Climate Publications

Prigarin, S., and A. Marshak, 2008: A simple stochastic model for generating broken cloud optical depth and top height fields. J. Atmos. Sci.

Abstract
A simple and fast algorithm for generating two correlated stochastic two-dimensional (2D) cloud fields is described. The algorithm is illustrated with two broken cumulus cloud fields: cloud optical depth and cloud top height retrieved from Moderate Resolution Imaging Spectrometer (MODIS). Only two 2D fields are required as an input. The algorithm output is statistical realizations of these two fields with approximately the same correlation and joint distribution functions as the original ones. The major assumption of the algorithm is statistical isotropy of the fields. In contrast to fractals and the Fourier filtering methods frequently used for stochastic cloud modeling, the proposed method is based on spectral models of homogeneous random fields. For keeping the same probability density function as the (first) original field, the method of inverse distribution function is used. When the spatial distribution of the first field has been generated, a realization of the correlated second field is simulated using a conditional distribution matrix. This paper is served as a theoretical justification to the publicly available software that has been recently released by the authors and can be freely downloaded here. Though 2D rather than full 3D, stochastic realizations of two correlated cloud fields that mimic statistics of given fields have proved to be very useful to study 3D radiative transfer features of broken cumulus clouds for better understanding of shortwave radiation and interpretation of the remote sensing retrievals.
Download Full-Text (PDF)
 
 
Updated:
September 15, 2008 in Personnel
Site Maintained By: Dr. William Ridgway
Responsible NASA Official: Dr. Robert Cahalan
 
Return to Climate Home NASA Homepage NASA Goddard Space Flight Center Homepage Lab for Atmospheres Homepage