is present, which actually is due to the presence of another pyrogenic material.

140 Table 1 Performance Statistics for *In Vitro* Pyrogenicity Test Methods¹

Test Method	Concordance ²	Sensitivity	Specificity	False Negative Rate	False Positive Rate
PBMC/IL-6	93.3%	92.2%	95.0%	7.8%	5.0%
	(140/150)	(83/90)	(57/60)	(7/90)	(3/60)
cryo	91.7%	97.4%	81.4%	2.6%	18.6%
WB/IL-1	(110/120)	(75/77)	(35/43)	(2/77)	(8/43)
WB/IL-6	91.9%	88.8%	96.6%	11.2%	3.4%
	(136/148)	(79/89)	(57/59)	(10/89)	(2/59)
MM6/IL-6	93.2%	95.5%	89.8%	4.5%	10.2%
	(138/148)	(85/89)	(53/59)	(4/89)	(6/59)
WB/IL-1 (plate method)	92.0% (129/139)	98.8% (83/84)	83.6% (46/55)	1.2% (1/84)	16.4% (9/55)

 $141 \\ 142 \\ 143 \\ 144$

¹Based on combined results of 10 different parenteral drugs tested in each of three different laboratories; samples of each drug were tested with or without being spiked with a Gram-negative endotoxin standard (0, 0.25, 0.5, 0.5, and 1.0 EU/mL). ²Percentage (Number of correct runs/total number of runs)

Percentage (Number of correct runs/total number

145

146 Table 2 Test Substances (Parenteral Drugs) Used in the Validation Studies for

147

Determining Test Method Performance¹

Test Substance ²	Source	Active Ingredient	Indication	MVD (-fold)
Beloc®	Astra Zeneca	Metoprolol tartrate	Heart dysfunction	140
Binotal®	Aventis	Ampicillin	Antibiotic	140
Ethanol 13% (w/w)	B. Braun	Ethanol	Diluent	35
Fenistil®	Novartis	Dimetindenmaleat	Antiallergic	175
Glucose 5% (w/v)	Eifel	Glucose	Nutrition	70
MCP®	Hexal	Metoclopramid	Antiemetic	350
Orasthin®	Aventis	Oxytocin	Initiation of Delivery	700
Sostril®	GSK	Ranitidine	Antiacidic	140
Drug A - 0.9% NaCl	-	0.9% NaCl	-	35
Drug B - 0.9% NaCl	-	0.9% NaCl	-	70
¹ Each substance was tested in all five <i>in vitro</i> pyrogenicity test methods.				

148 ¹Eacl 149 ²Eacl

²Each test substance was spiked with 0, 0.25, 0.5, 1.0 EU/mL of endotoxin (WHO-LPS 94/580 [*E. coli*

150 O113:H10:K-]). Each sample contained the appropriate spike concentration when tested at its Maximum Valid Dilution (MVD).

152

153 Users should be aware that the performance characteristics for these *in vitro* pyrogenicity

154 test methods could be revised as additional data become available. Therefore, test method

155 users should consult the ICCVAM/NICEATM website (<u>http://iccvam.niehs.nih.gov/</u>) and

156 other sources to obtain the most current information relevant to the current performance

and usefulness and limitations of these test methods.

158

160
161 To f
162 WB/
163 detect
164 pyro
165 pyro

1.2 Draft Recommended Future Studies

To further the use of these five test methods (cryo WB/IL-1, MM6/IL-6, PBMC/IL-6,	

162 WB/IL-1 [plate method], and WB/IL-6) as potential replacements for the RPT for

163 detecting non-endotoxin pyrogens, additional studies that include a broader range of

164 pyrogenic materials are recommended. For a direct comparison between the *in vitro*

165 pyrogen test(s) and the RPT, such studies should include parallel RPT testing³.

166

159

167 The hazards associated with human blood products should be carefully considered and all

169

170 Appendix A provides Draft Performance Standards for *In Vitro* Pyrogenicity Test

171 Methods that are based on ICCVAM guidelines (ICCVAM 2003⁴). Appendix B provides

172 five draft proposed *in vitro* pyrogenicity test method protocols that are based on those

173 used in the ECVAM validation study. Appendix B1 is the *Proposed Test Method*

174 Protocol for the Human Whole Blood/IL-1 In Vitro Pyrogen Test: Application of

175 Cryopreserved Human Whole Blood. Appendix B2 is the Proposed Test Method

176 Protocol for the In Vitro Pyrogen Test Using the Human Monocytoid Cell Line MONO

177 MAC-6 (MM6). Appendix B3 is the Proposed Test Method Protocol for the Human

178 PBMC/IL-6 In Vitro Pyrogen Test. Appendix B4 is the Proposed Test Method Protocol

179 for the Human Whole Blood/IL-1 In Vitro Pyrogen Test. Appendix B5 is the Proposed

180 Test Method Protocol for the Human Whole Blood/IL-6 In Vitro Pyrogen Test.

³ In order to demonstrate the utility of these test methods for the detection of non-endotoxin pyrogens, either an international standard is needed (as is available for endotoxin [i.e., WHO-LPS 94/580 *E. coli* O113:H10:K-]) or, when a positive non-endotoxin-mediated RPT result is encountered, this same sample should be subsequently tested *in vitro*.

⁴ ICCVAM. 2003. ICCVAM Guidelines for the Nomination and Submission of New, Revised, and Alternative Test Methods. NIH Publication No. 03-4508. National Institute for Environmental Health Sciences, Research Triangle Park, NC. Available: <u>http://iccvam.niehs.nih.gov/</u>. [accessed 2 June 2005].

¹⁶⁸ technical staff must be trained to observe all necessary safety precautions.

181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	[This Page Intentionally Left Blank]
195	

195	
196	
197	
198	
199	
200	
201	Appendix A
202	
203	
204	Draft Performance Standards for In Vitro Pyrogenicity Test Methods
205	

205	
206	
207	
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	
218	
219	[This Page Intentionally Left Blank]

PURPOSE AND BACKGROUND OF PERFORMANCE STANDARDS

220

1.0

221

222 **1.1 Introduction**

223

224 Prior to the acceptance of a new test method for regulatory testing applications, validation 225 studies are conducted to assess its reliability (i.e., the extent of intra- and inter-laboratory 226 reproducibility) and its relevance (i.e., the ability of the test method to correctly predict or 227 measure the biological effect of interest) (OECD 1996, 2002; ICCVAM 1997, 2003). The 228 purpose of performance standards is to communicate the basis by which new proprietary 229 (i.e., copyrighted, trademarked, registered) and nonproprietary test methods have been 230 determined to have sufficient relevance and reliability for specific testing purposes. These 231 performance standards, based on test methods accepted by regulatory agencies, can be 232 used to evaluate the reliability and relevance of other test methods that are based on 233 similar scientific principles and measure or predict the same biological or toxic effect. 234 Five in vitro pyrogenicity test methods, cryo WB/IL-1 (The Human Whole Blood/IL-1 In 235 Vitro Pyrogen Test: Application of cryopreserved human whole blood), MM6/IL6 (An 236 Alternative In Vitro Pyrogen Test Using the Human Monocytoid Cell Line MONO 237 MAC-6 [MM6]), PBMC/IL-6 (The Human PBMC/IL-6 In Vitro Pyrogen Test, WB/IL-1 238 (The Human Whole Blood/IL-1 In Vitro Pyrogen Test), and WB/IL-6 (The Human 239 Whole Blood/IL-6 In Vitro Pyrogen Test) were included in a validation study to evaluate 240 the correlation between *in vitro* cytokine release and the *in vivo* rabbit fever response and 241 the feasibility of using *in vitro* cytokine assays to predict a pyrogenic response. 242

This section describes the three elements of performance standards identified by
ICCVAM (2003) and the ICCVAM process used to develop performance standards
during a test method evaluation. These test method performance standards are proposed
as standards that can be used to evaluate future *in vitro* pyrogenicity test methods. If other *in vitro* pyrogenicity test methods are adequately validated and demonstrate significantly
improved performance, then the test method performance standards may be revised
accordingly.

251 **1.2** Elements of ICCVAM Performance Standards

252

Performance standards are standards based on a validated test method that provide a basis
for evaluating the comparability of a proposed test method that is mechanistically and
functionally similar (ICCVAM 2003). The three elements of performance standards are:

- Essential test method components: These consist of essential structural,
 functional, and procedural elements of a validated test method that should
 be included in the protocol of a proposed, mechanistically and functionally
 similar test method. Essential test method components include unique
 characteristics of the test method, critical procedural details, and quality
 control measures.
- A minimum list of reference substances: Reference substances are used to
 assess the accuracy and reliability of a proposed, mechanistically and
 functionally similar test method. These substances are a representative
 subset of those used to demonstrate the reliability and the accuracy of the
 validated test method, and are the minimum number that should be used to
 evaluate the performance of a proposed, mechanistically and functionally
 similar test method.
- Accuracy and reliability values: These are the accuracy and reliability
 characteristics that the proposed test method should be comparable to or
 exceed when evaluated using the minimum list of reference chemicals.
- 272
- **1.3 ICCVAM Process for the Development of Performance Standards**
- 274

The process followed by ICCVAM for developing performance standards for new test methods is as follows:

NICEATM and the ICCVAM Pyrogenicity Working Group (PWG) develop
 proposed performance standards for consideration during the ICCVAM
 evaluation process. If performance standards are proposed by a test method
 sponsor, they will be considered by ICCVAM at this stage. Generally, the

01 Dec 2006

281	proposed performance standards are based on the information and data
282	provided in the test method submission or on other available applicable data.
283	The ICCVAM/NICEATM Peer Review Panel evaluates the proposed
284	performance standards for completeness and appropriateness during its
285	evaluation of the validation status of the proposed test method. The
286	proposed performance standards, as well as the test method submission, are
287	made available to the public for comment prior to and during the Peer
288	Review Panel meeting.
289	• The PWG, with the assistance of NICEATM, prepares the final performance
290	standards for ICCVAM approval, taking into consideration the
291	recommendations of the Peer Review Panel and public comments.
292	
293	Performance standards recommended by ICCVAM are incorporated into ICCVAM test
294	method evaluation reports, which are then provided to U.S. Federal agencies and made
295	available to the public. Regulatory authorities can then reference the performance
296	standards in the ICCVAM report when they communicate their acceptance of a new test
297	method. In addition, performance standards adopted by U.S. Federal regulatory
298	authorities can be provided in guidelines issued for new test methods. Availability of
299	ICCVAM test method evaluation reports are announced routinely in the Federal Register,
300	in NTP Newsletters, and by e-mail to ICCVAM/NICEATM listserve groups.
301	
302	1.4 ICCVAM Development of Performance Standards for <i>In Vitro</i>
303	Pyrogenicity Test Methods
304	
305	1.4.1 Current Regulatory Testing Requirements for Pyrogenicity
306	The major regulatory requirement for pyrogenicity testing is for end product release of
307	human and animal parenteral drugs, medical devices, and human biological products.
308	Results from pyrogenicity testing are used to limit to an acceptable level the risks of
309	febrile reaction in the patient to injection and/or implantation of the product of concern.
310	The current U.S. legislation requiring the use of pyrogenicity testing is stated in the
311	Federal Food, Drug, and Cosmetic Act (U.S.C., Title 21, Chapter 9). In addition, the U.S.

- 312 Pharmacopeia (USP) maintains sterility requirements for pharmaceuticals that include
- 313 pyrogenicity testing. As detailed in **Table 1-1**, the U.S. Food and Drug Administration
- 314 (FDA) is the principal U.S. regulatory agency that requires pyrogenicity testing, with
- 315 different Centers within the FDA regulating the affected products (i.e., human and animal
- 316 parenteral drugs, biological products, and medical devices). Table 1-1 also shows the
- 317 statutory protocol requirements used by each FDA Center, along with the comparable
- 318 international standards presently required by European Union member nations.
- 319

320 Table 1-1 Summary of U.S. and European Legislation and Statutory Protocol 321 **Requirements for Pyrogenicity Testing**

Agency	Regulated Products	Legislation	Statutory Protocol Requirements	Non-Governmental Standards
		United States		
FDA-CBER	Biological products	- Federal Food,		
FDA-CDER	DA-CDER Human parenteral D		- 21 CFR 610.13	- USP28 NF23<85> - USP28 NF23<151>
FDA-CDRH	Medical devices	Cosmetic Act (U.S.C. Title 21,	- 21 CFR 010.15	- ISO 10993-11
FDA-CVM	Veterinary pharmaceuticals	(0.3.C. The 21, Chapter 9)		
		Europe		
EDQM		- Council		
EMEA	Human/veterinary	Regulation (EEC)		
Regulatory Authorities for Individual EU Countries	parenteral pharmaceuticals, biological products, medical devices	230/9/93 - Council Directive 93/39/EEC - Council Directive 93/40/EEC	- EP5.0 2.6.8 - EP5.0 2.6.14	- ISO 10993-11

322

Abbreviations: CBER = Center for Biologics Evaluation and Research; CDER = Center for Drug Evaluation and 323 324 325 326 Research; CDRH = Center for Devices and Radiological Health; CFR = Code of Federal Regulations; CVM = Center for Veterinary Medicine; EDQM = European Directorate for the Quality of Medicines; EMEA = European Medicines Agency; EP = European Pharmacopoeia; EU = European Union; FDA = U.S. Food and Drug Administration; US =: U.S. Pharmacopeia

327

328 1.4.2 Test Methods for Assessing Pyrogenicity

329 The currently recognized test methods for evaluating pyrogenicity are the *in vivo* rabbit

330 pyrogen test (RPT) and the bacterial endotoxin test (BET). The RPT (USP28

331 NF23<151>, EP5.0 2.6.8) involves measuring the rise in body temperature evoked in

332 rabbits by the intravenous injection of a test solution. The RPT is a sequential test, using

- 333 the response of the first three rabbits tested to determine the need for additional testing.
- 334 The BET (USP28 NF23<85>, EP5.0 2.6.14) is used to detect or quantify the presence of

gram-negative bacterial endotoxins using amoebocyte lysate from the horseshoe crab
(*Limulus polyphemus*). There are three different BET techniques: the gel-clot technique
(based on gel formation due to clotting of *Limulus* amoebocyte lysate [LAL] in the
presence of endotoxin); the turbidometric technique (based on the development of
turbidity after cleavage of an endogenous substrate); and the chromogenic technique
(based on color development resulting from cleavage of a synthetic peptide-chromagen
complex).

342

343 1.4.3 Intended Regulatory Uses for *In Vitro* Pyrogenicity Test Methods

The *in vitro* pyrogenicity test methods are not intended as replacements for the BET. However, five of these methods (cryo WB/IL-1, MM6/IL-6, PBMC/IL-6, WB/IL-1[plate method], and WB/IL-6) may be considered for the detection of the presence of Gramnegative endotoxin in materials that are currently tested in the RPT, subject to productspecific validation to demonstrate equivalency.

349

350 1.4.4 <u>Similarities and Differences in the Endpoints of In Vitro Pyrogenicity Test</u>
351 Methods and Currently Recognized Pyrogenicity Test Methods

352 The endpoint measured in the *in vitro* pyrogenicity test methods is cytokine release, 353 either IL-1 β or IL-6, depending on the test method employed. The RPT involves 354 measuring the rise in body temperature evoked in rabbits by the intravenous injection of a 355 test solution. While there is not a direct association between the endpoints measured in 356 these assays, cytokine release is involved in the development of an inflammatory 357 response, which can result in an increase in temperature. Therefore, the *in vitro* release of 358 pro-inflammatory cytokines, such as IL-1 β and IL-6, is intended to predict the onset of 359 such a response. The cell types used for the various *in vitro* methods presumably are 360 those that would be directly associated with an inflammatory response. Both the *in vitro* 361 and in vivo tests provide quantitative endpoints.

362

363 There are different endpoints for the BET, depending on the technique used. The gel-clot

technique is based on the observation of gel formation due to clotting of LAL in the

365 presence of endotoxin. The turbidometric technique evaluates the development of turbity

366	after cl	eavage of an endogenous substrate. Finally, the chromogenic technique measures		
367	color development resulting from cleavage of a synthetic peptide-chromogen complex.			
368	Clearly, there are no biological similarities between the endpoints measured in the in			
369	<i>vitro</i> te	st methods and the various BET techniques. However, like the in vitro test		
370	method	ls, the turbidometric and chromogenic techniques provide quantitative		
371	measur	ements, while the gel-clot technique is qualitative.		
372				
373	2.0	IN VITRO PYROGENICITY TEST METHODS		
374				
375	2.1	Background		
376				
377	Pre-val	idation and validation studies have been completed to evaluate the ability of the		
378	five in	vitro pyrogenicity test methods to be used as alternatives to the RPT. This section		
379	briefly	describes the principles of in vitro pyrogenicity test methods followed by the		
380	recomm	nended performance standards that would be used to evaluate test methods that are		
381	functio	nally and mechanistically similar to these methods. The performance standards		
382	consist	of 1) essential test method components, 2) reference substances, and 3) the		
383	compar	able accuracy and reliability that should be achieved.		
384				
385	2.2	Principles of In Vitro Pyrogenicity Test Methods		
386				
387	Althou	gh there are differences among the in vitro pyrogenicity test methods based		
388	predom	ninantly on the cell type used, there are some basic steps that are consistent across		
389	all met	hods as follows:		
390		• The test substance is applied to the specific human-derived cells used in		
391		the <i>in vitro</i> test method (i.e., mixed with a suspension of cells).		
392		• The test substance is incubated with the cells for a specified period of		
393		time.		
394		• The concentration of pro-inflammatory cytokines (e.g., IL-1 β , IL-6) is		
395		quantified via a cytokine-specific enzyme-linked immunosorbent assay		
396		(ELISA) by comparison to a standard curve.		

397	• Using an endotoxin standard curve, the endotoxin content of the product
398	is calculated.
399	• A product "passes" (i.e., is considered negative for endotoxin) if the
400	endotoxin content is < 0.5 endotoxin units (EU)/mL.
401	
402	While it is possible that comparable cell types derived from other species would also be
403	capable of detecting the presence of Gram-negative endotoxin, one of the strengths of
404	these test methods is that they are derived from human tissues, and thus avoid the
405	potential uncertainty associated with cross-species interpretation. Therefore, test method
406	developers are encouraged to focus on human cell-based systems.
407	
408	Investigators using an in vitro pyrogenicity test method for detecting the presence of
409	Gram-negative endotoxin must be able to demonstrate that the assay is valid for its
410	intended use. This includes demonstrating that any modification to the existing validated
411	reference test method does not adversely affect its performance characteristics. In vitro
412	pyrogenicity test methods may be used to test pharmaceuticals, biological products, and
413	medical devices. Interference testing must be included to demonstrate that the properties
414	of the test substance do not impede the release and detection of proinflammatory
415	cytokines.
416	
417	2.3 Essential Test Method Components for <i>In Vitro</i> Pyrogenicity Test
418	Methods
419	
420	Essential test method components consist of essential structural, functional, and
421	procedural elements of a validated test method that should be included in the protocol of
422	a mechanistically and functionally similar proposed test method. These components
423	include unique characteristics of the test method, critical procedural details, and quality
424	control measures. Adherence to these components will help assure that a proposed test
425	method is based on the same concepts as the corresponding validated test method.
426	

427 The following is a description of the essential test method components for *in vitro*428 pyrogenicity test methods.

429 430 2.3.1 In Vitro Cell Culture Conditions 431 A mammalian cell line, primary cells, or heparinized whole blood (as 432 described above, either would preferably be of human origin) is used. 433 Cryopreserved cells/whole blood may be used, where it has been 434 demonstrated that cryopreservation is not detrimental to the test method. 435 Fresh whole blood may be stored at room temperature, but should be used ٠ 436 within four hours of collection. Blood donors should be in good health 437 (i.e., not suffering from bacterial or viral infections for at least one week prior to donation), and not taking any medications known to influence 438 439 cytokine production (e.g., immunosuppressant or anti-inflammatory 440 drugs). As an additional measure, assay acceptance criteria allow for the 441 identification of low or high responders such that results with 442 Blood/PBMCs from a compromised donor are omitted. 443 Where necessary, cells are propagated in sterile tissue culture flasks and ٠ 444 then subcultured to sterile 96-well plates for use in testing. Initial cell 445 seeding should be done at a density that allows rapid growth throughout 446 the exposure period. However, cell density should not reach confluency by 447 the end of the test exposure period. 448 Appropriate cell culture growth conditions (e.g., $37^{\circ}C \pm 1^{\circ}C$, $90\% \pm 10\%$ ٠ 449 humidity, $5.0\% \pm 1\%$ CO₂ in ambient air) should be maintained 450 throughout the testing period. The cell cultures should be free of 451 contamination with bacteria, mycoplasma, or fungi. 452 453 Cell culture media should be prequalified by the testing laboratory via a standardized 454 protocol before initiating the test to guarantee that the media provide cells with 455 appropriate nutrients to meet the growth criteria needed for the test method. 456 457

457	2.3.2.	Application of the Test Substances
458	2.3.2.1	Test Substance Preparation
459		• All disposables (e.g., pipette tips, pipettes, culture ware, etc.) should be
460		labeled sterile, pyrogen free.
461		• Test substances (i.e., pharmaceuticals, biological products) should be
462		diluted to their respective maximum valid dilution (MVD) in sterile,
463		pyrogen-free 0.9% NaCl.
464		• Medical devices can be directly incubated with to the cells in suspension.
465		Alternatively, and if necessary, eluates/extracts from medical devices may
466		be prepared with a volume of pyrogen-free water appropriate to their use
467		and, where applicable, to the surface area that comes in contact with body
468		tissues or fluids.
469		• Each test should contain a range of concentrations of either the
470		international reference standard endotoxin (i.e., WHO LPS 94/580), or an
471		LPS standard that has been calibrated against this standard, with which to
472		generate a standard curve. NOTE: In the ECVAM validation study,
473		concentrations of 0, 0.25, 0.5, and 1.0 endotoxin units $(EU)/mL$ were used
474		to establish the decision criteria for a pyrogenic response based on the in
475		vivo rabbit threshold fever concentration (i.e., the concentration at which
476		an increase in temperature was recorded in 50% animals tested) (see
477		Section 2.3.5).
478		• Test substances should be fully solubilized (i.e., no visual observation of
479		test substance in the dosing solution).
480		
481	2.3.2.2	Test Substance Application and Sample Collection
482		• Whole blood samples may be dosed in either 96-well plates or
483		microcentrifuge tubes.
484		• The cells should be exposed for from 16 to 24 hours
485		• Each substance should be tested in a minimum of three replicates.

- 486
 486 At the end of the exposure period, supernatants may be collected either
 487 directly from each well, or following centrifugation for microcentrifuge
 488 tubes.
- 489

490 2.3.3 <u>Control Substances</u>

491 2.3.3.1 Negative Control

492 To ensure that the test system is functioning properly and that the specific test is valid, 493 the negative control (i.e., 0.9% NaCl) should not induce a significant increase in IL-1 β or 494 IL-6 release.

495

496 2.3.3.2 Positive Control

497 The purpose of a positive control chemical is to demonstrate that the cell system is 498 responding with adequate sensitivity to a pyrogenic substance for which the magnitude of 499 the pyrogenic response is well characterized. Each test should generate a response that is 500 comparable to the historical range generated by the laboratory. Therefore, the positive 501 control should be the international reference standard endotoxin (i.e., WHO-LPS 94/580 502 [E. coli 0113:h10:K-]), or an endotoxin standard that has been calibrated against this 503 standard. A laboratory should perform a minimum of 10 in vitro pyrogenicity tests using 504 the positive control over a number of days to develop a minimum historical database of 505 cyokine data. Typically, for biologically based test methods, suggested acceptable ranges 506 for the positive control response are within two to three standard deviations of the 507 historical mean response, but developers of proprietary test methods may establish tighter 508 ranges. The positive control chemical should be tested concurrently with (and 509 independent of) the test substance. Test substances spiked with known quantities of the 510 positive control should be used for interference testing.

511

512 2.3.3.3 Benchmark Controls

513 Benchmark controls may be useful to demonstrate that the test method is functioning 514 properly for detecting the pyrogenic potential of chemicals (e.g., parenterals or medical 515 device eluates) of a specific chemical class or a specific range of responses, or for

516	evaluating the relative pyrogenic potential of a test substance. Appropriate benchmark
517	controls should have the following properties:
518	• structural and functional similarity to the class of the substance being tested
519	known physical/chemical characteristics
520	• supporting data on known effects in animal models
521	 known potency in the range of response
522	
523	2.3.4 <u>Cytokine Measurements</u>
524	Only standardized, quantitative methods should be used to measure cytokine release (e.g.,
525	an enzyme immunoassay with a species-specific antibody for the relevant
526	proinflammatory cytokine). Each assay should contain a range of concentrations of the
527	relevant cytokine standard (e.g., IL-1 β , IL-6) in order to generate a standard curve for the
528	analytical assay. The protocol should be compatible with analytical laboratory equipment
529	(e.g., spectrophotometer) that allows a quick and precise measurement of the endpoint.
530	Colorimetric, fluorometric, or luminometric endpoints should have the optical density
531	(OD) measured at the appropriate wavelength, and OD values for blanks should be
532	subtracted from all measurements. Each supernatant should be assayed with a minimum
533	of three replicates.
534	
535	2.3.5 <u>Interpretation of Results</u>
536	The endpoint values obtained for each test sample can be used to calculate the level of
537	cytokine release relative to the positive control samples (i.e., the endotoxin standard
538	curve). A sample is considered positive for a pyrogenic response if the level of cytokine
539	release is greater than or equal to that induced by the 0.5 EU/mL endotoxin standard, the
540	reported threshold fever concentration for the <i>in vivo</i> rabbit test (see Section 2.3.2.1).
541	
542	2.3.6 <u>Test Report</u>
543	The test report should include the following information, if relevant to the conduct of the
544	study:
545	Test Substances and Control Substances
546	• Name of pharmaceutical, biological product, medical device eluate, etc.

547	• Purity and composition of the substance or preparation
548	• Physicochemical properties (e.g., physical state, water solubility) relevant to the
549	conduct of the study
550	• Treatment of the test/control substances prior to testing, if applicable (e.g.,
551	vortexing, sonication, warming; resuspension solvent)
552	Justification of the In Vitro Test Method and Protocol Used
553	Test Method Integrity
554	• The procedure used to ensure the integrity (i.e., accuracy and reliability) of the
555	test method over time
556	• If the test method employs proprietary components, documentation on the
557	procedure used to ensure their integrity from "lot-to-lot" and over time
558	• The procedures that the user may employ to verify the integrity of the proprietary
559	components
560	Criteria for an Acceptable Test
561	Acceptable concurrent positive control ranges based on historical data
562	Acceptable negative control data
563	Test Conditions
564	Cell system used
565	Calibration information for the spectrophotometer used to read the ELISA
566	Details of test procedure
567	• Description of any modifications of the test procedure
568	Reference to historical data of the model
569	Description of evaluation criteria used
570	Results
571	Tabulation of data from individual test samples
572	Description of Other Effects Observed
573	Discussion of the Results
574	Conclusion

575 A Quality Assurance Statement for Good Laboratory Practice (GLP)-Compliant Studies

576	• This statement should indicate all inspections made during the study and the dates
577	any results were reported to the Study Director. This statement should also
578	confirm that the final report reflects the raw data
579	If GLP-compliant studies are performed, then additional reporting requirements provided
580	in the relevant guidelines (e.g., OECD 1998; EPA 2003a, 2003b; FDA 2003) should be
581	followed.
582	
583	2.4 Reference Substances for <i>In Vitro</i> Pyrogenicity Test Methods
584	
585	Reference substances are used to assess the accuracy and reliability of a proposed,
586	mechanistically and functionally similar test method and are a representative subset of
587	those used to demonstrate the reliability and the accuracy of the validated test method.
588	These substances are:
589	• representative of the range of responses that the validated test method is
590	capable of measuring or predicting
591	 have produced consistent results in the validated test method
592	• reflect the accuracy of the validated test method
593	have well-defined chemical structures
594	• are readily available
595	• are not associated with excessive hazard or prohibitive disposal costs
596	
597	To demonstrate technical proficiency with the validated test method, the user should
598	evaluate his/her ability to identify Gram-negative endotoxin that has been spiked into
599	each of the reference substances listed in Table 2-1. These eight substances are marketed
600	pharmaceuticals that were tested in the ECVAM in vitro pyrogenicity test methods
601	validation study. Only released clinical lots that have been labeled as having no
602	detectable pyrogens should be used as reference substances to be spiked with Gram-
603	negative endotoxin. As indicated in Section 2.3.3, the spike should be either the
604	international reference standard endotoxin (WHO-LPS 94/580 [E. coli 0113:h10:K-]) or
605	an endotoxin standard that has been calibrated against this standard. Each reference
606	substance should be tested clean (i.e., unspiked) and spiked with endotoxin (0.5 EU/mL).

608 Table 2-1 Recommended Reference Substances for *In Vitro* Pyrogenicity Test

609

Methods

Test Substance ¹	Source	Active Ingredient	MVD (-fold)
Beloc®	Astra Zeneca	Metoprolol tartrate	140
Binotal®	Aventis	Ampicillin	140
Ethanol 13% (w/w)	B. Braun	Ethanol	35
Fenistil®	Novartis	Dimetindenmaleat	175
Glucose 5% (w/v)	Eifel	Glucose	70
MCP®	Hexal	Metoclopramid	350
Orasthin®	Aventis	Oxytocin	700
Sostril®	GSK	Ranitidine	140

610 ¹Each reference substance should be spiked with 0.5 EU/mL of endotoxin (WHO-LPS 94/580 [*E. coli*

611 O113:H10:K-]). Each sample should contain the appropriate spike concentration when tested at its

Maximum Valid Dilution (MVD). MVD = (endotoxin limit concentration)/(detection limit of the assay)
 Positive Control: 0.9% NaCl spiked with 0.5 EU/mL

614 Negative Control: 0.9% NaCl

615

616 2.5 Accuracy and Reliability

617

618 The third element of the performance standards is the determination of accuracy (also

619 known as relevance) and reliability values. A proposed test method, functionally and

620 mechanistically similar to the *in vitro* pyrogenicity test methods described above, will use

621 selected reference substances to assess accuracy and reliability.

622

623 2.5.1 <u>Accuracy</u>

624 When evaluated using the minimum list of recommended reference substances (Table 2-

625 1), the proposed test method should have performance characteristics that are comparable

626 to the performance of the validated *in vitro* pyrogenicity test methods. Accuracy is

627 defined as the closeness of agreement between a test method result and an accepted

628 reference value (ICCVAM 2003). The substances tested in the ECVAM validation

629 studies are included so that the performance of the proposed test method can be

630 determined and compared to that of the validated reference test methods.

631

632 The accuracy of these assays to identify a pyrogenic concentration of Gram-negative

633 endotoxin was evaluated. This accuracy evaluation characterizes the extent that

634 additional test methods will be necessary to achieve accurate *in vitro* predictions of

- 635 contamination by Gram-negative endotoxin for labeling and lot release purposes. Table
- 636 **2-2** shows that overall accuracy among the test methods is comparable (91.7% to 93.3%),
- 637 with false negative rates ranging from 1.2% to 11.2%, and false positive rates ranging
- 638 from 3.4% to 18.6%.
- 639
- 640

641	Table 2-2	Performance Statistics for <i>In Vitro</i> Pyrogenicity Test Methods ¹
041	1 able 2-2	i erformance statistics for <i>m v uro</i> i grogenicity rest methods

Test Method	Accuracy ²	Sensitivity	Specificity	False Negative Rate	False Positive Rate
PBMC/IL-6	93.3%	92.2%	95.0%	7.8%	5.0%
	(140/150)	(83/90)	(57/60)	(7/90)	(3/60)
cryo	91.7%	97.4%	81.4%	2.6%	18.6%
WB/IL-1	(110/120)	(75/77)	(35/43)	(2/77)	(8/43)
WB/IL-6	91.9%	88.8%	96.6%	11.2%	3.4%
	(136/148)	(79/89)	(57/59)	(10/89)	(2/59)
MM6/IL-6	93.2%	95.5%	89.8%	4.5%	10.2%
	(138/148)	(85/89)	(53/59)	(4/89)	(6/59)
WB/IL-1 (plate method)	92.8% (129/139)	98.8% (83/84)	83.6% (46/55)	1.2% (1/84)	16.4% (9/55)

644

645 2.5.2 <u>Reliability</u>

646

647 Test method reliability (intralaboratory repeatability and intra- and inter-laboratory 648 reproducibility) is the degree to which a test method can be performed reproducibly 649 within and among laboratories over time (ICCVAM 2003). Repeatability refers to the 650 closeness of agreement between test results obtained within a single laboratory when the 651 procedure is performed on the same substance under identical conditions within a given 652 time period. Intralaboratory reproducibility refers to the determination of the extent to 653 which qualified personnel within the same laboratory can replicate results using a specific 654 test protocol at different times. Interlaboratory reproducibility refers to the determination 655 of the extent to which different laboratories can replicate results using the same protocol 656 and test chemicals, and indicates the extent to which a test method can be transferred 657 successfully among laboratories. 658

¹Based on combined results of 10 different substances tested in three different laboratories ²Percentage (Number of correct runs/total number of runs)

The reliability of the proposed test method for the reference substances should be

660 comparable to or better than that of the validated *in vitro* pyrogenicity test methods. The

- 661 following sections provide these reference statistics.
- 662

663 2.5.2.1 Intralaboratory Repeatability

In the ECVAM validation study, intralaboratory repeatability was evaluated in each test method by testing saline and various endotoxin spikes (0.06 to 0.5 EU/mL) in saline and evaluating the closeness of agreement between optical density readings for cytokine measurements for each concentration. Up to 20 replicates per concentration were tested and results indicated that variability in measurements increased with endotoxin concentration, but that the 0.5 EU/mL spike concentration (i.e., the threshold for pyrogenicity for each test method) was clearly distinguishable from lower concentrations.

672 2.5.2.2 Intralaboratory Reproducibility

673 Intralaboratory reproducibility was evaluated with three marketed pharmaceuticals spiked

674 with various concentrations of endotoxin. Reproducibility was assessed from three

675 identical, independent runs conducted in each of the three testing laboratories (with the

676 exception of the cryo WB/IL-1 test method¹). From these results, agreement between

677 different runs was determined for each substance in three laboratories. As shown in

Table 2-3, the agreement across three runs in an individual lab ranged from 75% to

679 100%.

¹ The cryo WB/IL-1 test method BRD states that an assessment of intralaboratory reproducibility was performed in the WB IL-1 (fresh blood) test method, and it is assumed that variability is not affected by the change to cryopreserved blood assayed in 96-well plates.

Run		WB/IL-1		Cr	yo WB/I	L-1		WB/IL-6		P	BMC/IL-	6	I	MM6/IL-6	5
Comparison ¹	Lab 1	Lab 2	Lab 3	Lab 1	Lab 2	Lab 3	Lab 1	Lab 2	Lab 3	Lab 1	Lab 2	Lab 3	Lab 1	Lab 2	Lab 3
1 vs 2	92%	100%	100%	ND	ND	ND	75%	92%	100%	92%	100%	100%	100%	92%	100%
1 vs 3	83%	88%	92%	ND	ND	ND	100%	92%	100%	100%	100%	92%	100%	92%	92%
2 vs 3	92%	NA	92%	ND	ND	ND	75%	100%	100%	92%	100%	92%	100%	100%	92%
Mean	89%	-	94%	ND	ND	ND	83%	94%	100%	94%	100%	94%	100%	94%	94%
Agreement across 3 runs	83%	-	92%	ND	ND	ND	75%	92%	100%	92%	100%	94%	100%	92%	92%

Table 2-3 Intralaboratory Reproducibility of *In Vitro* Pyrogenicity Test Methods

NA: Not assessed due to lack of sufficient data. The sensitivity criteria were not met for 1/3 substances in run 2, and 1/3 substances in run 3; ND: Not done. The cryo WB/IL-1 test method BRD states that an assessment of intralaboratory reproducibility was performed in the WB IL-1 (fresh blood) test method, and it is assumed that variability is not affected by the change to cryopreserved blood assayed in 96-well plates.

¹Comparison between 3 individual runs within each laboratory

688 2.5.2.3 Interlaboratory Reproducibility

689 Interlaboratory reproducibility was evaluated in two different studies. In both studies, 690 each run from one laboratory was compared with all other runs of another laboratory. The 691 proportion of equally classified samples provides a measure of reproducibility. In the first 692 study, like the intralaboratory reproducibility evaluation, interlaboratory reproducibility 693 was evaluated with the three marketed pharmaceuticals spiked with endotoxin, and tested 694 three times in three different laboratories. As shown in Table 2-4, the agreement across 695 three laboratories for each test method (where three runs per laboratory were conducted) 696 ranged from 72% to 86%, depending on the test method considered. In comparison, the 697 agreement across three laboratories for the WB/IL-1 (96-well plate method) and cryo 698 WB/IL-1 test methods, for which only one run per laboratory was conducted, was 83% 699 and 92%, respectively.

700

701 **Table 2-4** Interlaboratory Reproducibility of *In Vitro* Pyrogenicity Test

702

703 704

706

708 709

Methods

Lab	Agreement Between Laboratories ¹							
Comparison ¹	WB/IL-1	Cryo WB/IL-1	WB/IL-6	PBMC/IL-6	MM6/IL-6			
1 vs 2	92%	92%	72%	81%	97%			
1 VS 2	(11/12)	(11/12)	$(78/108)^2$	(87/108)	(105/108)			
1 vs 3	83%	92%	75%	86%	89%			
1 VS 5	(10/12)	(11/12)	$(81/108)^2$	(93/108)	(96/108)			
2 vs 3	92%	92%	97%	89%	86%			
2 18 5	(11/12)	(11/12)	$(105/108)^2$	(96/108)	(93/108)			
Mean	89%	92%	81%	85%	90%			
Agreement	83%	92%	72%	78%	86%			
across 3 labs ³	(10/12)	(11/12)	$(234/324)^2$	(252/324)	(279/324)			

¹Data from three substances (see **Table 2-3**) spiked with endotoxin (WHO-LPS 94/580 [*E. coli* O113:H10:K-]) at 0, 0, 0.5 and 1.0 EU/mL tested three times in three different laboratories, with the exception of the WB/IL-1 (96-well plate method) and the cryo WB/IL-1 (only the preliminary run from each laboratory used for analysis)

²Some of the runs did not meet the assay acceptance criteria and therefore were excluded from the analysis.

³All possible combinations of runs among the 3 laboratories were compared (with the exception of cryo WB/IL-1, which was only tested once in each laboratory, resulting in only one possible combination per substance).

710 In a second study, reproducibility was evaluated with the same ten substances used for

711 evaluating accuracy. In this study, the ten substances were spiked with five

concentrations of endotoxin and tested once in each of three laboratories. As indicated in

Table 2-5, the agreement across three laboratories for each test method ranged from 79%

to 88%, depending on the test method considered.

715

716 **Table 2-5** Interlaboratory Reproducibility of *In Vitro* Pyrogenicity Test

717

Methods

Lab	Agreement Between Laboratories ¹							
Comparison ¹	WB/IL-1	Cryo WB/IL-1	WB/IL-6	PBMC/IL-6	MM6/IL-6			
1 2	88%	84%	85%	84%	90%			
1 vs 2	(37/42)	(38/45)	(41/48)	(42/50)	(45/50)			
1 2	90%	88%	85%	86%	90%			
1 vs 3	(35/39)	(21/24)	(41/48)	(43/50)	(43/48)			
2 vs 3	92%	100%	88%	90%	83%			
2 VS 3	(43/47)	(25/25)	(44/50)	(45/50)	(40/48)			
Mean	90%	91%	86%	87%	88%			
Agreement	85%	88%	79%	80%	81%			
across 3 labs	(33/39)	(21/24)	(38/48)	(40/50)	(39/48)			

718 719 ¹Data from 10 substances spiked with endotoxin (WHO-LPS 94/580 [*E. coli* O113:H10:K-]) at 0, 0.25, 0.5, 0.5, and 1.0 EU/mL tested once in three different laboratories

720 **3.0 REFERENCES**

- 721
- 722 ICCVAM. 1997. Validation and Regulatory Acceptance of Toxicological Test Methods.
- 723 A Report of the *ad hoc* Interagency Coordinating Committee on the Validation of
- Alternative Methods. NIH Publication No. 97-3981. Research Triangle Park, NC.
- 725 National Institute of Environmental Health Sciences. Available:
- 726 <u>http://iccvam.niehs.nih.gov/docs/guidelines/validate.pdf</u> [accessed 20 July 2006].
- 727 728
- 729 ICCVAM. 2003. ICCVAM Guidelines for the Nomination and Submission of New,
- Revised, and Alternative Test Methods. NIH Publication No. 03-4508. National Institute
- 731 for Environmental Health Sciences, Research Triangle Park, NC. Available:
- 732 <u>http://iccvam.niehs.nih.gov/</u>. [accessed 20 July 2006].
- OECD. 1996. Final Report of the OECD Workshop on Harmonisation of Validation and
- 735 Acceptance Criteria for Alternative Toxicological Methods. (Solna Report) Paris:
- 736 Organisation for Economic Co-operation and Development. Available:
- 737 <u>http://www.oecd.org</u> [accessed 20 July 2006].
- 738

733

OECD. 2002. Report of the Stockholm Conference on Validation and Regulatory

- 740 Acceptance of New and Updated Methods in Hazard Assessment. Paris: Organisation for
- Economic Co-operation and Development. Available: <u>http://www.oecd.org</u> [accessed 20
- 742 July 2006]
- 743
- 744
- 745 746

740	
746	
747	
748	
749	
750	
751	
752	
753	
754	
755	
756	
757	
758	
759	
760	
761	
762	[This Page Intentionally Left Blank]
763	
764	
765 .	

766		
767		
768		
769		
770		Appendix B
771		
772	Indiv	vidual BRDs Submitted by ECVAM on Five In Vitro Pyrogenicity Test Methods
773		
774		
775	B 1	The Human Whole Blood (WB)/IL-1 In Vitro Pyrogen Test:
776		Application of Cyropreserved Human WBB1-1
777	B2	An Alternative In Vitro Pyrogenicity Test Using the Monocytoid
778		Cell Line Mono Mac 6 (MM6)/IL-6B2-1
779	B3	The Human Peripheral Blood Mononuclear Cell (PBMC)/IL-6
780		In Vitro Pyrogen TestB3-1
781	B4	The Human WB/IL-1 <i>In Vitro</i> Pyrogen TestB4-1
782	B5	The Human WB/IL-6 <i>In Vitro</i> Pyrogen TestB5-1
783		
784		
785		

785	
786	
787	
788	
789	
790	
791	
792	
793	
794	
795	
796	
797	
798	
799	[This Page Intentionally Left Blank]