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Abstract: It is shown that a general representation of GCM column cloud fraction within probability density function (PDF)-
based statistical cloud parameterizations can be obtained using statistical functions called copulas that encapsulate the dependence
structure of rank statistics in a multivariate system. Using this theory, a new Gaussian copula formulation of GCM cloud overlap
is obtained. The copula approach provides complete flexibility in the choice of the marginal PDF of each layer’s moisture and
temperature, and, compared with earlier approaches, including the “generalized overlap” approach, allows a far more general
specification of the correlation between any pair of layers. It also allows easy addition of new layer variables, such as temperature,
into the modeled gridcolumn statistics. As a preliminary test of this formulation, its ability to statistically describe a cloud resolving
model simulation of a complex multi-layer case study, including both large-scale and convective clouds, is examined. The Gaussian
copula cloud fraction is found to be significantly less biased than other common cloud overlap methods for this case study. Estimates
of several non-linear quantities are also improved with the Gaussian copula model: the variance of condensed water path and the
fluxes of solar and thermal radiation at atmospheric column boundaries. This first paper, though limited to the simpler case of
water clouds, addresses sub-gridscale variability in both moisture and temperature. This work is envisioned as a first step towards
developing a generalized statistical framework for GCM cloud parameterization and for assimilating statistical information from
high-resolution satellite observations into GCMs and global analyses. Copyright c© 2008 Royal Meteorological Society
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1 Introduction

A GCM cloud parameterization typically predicts the
cloud fraction and mean cloud properties in each model
layer containing cloud. To calculate the radiative impact
of these clouds in a GCM column requires the specifi-
cation of the overlap of the different cloud layers. Early
schemes assumed random overlap between model cloud
layers, but this suffers from an unphysical dependence
on model vertical resolution, and even randomly overlaps
adjacent cloudy model layers within the same physical
cloud. An improvement is the maximum-random over-
lap assumption (Tian and Curry, 1989), which assumes
maximal overlap between adjacent cloudy model layers1.
However, the scheme still retains some resolution depen-
dence because it relaxes to random overlap between non-
contiguous cloud layers, regardless of the thickness of the

∗Correspondence to: Dr. Peter Norris, Global Modeling and Assimi-
lation Office, NASA/GSFC, Code 610.1, Greenbelt, MD 20771, USA.
Email: peter.m.norris@nasa.gov
1The more commonly used variant of the maximum-random overlap
scheme due to Geleyn and Hollingsworth (1979) has a somewhat more
complicated interpretation. It is discussed in Appendix D.

intervening clear layer. Furthermore, it is reasonable to
expect some loss of correlation with height within deeper
clouds due to vertical wind shear, for example.

Recently, based on radar observations (Hogan and
Illingworth, 2000; Mace and Benson-Troth, 2002) and
cloud-resolving model studies (Oreopoulos and Khairout-
dinov, 2003; Räisänen et al., 2004; Pincus et al., 2005), a
more physical approach has been proposed, called “gen-
eralized overlap”, in which the combined cloud fraction
of any two layers can assume any value between those
defined by the extreme assumptions of perfect maximum
and random overlap. This is achieved through the intro-
duction of a correlation parameter that can take values
between zero for random overlap and one for maximum
overlap and whose value drops exponentially as a function
of the separation distance between the cloudy layers.

This concept can be also extended to the rank corre-
lation of cloud condensate amount between layers. This
governs the likelihood that a large water content in one
layer of a GCM column (relative to that layer’s water con-
tent range) will be paired with a relatively large water
content in another layer, and likewise for relatively small

Copyright c© 2008 Royal Meteorological Society
Prepared using qjrms3.cls [Version: 2007/01/05 v1.00]



2 NORRIS ET AL.

water contents. Räisänen et al. (2004) and Pincus et al.
(2005) find that this rank correlation also decreases expo-
nentially with layer separation. The existence of such con-
densate amount correlations between cloudy layers affects
both radiative transfer and precipitation/re-evaporation
processes (Jakob and Klein, 1999).

This paper is concerned with formalizing and gener-
alizing these concepts of “generalized overlap” and “con-
densate rank correlation” within the context of probabil-
ity density function (PDF)-based statistical cloud param-
eterizations (e.g., Smith, 1990; Xu and Randall, 1996;
Larson et al., 2001; Tompkins, 2002), which represent
the unresolved variability within a model gridbox sta-
tistically using PDFs. In doing so, we hope to provide
a framework for representing realistic three-dimensional
sub-gridscale variability in GCM gridcolumns, leading to
improved cloud and radiation parameterizations, and as a
first step towards transferring the statistical information
content of high-resolution satellite cloud observations into
GCMs and global analyses.

Very recently, Larson (2007) has presented an even
more general approach for treating PDF overlap, by mod-
eling the joint PDF of p variables (e.g., temperature and
moisture) and n model layers in a high-dimensional p× n
phase space. Larson presents several possible models for
this PDF and settles on a mixture of a small number of pn-
dimensional Gaussians, with the added condition that each
marginal distribution (i.e., the univariate PDF of a given
variable and layer) is the weighted sum of at most two nor-
mal distributions. Our approach, which Larson also briefly
discusses, is the use of statistical functions called cop-
ulas. These are essentially joint cumulative distribution
functions (CDFs) of the ranks of the pn layer-variables
within their respective marginal distributions. Compared
with Larson’s approach, the copula approach provides
complete flexibility in the choice of the marginal PDF of
each layer’s moisture and temperature, but is potentially
less easy to use in cases where estimates of the linear
correlations between variables are provided rather than
their rank correlations. Compared with earlier approaches,
including the “generalized overlap” approach of Räisänen
et al. (2004) and Pincus et al. (2005), the copula approach
allows a far more general specification of the correlation
between any pair of layers, and also allows for easy addi-
tion of new layer variables, such as temperature, into the
modeled gridcolumn statistics.

The paper is organized as follows: Section 2 intro-
duces some key notation and discusses our assumptions.
Section 3 introduces the connection between gridcolumn
cloud fraction and copulas of the moisture saturation ratio
of each model layer. Section 4 generalizes our use of cop-
ulas to include sub-gridscale temperature variability as
well, which allows us to move beyond cloud fraction to
more complicated gridcolumn quantities, such as radiative
fluxes. This section introduces the Gaussian copula in par-
ticular, and presents a simple method for inferring an unbi-
ased estimate of the Gaussian copula from gridcolumn
temperature and moisture samples. Section 5 discusses the
generation of random subcolumns from our copula-based

framework, which can be used for Monte-Carlo evalua-
tion of gridcolumn average properties. Subcolumn gen-
erators are provided for the Gaussian copula, as well as
for existing overlap schemes: random and maximum over-
lap, Geleyn and Hollingsworth (1979) maximum-random
overlap, and for a version of generalized overlap due to
Räisänen et al. (2004). Section 6 provides a detailed anal-
ysis of the application of our copula-based framework to
a single CRM-generated frontally disturbed test case over
the ARM (Atmospheric Radiation Measurement) South-
ern Great Plain site and highlights many practical issues
in implementing the new method. Gaussian copula esti-
mates of gridcolumn cloud fraction, liquid water path vari-
ance and radiative fluxes are compared with other overlap
methods. Section 7 summarizes our conclusions and pro-
vides a suggested roadmap for practical application of the
copula-based framework to GCM cloud-radiation param-
eterization and high-resolution satellite cloud data assim-
ilation. It concludes with a discussion of the copula-based
method in comparison to the recent Larson (2007) ”peg-
hat” approach and a recommendation on how elements of
both methods can be combined.

2 Preliminaries

2.1 Notation

Consider an air parcel of volume V containing massesmd,
mv and mc of dry air, water vapor, and water condensate.
The corresponding “densities” are ρd,v,c ≡ md,v,c/V . The
“total water density” is ρt ≡ ρv + ρc and the “parcel
density” is ρ ≡ ρd + ρt. The partial pressures of dry air
and water vapor are pd = ρdRdT and ev = ρvRvT , where
Rd and Rv are the gas constants of dry air and water
vapor and T is the parcel temperature. The parcel pressure
is p = pd + ev = ρ∗RdT , where ρ∗ ≡ ρd + ρv/ε will be
called the “virtual density” and ε ≡ Rd/Rv ≈ 0.622.

In this paper we will use “moisture contents”

qv,c,t = ρv,c,t/ρ∗, (1)

since the saturation vapor content qs ≡ ρs/ρ∗ =
εes(T )/p, where es(T ) is the saturation vapor pres-
sure over a plane pure liquid water surface, has a
particularly simple but exact form in this normalization.

Next, define the total saturation ratio (or simply
“saturation ratio”) as

S ≡ qt/qs, (2)

i.e., the total moisture content scaled by the saturation
vapor content. This is similar to the “relative humidity”,
expressed as a fraction, but uses the total water content,
not the vapor content in the numerator. We will use S
instead of qt in our analysis. The reasons for this choice
will become evident in later sections.

Finally, note that we will use boldface to represent
vectors, e.g., X , and San Serif font to represent matrices,
e.g., X.
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REPRESENTING CLOUD FIELDS USING COPULAS 3

2.2 Assumptions

This work has an intentionally narrow focus defined by the
following assumptions, most of which are quite common
in GCM cloud parameterizations:

(A1) Consider a single GCM gridcolumn, or a con-
tiguous vertical section thereof, comprised of K layers,
numbered k = 1 . . .K, bottom to top. Assume each layer
to be sufficiently shallow that all its properties can be
taken as vertically uniform. Clearly this is unphysical for
pressure, but assume that no significant error is made by
using the layer mid-point pressure in all calculations that
follow.

(A2) Assume the layer pressure p is also horizon-
tally uniform, whereas the layer temperature T and sat-
uration ratio S are horizontally non-uniform and dis-
tributed according to cumulative distribution functions
FTk

and FSk
for layer k. Specifically, FTk

(t) and FSk
(s)

are the fractions of the layer volume for which Tk ≤
t and Sk ≤ s. By assumption (A1), these volume frac-
tions are identical to the respective areal fractions of the
layer, as seen from directly above (i.e., from zenith). We
therefore employ the shorthand FTk

(t) = Fr(Tk ≤ t) and
FSk

(s) = Fr(Sk ≤ s), where Fr(A) is the areal fraction of
the gridcolumn, as viewed from zenith, for which con-
dition A holds. Note that FTk

is non-decreasing and has
FTk

(0) = 0 and FTk
(∞) = 1, and similarly for FSk

. We
further assume that both FTk

and FSk
are continuous.

(A3) We restrict our attention to contiguous vertical
sub-sections of a grid-column that contain only liquid
phase condensate and for which each contained layer has
T ≥ 0◦C everywhere. We make this assumption in order
to simplify development of our basic theory, as discussed
in (A4) below. We will include mixed phase and ice clouds
in a future paper.

(A4) Assume that qv nowhere exceeds its satura-
tion value qs = εes(T )/p, and that any excess water is
present as condensed liquid water qc = (qt − qs)H(qt −
qs) = (S − 1) qsH(S − 1), where H is the Heaviside step
function2. This so-called “bulk condensate” assumption is
often used in GCMs, since in most warm clouds vapor
supersaturations are very small3. This partially explains
why we have limited this paper to liquid water clouds —
in ice clouds, supersaturations in excess of 10% or 20%
are often seen.

One consequence of (A4) is that S is a direct indi-
cator of cloudiness, without regard to T , with S > 1 for
cloudy air and S ≤ 1 for clear air. This fact will allow us

2H(x) is 0 for x < 0, 1 for x > 0 and 1/2 for x = 0.
3In reality, cloud condensate is composed of hydrometeors which may
or may not be instantaneously in equilibrium with the surrounding vapor
field. Nevertheless, at least for a typical warm cloud condition, our
calculations with a microphysical droplet growth model indicate such
equilibrium typically occurs within a minute, much shorter than the
typical timestep for GCM phase change routines. The situation for ice-
phase clouds is definitely more complicated, and will be addressed in a
future paper. For the liquid water clouds currently under consideration,
assume that the liquid phase is in equilibrium with the vapor field,
and that curvature and solute effects, which lead to departures of the
saturation vapor pressure from that over a plane pure liquid surface, are
not significant in the bulk, hydrometeor-size-integrated sense.

to represent the gridcolumn cloud fraction in terms of the
vertical correlations of S alone.

3 Cloud Fraction and Copulas

3.1 Definition of Clear/Cloud Fraction

Define the clear fraction f ′k of layer k as the areal
fraction of the layer, when viewed from zenith, which
has zero condensate at any level within the layer. This is
technically an areal clear fraction, but under the shallow
layer assumption (A1) it is identical to the so-called
volumetric clear fraction, which is the fractional volume
of the layer with zero condensate. We will therefore drop
the prefix “areal” or “volumetric” and speak only of the
clear fraction f ′k. Using assumptions (A1)–(A4), we may
therefore write:

f ′k = Fr(qtk ≤ qsk) = Fr(Sk ≤ 1) = FSk
(1). (3)

The corresponding cloud fraction is just fk ≡ 1− f ′k.
The column clear fraction f ′ is likewise defined as

the areal fraction of the entire gridcolumn, as viewed
from zenith, which has zero condensate at any level. The
determination of f ′ is a major subject of this paper. The
column cloud fraction f is likewise defined by f ≡ 1− f ′.

Apart from being mathematically interesting quan-
tity, f ′ has been used extensively in the past in simple
plane parallel radiative transfer schemes as a proxy for
the portion of a GCM gridcolumn unaffected by cloud.
Also, from a satellite data assimilation perspective, f ′ is
related (albeit imperfectly) to the fraction of pixels in a
region that are not “masked” as cloudy, a common product
of many satellite cloud retrievals. In the real world there
are many complicating issues: the existence of sideways
photon transport in broken cloud fields, the occurrence of
non-zenith solar and satellite viewing angles, etc. Never-
theless, for a start, we wish to explore the determination
of f ′ under the assumptions discussed above and for the
simple reasons just outlined. It will turn out, as we pro-
ceed, that our analysis can also be used to model complex
inter-variable and inter-layer correlations within a grid-
column, and will therefore have far wider application to
GCM parameterization and data assimilation than our ini-
tial focus on column cloud fraction suggests.

3.2 Column Clear Fraction and Copulas

Let FS , where S ≡ (S1, . . . , SK)T , be the joint cumula-
tive distribution function of saturation ratio for all lay-
ers in the gridcolumn. Specifically, FS(s) = Fr(S1 ≤
s1, . . . , SK ≤ sK), where Fr(A,B) means Fr(A ∩B). It
therefore follows from the definition of f ′ that

f ′ = FS(1, . . . , 1). (4)

Define the “k-th margin” of FS(s) as the one-
dimensional function obtained from it by setting si =
∞∀ i 6= k. From the definition of FS we see that its k-
th margin is none other than the cumulative distribution
function of layer k alone, i.e., FSk

[see (A2)].
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4 NORRIS ET AL.

Then, by Sklar’s Theorem (see Nelson, 2006, The-
orem 2.10.9), ∃ a unique “K-copula” CS (to be defined
shortly) such that ∀ s ∈ [0,∞]K ,

FS(s) = CS(FS1(s1), . . . , FSK
(sK)). (5)

Then, by (4) and (3), we may write

f ′ = CS(FS1(1), . . . , FSK
(1)) = CS(f ′1, . . . , f

′
K). (6)

Hence, we see that this K-copula CS is the special func-
tion which relates the set of layer clear fractions {f ′k} to
the gridcolumn clear fraction f ′. At this point, CS pro-
vides a completely general expression of this relationship,
given the assumptions of §2.2. In §5 we will derive the
particular copula functions for many well known over-
lap assumptions: random overlap, maximum overlap, the
maximum-random overlap method due to Geleyn and
Hollingsworth (1979), and a total water version of the
Räisänen et al. (2004) “generalized overlap” method. As
general as the latter method is, it is still restricted to non-
negative correlations between layers and has a very spe-
cific form for the correlation between layers that is built
from correlations between adjacent layers only (see §5.6).
One of the advantages of the copula approach is that it
allows for a very general specification of the correlation
between arbitrary pairs of layers. For example, in sec-
tion §4.3 we will derive the so-called “Gaussian Copula”,
which is able to remove the above restrictions of the total
water Räisänen et al. (2004) method.

What exactly is a copula? From (5), it is a function
which joins a joint CDF to its one-dimensional margins.
It describes the scale-free dependence among a set of
variables in the sense that it is a joint CDF of the ranks
of the variables within their respective distributions.

The theory of copulas is discussed extensively in
a monograph by Nelson (2006). Formal details aside, a
K-copula can be thought of as a cumulative distribution
function on IK ≡ [0, 1]K with uniform margins, meaning
that ∀ r = (r1, . . . , rK)T ∈ IK , C(r) = 0 if at least one
coordinate of r is 0, and C(r) = rk if all coordinates of r
are 1 except rk.

We will use the following results from copula theory:

(R1) Two simple copulas with special significance
in copula theory are the “product cop-
ula” ΠK(r) =

∏K
k=1 rk and the “M copula”

MK(r) = min(r1, . . . , rK).
(R2) The

(
K
k

)
“k-margins” of a K-copula C, formed by

setting K − k of the arguments of C to one, are
themselves k-copulas.

(R3) A copula is non-decreasing in each of its arguments.

3.3 Simple Cases

Two common special cases of (6) are:

a. If all layers are completely independent we will
have f ′ =

∏K
k=1 f

′
k, which corresponds to CS =

ΠK , the “product copula”. This leads to the so-
called “random overlap” cloud fraction

fRAN = 1−
K∏

k=1

f ′k. (7)

Random overlap is unrealistic when applied to
closely separated model layers within a contiguous
cloud layer.

b. If CS = MK , the “M copula”, then we obtain f ′ =
min(f ′1, . . . , f

′
K) and the so-called “maximum over-

lap” cloud fraction

fMAX = 1−min(f ′1, . . . , f
′
K)

= max(f1, . . . , fK).
(8)

Though more realistic than random overlap when
applied within a cloud, we do expect some transi-
tion towards random overlap between distant model
layers within a deep cloud.

Appendix C gives an example to the combination of these
different cloud fraction copulas for the case of multiple
cloud layers.

4 Beyond Cloud Fraction

4.1 The Joint Distribution of T and S

So far we have a way of evaluating the layer and column
cloud fractions using (3) and (6) via the statistical proper-
ties of S. But we also need a way to characterize the joint
distributions of T and S so that we may estimate more
complex quantities than cloud fraction, such as the radia-
tive or precipitation forming properties of a collection of
cloud layers, which depend on a knowledge of T , qv and
qc, among others. Let FT ,S be the joint distribution func-
tion of T and S. Then by Sklar’s Theorem ∃ a unique
2K-copula CT ,S such that ∀ t, s ∈ [0,∞]K ,

FT ,S(t, s) = CT ,S(FT1(t1), . . . , FTK
(tK),

FS1(s1), . . . , FSK
(sK)).

(9)

Note that the saturation ratio K-copula CS of (5) is just
the K-margin of CT ,S that marginalizes the temperatures.
Namely,

CS(r1, . . . , rK) = CT ,S(1, . . . , 1, r1, . . . , rK). (10)

4.2 Multivariate Copulas

There are numerous bivariate copulas discussed in Nelson
(2006). However, in order to model the cloud overlap
properties of multiple layers, we need to find suitable
copulas of higher order. Unfortunately, it is usually not
possible to extend a bivariate copula to higher dimensions
while retaining the flexibility it has in two dimensions.

There are several different approaches to building
copulas of order three and above. One strategy (Chakak
and Koehler, 1995) starts with bivariate marginal copula
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REPRESENTING CLOUD FIELDS USING COPULAS 5

and uses conditional probability arguments to iteratively
construct higher order margins that include those of lower
order but also capture the joint rank dependence of pro-
gressively larger numbers of layers. We have not found
this method easy to use and will not discuss it further.

The approach we will take is to investigate trans-
formations of (T ,S) space that yield known multivariate
distribution functions. These analytic FT ,S then translate
to analytic copulas via Sklar’s Theorem (9).

4.3 Transformed Multinormal Distributions and the
Gaussian Copula

Suppose there exist monotonic increasing transformations

ZTk = GTk(Tk)
ZSk = GSk(Sk)

}
, k ∈ {1, 2, . . . ,K}, (11)

such that Z ≡ (ZT1, . . . , ZTK , ZS1, . . . , ZSK)T ∈ R2K

has a multivariate Normal (i.e., multinormal) distribution
with zero mean (E(Z) = 0) and covariance C = E[ZZT ],
or using common statistical shorthand, Z ∼ N2K(0,C),
and that C has unit variances (ones on its diagonal) and is
therefore a correlation matrix4. The implication of these
transformations is that the density of areal fraction in Z
space is

pZ(z;C) = (2π)−K |C|−1/2 exp{−zT C−1z/2}. (12)

Using the monotonic increasing property of the Gk,

FT ,S(t, s)
= Fr(T1 ≤ t1, . . . , TK ≤ tK ,

S1 ≤ s1, . . . , SK ≤ sK)
= Fr(ZT1 ≤ GT1(t1), . . . , ZTK ≤ GTK(tK),

ZS1 ≤ GS1(s1), . . . , ZSK ≤ GSK(sK))
= FZ(GT1(t1), . . . , GTK(tK),

GS1(s1), . . . , GSK(sK);C),

(13)

where

FZ(z1, . . . , z2K ;C) =
∫ z1

−∞
. . .

∫ z2K

−∞
pZ(z′;C)dz′ (14)

is the multinormal cumulative distribution function (dis-
cussed further in §5).

It is a property of the multinormal Z ∼ N2K(0,C)
that each of the 2K margins is normally distributed as
Zk ∼ N(0,Ckk) = N(0, 1), i.e., each Zk is a standard
normal variate. Then

FZT k
(z) = FZSk

(z) =
1
2

[
1 + erf

(
z√
2

)]
≡ Φ(z),

(15)

4For the existence of such transformations we actually require only
that there exist monotonic increasing transformations such that Z has
an arbitrary multinormal distribution, i.e., Z ∼ N2K(µ,Σ), except
only that Σ has all non-zero variances σ2

k ≡ Σkk > 0, since then
the further monotonic increasing transformations (Zk − µk)/σk 7→
Zk , yield Z ∼ N2K(0,C), where C is the correlation matrix Cij ≡
Σij/(σiσj).

which is the standard Normal cumulative distribution
function, expressed in terms of the Error function erf(x) =
2√
π

∫ x

0
e−t2dt. Its inverse is

Φ−1(p) =
√

2 erf−1(2p− 1). (16)

Since GTk is monotonic increasing,

FTk
(t) = Fr(Tk ≤ t) = Fr(ZTk ≤ GTk(t))

= FZT k
(GTk(t)) = Φ(GTk(t)),

and similarly for GSk, so that

GTk(t) = Φ−1(FTk
(t)) and

GSk(s) = Φ−1(FSk
(s)).

(17)

Combining these with (13), we have

FT ,S(t, s) = CZ(FT1(t1), . . . , FTK
(tK),

FS1(s1), . . . , FSK
(sK);C),

(18)

as in (9), with

CZ(r1, . . . , r2K ;C) =

FZ(Φ−1(r1), . . . ,Φ−1(r2K);C),
(19)

∀rk ∈ [0, 1]. This CZ is the so-called “Gaussian copula”
(e.g., Cherubini et al., 2004) and can be used in place
of CT ,S . Once the K(2K − 1) unique elements of the
correlation matrix C are specified, we can evaluate the
column clear fraction f ′ using (10) and (6). Or if we know
the form of the 2K single layer margins FTk

and FSk
, we

can evaluate the full joint distribution FT ,S using (18).
The above theory assumes that the (T ,S) field

can be represented as a transformed multinormal Z ∼
N2K(0,C). In practice, this will never be exactly true.
It is exactly true that each Zk ∼ N(0, 1), since FTk

and
FSk

are by definition uniformly distributed and so the ZTk

and ZSk follow standard normal distributions per (11) and
(17). However, a distribution that has all normal margins
is not necessarily multinormal, even though the converse
is true. In practice, we can adjust C (and the parameters of
the FTk

and FSk
distributions if they are modeled) to give

the best fit to observed cloud fraction or (T ,S) data. We
can then judge the quality of the best fit model, either by
looking at the quality of the model predictions, or, more
directly, by examining the fit in Z or (T ,S) space.

4.4 Inference of Gaussian Copula Parameters

Say we are supplied with N random samples
{T (1), . . . ,T (N)} and {S(1), . . . ,S(N)} from a
gridcolumn and wish to model the scale-free depen-
dence between layers using the Gaussian copula
CZ(r1, . . . , r2K ;C). We will assume that the marginal
distributions FTk

and FSk
are known exactly or have been

estimated in a prior step. Then the sample ranks are given
by

R
(n)
k = FTk

(T (n)
k ), R

(n)
k+K = FSk

(S(n)
k ), (20)
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6 NORRIS ET AL.

for k = 1, . . . ,K. From these ranks, we seek an unbiased
estimate of the copula parameter, call it Ĉ, such that
subsequent generation of samples from the copula (see
§5) will be as consistent with the underlying population
as possible.

Since C is the correlation matrix of Z ≡
(Φ−1(R1), . . . ,Φ−1(R2K))T ∼ N2K(0,C), the “sample
correlation matrix” (Snedecor and Cochran, 1980) of the
Z(n) provides the required unbiased estimate:

Ĉij ≡ Σ∗ij/
√

Σ∗iiΣ
∗
jj , (21)

where Σ∗ij ≡
∑N

n=1(Z
(n)
i − Z̄i)(Z

(n)
j − Z̄j)/(N − 1) and

Z̄k ≡
∑N

n=1 Z
(n)
k /N .

4.5 Estimation of grid-column averages

Let ψ be some scalar gridcolumn quantity that can be
expressed in terms of gridcolumn temperature T and satu-
ration ratio S and which therefore has a horizontal distri-
bution within the grid-column. We define the gridcolumn
average (expectation value) of ψ as

〈ψ〉 ≡
∫ ∞

0

· · ·
∫ ∞

0

ψ(t, s) pT ,S(t, s) dt ds. (22)

where pT ,S is the density of areal fraction within (T ,S)
phase space, defined such that

FT ,S(t, s) =
∫ s1

0

· · ·
∫ sK

0

∫ t1

0

· · ·
∫ tK

0

pT ,S(t, s) dt ds,

for all t, s ∈ [0,∞]K . Note that this average is a linear
operator, namely 〈aψ〉 = a〈ψ〉, and 〈ψ + φ〉 = 〈ψ〉+ 〈φ〉.
Also, if ψ is only a function of a single layer Tk and Sk

then the other layers are marginalized and we find

〈ψ(Tk, Sk)〉 =
∫ ∞

0

∫ ∞

0

ψ(t, s) pTk,Sk
(t, s) dt ds, (23)

where pTk,Sk
(t, s) = ∂2FTk,Sk

(t, s)/∂t ∂s.
For some ψ, such as the total or condensed water

paths, the layer contributions appear linearly and so the
〈·〉 passes through to individual layer evaluations in 〈ψ〉.
This means that 〈ψ〉 can be evaluated as a weighted sum
of single-layer marginal averages as in (23). But for many
other quantities, such as radiative transfer integrals, or
surface precipitation flux, the ψ is a non-linear function
of the layer contributions, and so 〈ψ〉 cannot be evaluated
in terms of layer averages, 〈·〉k. We will consider the
numerical evaluation of such 〈ψ〉 in §5.

Finally, note that the expectation value 〈ψ〉 is invari-
ant under any arbitrary transformation of (T ,S). In partic-
ular, for any one-to-one transformation to space X ⊂ R2K

we may re-write (22) as

〈ψ〉 =
∫

X

ψ(x) pX(x) dx. (24)

We may choose any transformation that is convenient for
the evaluation of 〈ψ〉.

5 Monte Carlo Subcolumn Generation

There are many quantities, such as the shortwave cloud
transmittance, for which the gridcolumn average integral
in (22) or (24) does not have a simple analytic form and
therefore requires evaluation by numerical methods. One
such method involves the Monte Carlo generation of a
finite number of “subcolumns” from the gridcolumn and
then approximation of 〈·〉 as the average over this popula-
tion of subcolumns. By a “subcolumn” we mean a descrip-
tion of all K layers at one particular horizontal location
in the gridcolumn, as specified by a 2K-vector (T ,S).
The Monte Carlo subcolumn generator must produce a
set of such subcolumns in a manner consistent with the
underlying areal distribution function FT ,S of the grid-
column. While there exist other numerical methods that
are more accurate, we will focus on Monte Carlo methods
here because of the recent interest in Monte Carlo radia-
tive transfer parameterizations for GCMs (e.g., Räisänen
and Barker, 2004; Räisänen et al., 2005).

In the following subsections we will present subcol-
umn generators for the Gaussian copula and for a number
of existing overlap assumptions. In §6 we will compare
the performance of these generators using cloud resolving
model (CRM) data.

5.1 A Gaussian Copula Subcolumn Generator

For the Gaussian copula (GCOP), we may use the mono-
tonic increasing transformations to Z, per (11), so that

〈ψ〉 =
∫

R2K

ψ(z) pZ(z;C) dz, (25)

where pZ(z;C) is defined by (12).
This suggests the following Monte Carlo method to

estimate 〈ψ〉: (1) select Ns random sample vectors Z ∈
R2K from the distribution N2K(0,C), i.e., from a popula-
tion with probability density pZ(z;C), using Appendix A;
(2) form a rank vector R for each Z using Rk = Φ(Zk);
(3) form a T and S for each R using the inverse
of the marginal distributions, Tk = F−1

Tk
(Rk) and Sk =

F−1
Sk

(Rk+K), k = 1, . . . ,K; (4) form a qc for each T and
S using qck = (Sk − 1)qs(Tk)H(Sk − 1) and any other
intermediate quantities needed to evaluate a ψ for each
sample; (5) finally, 〈ψ〉GCOP

Ns
is the average of the Ns such

ψ.

5.2 “S-only” Generation

The Gaussian copula method is able to model the inter-
dependence of T and S, both within and between layers.
This flexibility is one of the advantages of the Gaus-
sian copula method. However, it is not immediately obvi-
ous how to include joint T -S generation in many of the
other generators we will use for comparison purposes. For
example, consider so-called “maximum overlap”. We will
demonstrate in §5.4 that a maximum overlap generator is
very simple for S alone. However, if the S fields among
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REPRESENTING CLOUD FIELDS USING COPULAS 7

layers are maximally overlapped, and if the intra-layer T -
S relationship varies among layers, then it is clear that
the T fields cannot also be maximally overlapped. Since
a careful treatment of the incorporation of joint T -S vari-
ability into existing generators is outside the scope of this
paper, we will use S-only generators5 for almost all of the
intercomparisons in §6. We would also add that S-only
generators are also a more natural next step for current
GCMs, some of which have cloud parameterizations with
sub-gridscale moisture PDFs (e.g., Rienecker et al., 2007),
but few, if any, have joint PDFs of moisture and tempera-
ture.

Having justified this use of S-only generators on
practical grounds, at least two questions remain: how sig-
nificant are the errors made by modeling only S vari-
ability and using layer average temperatures, and why
do we choose to examine S-only variability, and not,
say, qt-only variability? We will answer both these ques-
tions in §6, where we will show that S = qt/qs(T ) —
which under §2.2 (A4) is a direct indicator of cloudiness,
without regard to T — is able to capture the most sig-
nificant effects of T variation implicitly, via its depen-
dence on qs(T ). Furthermore, we will show that the
gridcolumn-averaged condensed water path and column
radiative properties have smaller errors if the full S vari-
ability is retained and layer averages used for explicit T ,
than if full qt variability is retained and layer-average T is
used. In other words, it is more important in the evalua-
tion of these quantities to get the cloudiness in each layer
correct but make small errors in the water contents than
it is to get the qt correct but to make errors in the extent
of the cloudiness. Finally, we note that the physical extent
of cloudiness is usually more accurately retrievable from
remote sensing measurements than is qt.

5.3 The “Random Overlap” copula and generator

So-called “random cloud overlap” can be modeled using
K independent layers and the product copula, CS =
ΠK , as per §3.3a. The generator of this copula is
trivial: for each sample n ∈ {1, . . . , Ns}, start with a
sample rank vector R(n) = (U (n)

1 , . . . , U
(n)
K )T , each ele-

ment of which is independently and uniformly dis-
tributed on [0, 1]. Then, the generated sample is S(n) =
(F−1

S1
(U (n)

1 ), . . . , F−1
SK

(U (n)
K ))T .

5.4 The “Maximum Overlap” copula and generator

In §3.3b we noted that “maximum cloud overlap” in K
layers can be represented by the “M-copula”, i.e., using
CS(r1, . . . , rK) = min(r1, . . . , rK). The areal density in
rank space, ∂KCS(r1, . . . , rK)/(∂r1 . . . ∂rK), is therefore
zero off the main diagonal of IK , suggesting that the gen-
eration scheme for the ranks should use the same uniform
rank for each dimension. Namely if we select random rank

5Namely, we will generate S fields only, and use the average T for each
layer. The S-only version of the Gaussian copula generator is simple: Z
and C are restricted to the K-space of S values alone.

vectors R(n) ≡ (U (n), . . . , U (n))T ∈ IK , where U (n) is
uniformly distributed on [0, 1], then for infinite samples,

Fr(R(n)
1 ≤ r1, . . . , R

(n)
K ≤ rK)

= Fr(U (n) ≤ min(r1, . . . , rK)) = min(r1, . . . , rK),

as required. It is clear, then, that the M-copula gives the
maximum possible correlation between all the K ranks.

5.5 The Geleyn and Hollingsworth (1979) generator

We also considered several combination maximum-
random overlap variants. The “standard” version, due
to Tian and Curry (1989), is discussed in Appendix C. The
method is identical to maximum overlap for a single con-
tiguous cloud layer at model layer resolution, even if the
cloud is really comprised of multiple sources, as in our
case study in §6. Instead, we will use the more commonly
implemented and more realistic variant, due to Geleyn
and Hollingsworth (1979), which is described in detail in
Appendix D.

5.6 The Räisänen et al. (2004) generator

Finally, we consider a version of the types of “gen-
eralized overlap” method described in the Introduction.
Specifically, we use the total water generator described in
Appendix B of Räisänen et al. (2004), but adapted to sat-
uration ratio S rather than qt. The method is discussed in
detail in our Appendix B. In summary, it yields a linear
combination of maximum and random overlap between
any two layers k and l in the column, with the weighting
depending on the product of the rank correlation coeffi-
cients of S between each pair of adjacent layers between
k and l. Note that this is a far more restrictive overlap spec-
ification than the Gaussian copula, which permits very
general rank correlations between pairs of layers, includ-
ing anticorrelations (i.e., elements of so-called “minimal
overlap”).

5.7 Note on cloud fraction evaluation

For each of the generators presented in this section (and
supporting Appendices B and D) we have derived an asso-
ciated copula. This permits direct evaluation of column
cloud fraction using (6). That being said, not all of the
copula are necessarily efficient to evaluate directly, and a
simple alternative is to generate a large number of sub-
columns, and to count the fraction of which have cloud
in any layer. Since generating an ensemble of subcolumns
will usually be necessary to evaluate radiative fluxes any-
way, this may be an efficient option for moderate accuracy
of f in many cases (see further discussion in §6.4).

For example, for the Gaussian copula, there is no
closed form for the multinormal distribution FZ of (14),
so it must be evaluated numerically (see Drezner and
Wesolowsky, 1989; Drezner, 1994; Genz and Bretz,
1999, 2002; Genz, 2004). A MATLAB implementation
mvncdf.m is based on these papers. For dimensions
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8 NORRIS ET AL.

greater than three the MATLAB implementation uses a
quasi-Monte Carlo integration algorithm based on meth-
ods developed by Genz and Bretz, as above. These meth-
ods can be time consuming for high accuracy and so the
more simplistic subcolumn approach just discussed is also
attractive.

6 A CRM case study

This paper is mainly intended as a theoretical outline
of our new approach to dealing with cloud overlap. We
will show here only some preliminary numerical results
using synthetic data from a cloud resolving model (CRM)
simulation and present a more extensive testing in a
follow-up paper.

6.1 Goddard Cumulus Ensemble Model

We use output from a Goddard Cumulus Ensemble
(GCE) model simulation of the Atmospheric Radiation
Measurement (ARM) Spring 2000 Intensive Operation
Period (IOP) over the Southern Great Plains (SGP)
site. The simulation has 128× 128 gridpoints per layer
with a 1km grid spacing, and 41 levels in the vertical,
spread non-uniformly from the surface through 22km. The
GCE model is non-hydrostatic with a bulk microphysics
scheme including three species of ice: crystals, snow and
graupel. Details of the model and an analysis of this par-
ticular simulation can be found in Zeng et al. (2007).

6.2 A preliminary 12-layer test

We consider the overlap of the GCE model’s lowest twelve
layers from a single snapshot of the GCE simulation
output at 1831Z on 16 March 2000, about 15 days into a
20 day simulation, and about one day after the passage of
a cold front through the domain. The lowest 12 layers are
precisely the ones that contain no gridpoints with T < 0◦C
and no cloud ice in this snapshot. Each of these layers
contains NH ≡ 128× 128 = 16384 gridpoints, and the
twelve layers together form a simplified “grid-column”
for the cloud fraction tests to follow. The average profile
of temperature for these layers, which extend from the
surface to about 2km, is shown in Figure 1a.

For each gridbox in our simplified gridcolumn, we
form a total water content qt by summing the model vapor
and condensed (but non-precipitating) cloud water con-
tents. The average profile of qt is shown in Figure 1b and
together with the temperature profile shows a relatively
warmer, moister airmass overlying a poorly mixed surface
layer up to 800m. The upper airmass is the air that has
been lifted by the passing cold front, and the lower layer
is the colder, drier air that swept under it. The bulk con-
densed water content, qc and saturation ratio, S, are then
calculated according to §2.2 (A4). Figure 1c shows the
presence of some condensed water in each of the twelve
layers.

Figure 2 shows horizontal slices of T and qc for the
GCE snapshot for three selected layers: 3, 5, and 12, with

mid-layer heights at 214, 470, and 2122 meters above
the surface. Layer 3 has a complex structure containing
narrow, string like perturbations with high T and qc
(shown) and also high qt and strong upward motion (not
shown). These are cumulus cloud bands associated with
surface-driven warm, moist convective updrafts. These
form readily in the lower region because the surface
has been recently wet by frontal rain and the latent
heat flux is high. Layer 12, conversely, is representative
of the warmer, moister, frontally raised airmass and is
characterized by a much more slowly varying, large scale
cloud field surrounding a distinct clear region. Finally,
layer 5, is in the transition between these two airmasses
and shows elements of both.

We will estimate a Gaussian copula using the T and S
data from this twelve layer snapshot, as described below,
and then see how our copula-based cloud fraction, cloud
water path, and column radiative properties compare with
the exact snapshot properties and with the properties
predicted by other overlap methods.

6.3 Estimating Marginal Distributions

There are two different approaches we take to estimat-
ing the underlying marginal distributions FTk

and FSk

of the GCE gridcolumn data. The first is to estimate a
non-parametric empirical distribution function (EDF). To
do this, we assign an equal probability 1/NH to each
subcolumn value, as a delta function6 in the areal frac-
tion density, namely, pEDF

Tk
(t) = N−1

H

∑NH

n=1 δ(t− T
(n)
k ),

where the T (n)
k are the GCE subcolumn temperatures for

layer k, and similarly for Sk. Then, the areal EDF is just

F EDF
Tk

(t) = N−1
H

NH∑
n=1

H(t− T
(n)
k ), (26)

where H is the Heaviside step function (see §2.2 (A4)).
For almost all t ∈ R, specifically, for t /∈ Tk ≡

{T (1)
k , . . . , T

(NH)
k }, this F EDF

Tk
(t) is just the fraction of

subcolumns with T
(n)
k < t, since there is zero probabil-

ity of T (n)
k being equal to any such t. Similarly, none

of the NH gridboxes in any layer of our gridcolumn has
exactly S = 1 and so the EDF clear and cloud fractions,
f
′ EDF
k ≡ F EDF

Sk
(1) and f EDF

k ≡ 1− f
′ EDF
k , are the fractions

of subcolumns with Sk < 1 and Sk > 1, respectively. By
the same token, the clear and cloudy column fractions,
f
′ EDF and f EDF = 1− f

′ EDF, are the fractions of the sub-
columns with S < 1 for every layer and S > 1 for at least
one layer, respectively. Conversely, consider the empir-
ical ranks assigned to the data samples themselves. If
there are no ties7 in Tk, then R(n)EDF

k ≡ F EDF
Tk

(T (n)
k ) =

6The rationale for a delta function assignment of probability about a data
point T (n)

k is that such data are only available at some finite precision

and that T values from the underlying population that are near T (n)
k will

all present in the data as T (n)
k .

7I.e., repeated values. For finite precision experimental data, or even for
simulation output such as the GCE data in which temperature is output
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Figure 1. (a)-(c) Layer average profiles for the lowest twelve layers of the GCE snapshot (see text) of temperature, T , total water content,
qt, and condensed water content, qc; (d) The f EDF

k (solid) and f GEV
k (dashed) layer cloud fractions (see text).

Figure 2. Horizontal slices of the GCE snapshot at layers 3, 5 and 12, for temperature (top) and condensed water content (bottom).

(n∗ − 1/2)/NH , where n∗ ∈ {1, 2, . . . , NH} is the ordi-
nal position of T (n)

k within an ascending reordering of
Tk. Thus the empirical ranks are easily generated from
an ascending sort of Tk. Similar comments apply to the
ranks R(n)EDF

k+K ≡ F EDF
Sk

(S(n)
k ) associated with S.

The second approach to margin estimation is para-
metric and involves fitting a known distribution function
to the Tk and Sk data. Various distributions were tried, but
the Generalized Extreme Value (GEV) distribution proved
to give the best fits. This distribution is defined by

FGEV
X (x;µ, σ, ξ) = e−[1+ξ( x−µ

σ )]−1/ξ

(27)

for 1 + ξ(x− µ)/σ > 0, where µ ∈ R is the location par-
ameter, σ > 0 is the scale parameter and ξ ∈ R is the
shape parameter. It can handle both positively and neg-
atively skewed distributions. For ξ > 0, the distribution

in Kelvin in “single precision”, ties can exist in the Tk . An algorithm for
assigning a common rank to each repeated value while satisfying (26) is
not difficult and will not be discussed further.

is bounded below, and has an infinite tail in the posi-
tive x direction. Conversely for ξ < 0, the distribution is
bounded above, and has an infinite tail in the negative x
direction. However, for the distributions of positive T and
S we are studying, there will, in practice, be negligible
probability for T < 0 or S < 0. The maximum likelihood
fits are shown in the top panels of Figures 3 and 4 for the
same three selected layers shown in Figure 2. The layer
3 and 5 fits are generally very good, although the nar-
row localized peak at S = 1 is not captured for layer 3.
The layer 12 fits are poorer — it seems that although the
GEV distribution is generally reasonable, it cannot model
a broad distribution with an additional sharp peak. Future
work should be done to select an improved marginal dis-
tribution, possibly one that is the sum of two distributions,
one to handle the main spread, and another to model an
additional peak. Note also from the figures how both pos-
itively and negatively skewed marginal distributions are
needed for Tk and Sk. The marginals are clearly non-
Gaussian (see §7 for further discussion).

Copyright c© 2008 Royal Meteorological Society
Prepared using qjrms3.cls

Q. J. R. Meteorol. Soc. 00: 1–22 (2008)
DOI: 10.1002/qj



10 NORRIS ET AL.

6.2 6.3 6.4 6.5
0

5

10

15

T [C]

pd
f(T

)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

z

pd
f(z

)

4.6 4.7 4.8 4.9
0

2

4

6

8

10

T [C]

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

z

0.5 1 1.5 2
0

2

4

6

T [C]

−5 0 5
0

0.2

0.4

0.6

0.8

z

Figure 3. Top: the binned frequency distribution of Tk data for layers 3, 5 and 12 expressed in probability density units (shaded gray)
and the probability density function (solid line) corresponding to the maximum likelihood fit of the Generalized Extreme Value (GEV)
Distribution to the Tk data. Bottom: the corresponding frequency distributions (in gray) of ZTk transformed from Tk using (11) and (17)
and the GEV-fitted margins F GEV

Tk
, and a maximum likelihood normal fit (solid line). The PDF for the standard normal N(0, 1) is shown

(dashed line) for comparison, but it is only distinguishable from the maximum likelihood fit in layer 12, and then only slightly.
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Figure 4. As for Figure 3 but for the distributions of saturation ratio, Sk. Left to right are layers 3, 5 and 12.

In the following analysis we shall use both the EDF margins F EDF
Tk

and F EDF
Sk

and the GEV margins FGEV
Tk

and
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FGEV
Sk

and compare the results. We prefer the EDF mar-
gins, since they are more directly tied to the data, and since
the GEV margins are a less than perfect fit and therefore
introduce an extra source of error into our analysis that
obscures the interpretation of the errors associated with
the Gaussian copula model of the rank dependence struc-
ture. Nevertheless, we retain the parametric GEV results,
since our ultimate plan is to use the new copula method
in tandem with PDF-based cloud parameterizations within
GCMs, in which case a parameterized marginal distribu-
tion function is needed. We will therefore conduct parallel
calculations with the two approaches, treating the EDF
results as our reference, and using the GEV results to
indicate how much potential improvement we may expect
from a better and more flexible parametric model of the
margins.

One final comment is in order with regard to tail
behaviour in the margins. It could be argued that the EDF
margin does a poor job of modeling the tail behavior in
the underlying distribution, due to the limited number of
tail samples available. However, the same can also be true
of a parametric model unless it has a form that is based
on extensive analysis of tail behavior in large sample
studies. Tail behavior should form an important part of
future margin modeling studies, especially if the resulting
copula model will be used to parameterize processes
such as precipitation that are expected to have strong tail
dependence.

6.4 Cloud Fraction

The EDF layer cloud fractions f EDF
k are shown in the solid

line of Figure 1d. Notice again that there is cloud in every
layer, even though we have inferred from the temperature
and moisture profiles above that we are likely looking at
two different air masses. This observation gives further
reason why a “maximum overlap” assumption should not
automatically be applied to a vertically contiguous set of
cloudy layers.

The EDF column cloud fraction f EDF is 0.9650. This
is the fraction of the NH horizontal points for which at
least one layer has some condensate. By comparison, the
column cloud fractions formed by the random overlap
and maximum overlap assumptions, using the f EDF

k as
input, are 1.0000 and 0.7699, respectively. We will call
these f EDF

RAN and f EDF
MAX. They are in error by 3.6% and

−20.2% respectively (see also Table I). Again, while
neither random or maximum overlap is realistic, in this
case maximum overlap is very unrealistic, even though the
whole layer is “contiguously cloudy” in the vertical.

We also consider several maximum-random overlap
variants. The “standard” version, due to Tian and Curry
(1989) is discussed in Appendix C, but is exactly the
same as maximum (MAX) overlap for this case study,
since there is no completely clear layer in our 12-layer
gridcolumn. The Geleyn and Hollingsworth (1979) vari-
ant, described in §5.5 and Appendix D, yields f EDF

MROGH =
0.9230, in error by −4.3%.

Finally, the Räisänen et al. (2004) generator dis-
cussed in §5.6 and Appendix B yields a cloud fraction

Table I. Percent biases in column cloud fraction f with respect
to the EDF reference 0.9650 for methods GCOP, MAX, RAN,
MROGH and RAIS. The EDF row uses the EDF ranks, while the
GEV row uses the GEV-derived ranks. Both RAN results have f

maximized at one and so have equal biases.

f GCOP MAX RAN MROGH RAIS

EDF -1.9 -20.2 3.6 -4.3 -9.1
GEV -5.8 -24.5 3.6 -11.1 -13.4

f EDF
RAIS = 0.8768, in error by−9.1%. In fairness to Räisänen

et al., the total water version we use is not their preferred
implementation. Unlike their main version, which allows
separate control of the cloud fraction overlap and the cloud
condensate amount correlations, the total water version
only allows control of the vertical correlations of qt (or, in
our case, S) within the gridcolumn. Nevertheless, the total
water (or S) version is most consistent with our “bulk con-
densate” approach (§2.2 (A4)), and so we will not use the
full Räisänen et al. (2004) generator, which would likely
yield improved results.

The GEV layer cloud fractions are evaluated from
the GEV best fit margins, f GEV

k = 1− FGEV
Sk

(1), using (3).
These f GEV

k values are shown as the dashed line in Fig-
ure 1d. In the upper airmass, especially, these f GEV

k tend
to underestimate f EDF

k by up to 20%. For layer 12 shown
in Figure 4 we can see that this underestimate stems from
failing to capture the sharp peak in S just above S = 1.
The random and maximum overlap column fractions cal-
culated using the f GEV

k are as follows: f GEV
RAN = 1.0000 and

f GEV
MAX = 0.7284, which are in error by 3.6% and −24.5%

of f EDF. Likewise, f GEV
MROGH = 0.8577 and f GEV

RAIS = 0.8357,
in error by −11.1% and −13.4%, respectively. All these
results are compared in Table I.

Next, sample ranks are assigned from (20), both for
the EDF and GEV marginal distributions, and these are
then transformed to Z space using (11) and (17). The
binned PDFs of the ZTk and ZSk for the GEV case are
shown in the lower panels of Figures 3 and 4. As expected,
these distributions are close to N(0, 1), at least for layers
3 and 5 where the GEV fit is good. The binned Zk for the
EDF case need not be shown — they are distributed almost
exactly as N(0, 1), since the EDF ranks have essentially
exact uniform distributions.

The column cloud fraction f depends on the copula
of S alone via (6). In particular, the Gaussian copula
(GCOP) estimate is fGCOP = 1− CZ(f ′1, . . . , f

′
K ; ĈS),

where CZ in this case is the K-dimensional only version
of (19) and where ĈS is the K ×K sample correlation
matrix (see §4.4) formed from the ZSk samples only.
The values of fGCOP for the two different marginals are:
f EDF

GCOP = 1− CZ(f
′ EDF
1 , . . . , f

′ EDF
K ; ĈEDF

S ) = 0.9467, and
f GEV

GCOP = 1− CZ(f
′ GEV
1 , . . . , f

′ GEV
K ; ĈGEV

S ) = 0.9089.
These are in error by −1.9% and −5.8% of f EDF. For
the EDF case, this GCOP error is less than the respective
errors associated with all the other methods (see Table I)
and demonstrates, at least for this simple test case, the
utility of the Gaussian copula cloud fraction method. For
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the GEV case, however, the RAN error is actually smaller
than the GCOP error. We suspect this is only because
our case study is so close to overcast, thereby capping
the RAN column fraction at one. In any case, the GEV
results are clearly poorer than the EDF results, due to the
less than ideal fit to the margins provided by the GEV
distribution. It seems likely that an improved marginal
model (such as the sum of two distributions, as suggested
earlier) would further improve the parametric results and
make them comparable to the EDF results.

Note that if we use the GEV-based Gaussian copula,
but with EDF-based clear fractions as arguments, we
get a cloud fraction 1− CZ(f

′ EDF
1 , . . . , f

′ EDF
K ; ĈGEV

S ) =
0.9464 which is almost as accurate as the pure EDF result
f EDF

GCOP = 0.9467. This implies that the chief sensitivity
of f GEV

GCOP to the poor GEV margins comes through the
layer clear fractions, f

′ GEV
k , not from the copula itself

(i.e., not from ĈGEV
S ). This makes sense because the

estimation of ĈGEV
S depends on all the GEV rank data,

and so errors are suppressed by averaging. The f
′ GEV
k =

FGEV
Sk

(1), however, is sensitive only to the rank error at
saturation (Sk = 1), which can be large, as we have seen
from Figure 4.

The cloud fraction results in this section are evalu-
ated exactly from their analytic copulas and quoted at four
significant digits, except for the GCOP results, which are
evaluated using the quasi-Monte Carlo integration MAT-
LAB algorithm discussed in §5.7, but are also accurate to
the four significant figures quoted. Alternatively, we can
estimate the column cloud fractions by generating sub-
column ensembles from the S-only generators of §5 and
counting the fraction of those subcolumns which contain
cloud. For each generator method we have performed this
procedure for a range of ensemble sizes Ns. For each Ns

we perform 100 different realizations to characterize the
random error for various ensemble sizes. We find that the
root-mean-square (r.m.s.) error in the ensemble column
cloud fraction goes as N−1/2

s , as expected. At Ns = 16,
the absolute (relative) errors in f are about 0.1 (10%),
while at Ns = 16384 they are about 0.003 (0.3%).

At the end of §4.3 we noted that the Gaussian copula
model would only be as good as the degree to which the
(T ,S) or S data transformed to Z space could be mod-
eled as a multinormal. Any statistical model will entail
some loss of information and will involve an approxima-
tion to the dependencies between variables found in the
data. In our case, it is certainly possible when we eval-
uate the correlation matrix Ĉ (per §4.4), thereby fitting a
multinormal to the Z, that we will destroy some impor-
tant dependence information. One way to examine this
possibility, is to regenerate new (T ,S) or S data from
the model (per §5.1), and compare the dependence struc-
tures found in the regenerated data to those in the original
(T ,S) or S data.

Figure 5 shows such a comparison for the inter-layer
S dependencies between layers 3 and 5 (left panel) and
layers 5 and 12 (right panel). For each pair of layers, a

joint PDF p(Sk, Sl) is estimated:

p(Sk, Sl) = N−1
H

NH∑
n=1

ω(Sk − S
(n)
k , Sl − S

(n)
l ), (28)

where n = {1, . . . , NH} indexes the GCE subcolumns and
ω(x, y) is a kernel PDF, obeying

∫ ∫
ω(x, y) dx dy = 1.

In this way, each of the GCE subcolumns is assigned a
probability 1/NH which is distributed in (Sk, Sl) space
according to the kernel8. This technique allows us to
generate a smoothed empirical PDF at a regular grid in
(Sk, Sl) space. A simpler alternative would have been
to bin the (S(n)

k , S
(n)
l ) into a two-dimensional frequency

histogram, but this produces a rather more noisy PDF
which detracts from easy interpretation of the figure. An
important point is that the same kernel density method,
with the exact same smoothing scale, is applied to both
the raw GCE subcolumns and to NH Gaussian copula-
generated subcolumns, so the figure does provide a fair
comparison between these two ensembles.

The contours in the figure require some further expla-
nation. They are not direct contours of p(Sk, Sl). Rather,
the contours (brown, orange, cyan, and blue) contain 80,
60, 40, and 20% of the total joint inter-layer S probability
and the probability densities p(Sk, Sl) within each contour
are larger than all the p(Sk, Sl) outside of it. This contour
method is the same for the GCE and regenerated data, so
the comparison is again fair. From the figure, the com-
parison is very good, with the thick contours (GCE data)
and thin contours (copula-regenerated data) tracking one
another very well. This gives us confidence that the Gaus-
sian copula method models the dependence structures of
S very well for this cloud field.

6.5 Condensed Water Path

The condensed water path is

Wc ≡
∫ ∞

0

ρc dz =
K∑

k=1

bkbSk − 1c0. (29)

where bXc0 ≡ max(X, 0), bk ≡ εes(Tk)∆zk/(RdTk) and
∆zk is the layer thickness, and where we have used
(1), (A1), (A4), and the definition of ρ∗ from §2.1. The
gridcolumn average is therefore

〈Wc〉 =
K∑

k=1

〈bkbSk − 1c0〉. (30)

Note how the layer contributions to Wc appear linearly,
so 〈·〉 passes through to individual layer evaluations.
This means that no inter-layer correlations are needed

8The particular kernel we used is a radially symmetric spline kernel
ω(x, y) = ω∗(r/a) from Monaghan and Lattanzio (1985), where r =√
x2 + y2 and a is a smoothing scale length. The kernel has compact

support, with ω = 0 for r ≥ 2a. We used a = min(σk, σl), where σk

is the standard deviation of Sk from the raw GCE subcolumns. This a
was found to provide a suitably smooth PDF and contours.
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Figure 5. Contours (brown, orange, cyan, and blue) contain 80, 60, 40, and 20% of the joint inter-layer S probability, such that the
probability densities within each contour are larger than the probability densities outside of it. Thick contours are for the 16384 raw GCE
subcolumns. Thin contours are for 16384 subcolumns generated from an S-only Gaussian copula and empirical (EDF) margins. The left
panel is for layers 3 and 5 (separated by 256 m), and the right panel for layers 5 and 12 (separated by 1652 m). The panels are consistent
with a general reduction in inter-layer correlation with increasing layer separation (i.e., contours aligned more along the diagonal of equal
values in the left panel.) The underlying probability density maps have been kernel smoothed (see text) for ease of interpretation, but
exactly the same smoothing parameters have been applied to both the GCE and copula generated data. The Gaussian copula appears to

model the S dependencies well.

to evaluate 〈Wc〉, so all the previous methods of cloud
overlap are irrelevant for its calculation. This is not the
case, however, for the evaluation of the r.m.s.water path,
since

〈W 2
c 〉 =

K∑
k=1

K∑
l=1

〈bkblbSk − 1c0bSl − 1c0〉. (31)

In this case, the correlation between every pair of layers
plays a role.

Using all NH subcolumns from our GCE case study
we obtain the following average and standard deviation:
〈Wc〉 = 99.04 g/m2 and sWc

= 102.6 g/m2, where s2x ≡
〈x2〉 − 〈x〉2. If we re-evaluate these using the layer aver-
age temperatures in the calculation of the bk, we obtain
〈Wc〉 = 99.79 g/m2 and sWc

= 104.1 g/m2, which deviate
from the exact values by 0.8% and 1.5%, respectively.
Given the smallness of these deviations, we will proceed
using layer average temperatures, meaning that we will
only consider inter-layer correlations in S, not in T . In the
previous section on cloud fraction we also only considered
inter-layer S correlations, which were formally sufficient
to define the gridcolumn cloud fraction. We will now eval-
uate 〈Wc〉 and sWc using various S-only generators, since
it appears that adding explicit T variability has a small
effect for condensed water path, at least for the gridcol-
umn under study.

The above “S-only” approximation uses the exact
GCE temperature in the evaluation of S = qt/qs(T ), thus
retaining the full implicit effect of T variability within
S. The layer average temperature, T̄ , is used everywhere
else, i.e., in the evaluation of bk in the current con-
text. This approximation preserves the exact locations of
clouds in the gridcolumn, which depend only on S, but
effectively rescales the water contents qt and qc in subse-
quent recalculations of these quantities from S and T̄ , i.e.,

qt = S · qs(T̄ ) and qc = bS − 1c0 · qs(T̄ ). Alternatively,
we can use a “qt-only” approximation, in which qt vari-
ability is exactly preserved and T̄ is used uniformly in
all calculations, including the evaluation of S = qt/qs(T̄ ).
This means that the boundaries of the clouds will change
somewhat, but the exact qt field is preserved. Under this
“qt-only” approximation, 〈Wc〉 = 82.88 g/m2 and sWc

=
64.9 g/m2, which are much more in error with respect to
the exact GCE values than the S-only approximation val-
ues presented earlier. Thus, we uniformly use the S-only
approximation rather than the qt-only approximation.

For each of the previously discussed MAX, RAN,
MROGH, RAIS and GCOP generators, we produceNH =
16384 subcolumns of S and combine these with the layer
average temperatures to produce fair comparisons with
the S-only GCE values 〈Wc〉 = 99.79 g/m2 and sWc

=
104.1 g/m2 discussed above. Each generator produces a
series of ranks, V (n)

k , k ∈ {1, . . . ,K}, n ∈ {1, . . . , NH}
from which the S(n)

k = F−1
Sk

(V (n)
k ) are evaluated using the

inverse marginal distribution for each layer. For the GEV
margins, this process is simple, since FGEV

Sk
is continuous

and easily inverted. For the EDF margins, F EDF
Sk

, which are
not continuous [cf. (26)] we use to following procedure:
project V (n)

k onto {1, . . . , NH} using nk = ceil(NHV
(n)
k ),

where ceil rounds up a non-integer to the next integer; S(n)
k

is then the nth
k element in a sorted (ascending) list of the

NH GCE values of Sk.
The generation procedures described above are

Monte-Carlo in nature, and produce slightly different
〈Wc〉 and sWc

values for each realization. We there-
fore conduct 100 separate realizations to characterize the
spread in these quantities. Table II presents, for each gen-
erator, the relative biases (with respect to the GCE refer-
ence calculations) of the mean 〈Wc〉 and sWc

values over
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Table II. Percent biases in the gridcolumn average and standard deviation of condensed water path, 〈Wc〉 and sWc , with respect to the
GCE reference values, 99.79 g/m2 and 104.1 g/m2, for methods GCOP, MAX, RAN, MROGH and RAIS, and Ns = 16384. The EDF
row uses the EDF margins, as discussed in the text, while the GEV row uses the GEV margins. The exact overlap methods, XOR and
XOH, preserve exactly the clear point S values from the GCE snapshot, but respectively randomize and homogenize the cloudy point S
values in each layer. See the text for further details. All results use layer-average temperatures (i.e., the S-only method). Cells containing
parentheses summarize the results of 100 realizations to quantify the statistical variability: on the left of the parentheses is the bias in the
mean value over the realizations, and inside the parentheses is the standard deviation of the realizations, both normalized as a percentage

of the GCE reference value for the quantity.

∆〈Wc〉% GCOP MAX RAN MROGH RAIS XOR XOH

EDF −0.04 (0.78) 0.08 (0.95) 0.03 (0.31) 0.10 (0.92) −0.03 (0.90) 0 0
GEV 4.47 (0.90) 4.42 (1.12) 4.55 (0.33) 4.69 (1.04) 4.57 (0.97)

∆sWc% GCOP MAX RAN MROGH RAIS XOR XOH

EDF 0.29 (0.80) 19.47 (0.95) −60.55 (0.22) 18.77 (0.95) 10.97 (1.01) −38.05 (0.16) −46.68
GEV 6.59 (0.71) 26.81 (0.89) −57.38 (0.22) 26.00 (0.90) 18.09 (0.87)

the 100 realizations. As expected, the EDF biases for 〈Wc〉
are all zero to within sampling error9, since 〈Wc〉 does not
depend on the overlap assumption. The GEV 〈Wc〉 are all
about 4.5% too high. This may seem strange, since the
GEV margins underestimate the cloud fraction f , but the
GEV fit tends to overestimate larger S probabilities (see
Figure 4, layer 12), which are more highly weighted in
〈Wc〉, which depends on the first moment of bS − 1c0.

The sWc
biases vary considerably for the different

generators. The GCOP bias is about 0.3% for EDF and
about 7% for GEV. It clearly outperforms the other gener-
ators for this case study. The RAIS generator, which also
directly uses the rank correlations in the GCE snapshot,
but only between adjacent layers, comes next at about 11
and 18% for EDF and GEV respectively. The MAX and
MROGH generators perform about the same, with biases
of about 19 and 26% for EDF and GEV. The RAN gen-
erator is worst, underestimating sWc

by about 60%. This
is because random overlap tends to homogenize the Wc

field, destroying strong vertical correlations in cloud water
present in the data (e.g. Figure 2, layers 3 and 5).

All the results in Table II derive from subcolumn
ensembles of NH = 16384 members. We have also per-
formed the generator calculations for ensemble sizes
Ns < NH and find that the standard deviations (numbers
inside the parentheses) scale as N−1/2

s , much as expected.
The XOR and XOH methods in Table II have not

yet been introduced. These are the “eXact Overlap Ran-
domized and Homogenized” methods. Both work with an
S-only (i.e., temperature-averaged) version the GCE sub-
column ensemble in which the S values at all clear points
are exactly preserved. The cloudy points have their S val-
ues altered, as described below, but remain cloudy (i.e.,
S > 1). Both methods therefore have the exact geomet-
rical cloud overlap present in the S-only GCE data. In

9As noted in the caption of Table II, the numbers inside the parentheses
are actually standard deviations over the 100 realizations. To treat them
as errors in the quantity to the left of the parentheses, we must assume
normality in the distribution of the 100 results and then divide the
standard deviations by

√
100 = 10. Even after doing so, the EDF biases

for 〈Wc〉 are all zero to within about one standard error.

this sense, these methods are not traditional cloud gen-
erators, since they use exact overlap information from the
case study that we cannot hope to parameterize in a GCM.
Nevertheless, they are useful methods for isolating the rel-
ative importance of pure geometrical cloud overlap, over
against the effects of full horizontal and vertical variability
of cloud condensate amount.

Specifically, XOR randomly interchanges the cloudy
points in each layer, and does so independently for each
layer. This preserves the exact EDF of S (and qc) in
each layer, but destroys sub-gridscale vertical condensate
correlations within and between clouds. This introduces a
large −38% bias in sWc

, demonstrating that such vertical
correlations are very important to model, even if the
geometrical overlap of cloud boundaries is perfect.

The XOH method replaces the cloudy S (and qc) val-
ues in each layer by their average value. This simulates a
common GCM approach in which clouds are horizontally
uniform in each model layer, but overlapped geometri-
cally according to some overlap assumption. In the XOH
method, these uniform cloud layers are magically over-
lapped in precisely the correct way. This produces an even
worse sWc

bias of −47%.
Taken together, the XOR and XOH results point to

the importance of modeling both horizontal and vertical
variability of clouds, even on small scales. It is not
surprising that modeling such variability is necessary to
capture the variance in Wc. But this variance is directly
related to radiative transfer and therefore very important
for the estimation of average radiative fluxes in a GCM
gridcolumn, as we shall see in the next section.

Finally, as noted earlier, the Gaussian copula is able
to model the full joint (T, S) variability, not just the S-
only variability shown so far in this section. We find that
the biases of the full Gaussian copula with respect to
the exact GCE 〈Wc〉 and sWc

are similar to but slightly
larger than the biases of the S-only copula results to the
S-only GCE data (the GCOP column of Table II). For
example, the full Gaussian copula sWc with EDF margins
is biased by 0.47 % with respect to the exact GCE value, as
compared to the bias of 0.29 % presented in Table II. This
indicates that the Gaussian copula has a slightly harder
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time capturing the (T, S) joint variability than it does the
variability of S values alone. That being said, the S-only
GCE sWc

is 1.5% higher than the exact GCE value, so the
bias of the S-only copula is about 1.5 + 0.29 ≈ 1.8% with
respect to the exact GCE results. In other words, if one
wants to model the full (T, S) joint variability in the GCE
data, it is still better to use the full (T, S) Gaussian copula.
Either way, both the S-only and full (T, S) Gaussian
copula biases are very small compared to all the other
generators.

6.6 Radiative Transfer

We will study the shortwave (SW) transmittance, TRN ,
and reflectance, RFL, [i.e., the downwelling SW flux at
the surface and the upwelling SW flux at the top of the
atmosphere (TOA), both normalized by the downwelling
SW flux at the TOA] and the downwelling longwave (LW)
flux at the surface, DLR, and outgoing LW flux at TOA,
OLR, as evaluated by the SW (Chou et al., 1998; Chou
and Suarez, 1999) and LW (Chou et al., 2001) column
radiation models used in various NASA-GSFC Large
Scale models10. The surface was assumed black for both
SW and LW calculations (i.e., zero surface albedo and
unit emissivity across the spectrum) with a temperature
of 281.73 K from the GCE. The temperature and water
vapor profile used above the lowest 12 layers comes from
the average GCE fields up to a pressure of 37 mb (the
top of the GCE domain) and from a standard mid-latitude
summer (MLS) profile above that level. The profile of
ozone molecular concentrations also comes from the same
MLS profile, while the CO2 concentration was set to
370 ppm throughout the domain. The solar code used an
overhead sun. An effective radius for cloud droplets of 10
microns was assumed.

As in previous studies of this type (Räisänen et al.,
2004), our reference calculation 〈ψ〉GCE is the Indepen-
dent Column Approximation (ICA) calculation in which
ψ is evaluated for each of the NH subcolumns compris-
ing the GCE snapshot and the results averaged. Besides
a full 3D calculation, which does not seem like a real-
istic prospect for GCMs in the foreseeable future, ICA
provides the greatest accuracy in domain average fluxes.
This 〈ψ〉GCE is evaluated for the S-only GCE version (see
§5.2 and §6.5), since this yields only very small biases11

with respect to the full GCE 〈ψ〉. The 〈ψ〉GCE values are
presented in the caption of Table III. The exact over-
lap averages 〈ψ〉XOR and 〈ψ〉XOH are also ICA averages
over the NH GCE subcolumns, but after a layer by layer
randomization and homogenization, respectively, of the
cloudy point S values, as discussed earlier. For the XOR,
each random rearrangement generates a slightly differ-
ent 〈ψ〉XOR, so we produce 100 realizations to quantify

10Clearly the overlap assumptions of these column radiation codes are
turned off, since they are being applied iteratively to single subcolumns
for which each layer is either overcast or clear.
11Compared with the exact GCE 〈ψ〉, the S-only GCE 〈ψ〉 are biased
by about 0.1% in absolute terms for TRN and RFL, and about 0.01%
for DLR and OLR. The qt-only GCE 〈ψ〉 are all between one and two
orders of magnitude more biased.

the expected spread in 〈ψ〉XOR from single randomiza-
tions. Next, for the generators χ = GCOP, MAX, RAN,
MROGH, and RAIS, we generateNH subcolumns to eval-
uate the gridcolumn averages 〈ψ〉χ. The generation pro-
cedure is likewise repeated 100 times, to quantify the
expected spread in 〈ψ〉χ that will be obtained from sin-
gle realizations ofNH subcolumns. The spread for smaller
subcolumn ensembles Ns < NH is expected to scale as
N
−1/2
s as for 〈Wc〉 in §6.5. Details of the quality of such

sub-sampling will be presented shortly.
Table III presents, for each gridcolumn radiative

average 〈ψ〉 and for each generator, the relative bias (with
respect to the reference 〈ψ〉GCE value) of the mean of 〈ψ〉
over 100 independent realizations. For the SW quantities
TRN and RFL, the GCOP biases are much smaller than
for the other methods and strongly support the utility of
the GCOP method, which nicely models the effects of
both geometrical cloud overlap and vertical correlation of
in-cloud properties.

Both XOH and XOR exhibit the so-called “plane
parallel bias” in which homogenizing the condensed water
path in a cloud makes it less transmissive and more
reflective in the SW. Note that in XOR, randomizing each
layer’s cloudy gridpoints does not homogenize the cloud
on a layer by layer basis, since we ignore all non-plane-
parallel effects in our radiative transfer calculations, but
it does tend to homogenize vertically integrated cloud
properties, such as the condensed water path, in regions
where multiple GCE cloud layers contribute. Maximum
cloud overlap (MAX) produces the maximum column
clear fraction and therefore promotes transmittance over
reflectance. Furthermore, the maximum generator we have
employed produces highly inhomogeneous cloud water
paths, in the sense that saturation ratio is maximally rank
correlated in the vertical. This produces the opposite of the
plane-parallel bias just described, yielding larger cloudy
transmittance and smaller reflectance. Random overlap
(RAN) underestimates column clear fraction and therefore
transmittance. It also has a homogenizing effect on the
condensed water path, as described above, and therefore
also underestimates transmittance. MROGH and RAIS
mix maximum and random overlap, and from the sign of
the biases in Table III appear to be more heavily weighted
in this particular case study towards maximum overlap.

The following conclusions (for this test case) can
be drawn from the sizes of the SW biases: (1) It is
very important to consider the vertical correlation of in-
cloud quantities, not just the correct geometrical cloud
overlap, since even with exact overlap, the XOR SW
biases exceed 10%. Compare this with the very small
biases for GCOP — evidently the correct modeling of
inter-layer correlations of in-cloud properties by GCOP,
which XOR destroys, more than compensates for its
non-exact column cloud fraction. (2) The accuracy of
prediction of the column cloud fraction is a poor indicator
of the quality of the solar transmittance and reflectance.
First, as above, a perfect column cloud fraction in XOR
still yields in excess of 10% biases in TRN and RFL.
Second, as per Table I, the RAN cloud fraction only has
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Table III. Percent biases in gridcolumn average radiative quantities, 〈TRN〉, 〈RFL〉, 〈DLR〉, and 〈OLR〉, with respect to the GCE
reference values, 0.4529, 0.3364, 336.94 W/m2, and 236.43 W/m2, for methods GCOP, MAX, RAN, MROGH and RAIS, and
Ns = 16384. The EDF and GEV denote the type of marginal S distributions used. The exact overlap methods, XOR and XOH, preserve
exactly the clear point S values from the GCE snapshot, but respectively randomize and homogenize the cloudy point S values in each
layer. See the text for further details. All results use layer-average temperatures (i.e., the S-only method). Cells containing parentheses
summarize the results of 100 iterations to quantify the statistical variability: on the left of the parentheses is the bias in the mean value over
the iterations, and inside the parentheses is the standard deviation of the iterations, both normalized as a percentage of the GCE reference

value for the quantity.

∆〈TRN〉% GCOP MAX RAN MROGH RAIS XOR XOH

EDF 0.01 (0.38) 8.12 (0.44) −21.19 (0.17) 7.03 (0.40) 4.26 (0.44) −11.91 (0.05) −14.64
GEV 0.78 (0.44) 10.29 (0.51) −22.77 (0.17) 8.54 (0.45) 5.84 (0.47)

∆〈RFL〉% GCOP MAX RAN MROGH RAIS XOR XOH

EDF −0.02 (0.44) −9.35 (0.51) 24.54 (0.20) −8.20 (0.47) −4.91 (0.52) 13.83 (0.06) 17.04
GEV −0.86 (0.51) −11.81 (0.60) 26.42 (0.21) −9.88 (0.52) −6.69 (0.55)

∆〈DLR〉% GCOP MAX RAN MROGH RAIS XOR XOH

EDF 0.05 (0.05) −2.66 (0.06) 3.42 (0.00) −0.83 (0.05) −1.35 (0.07) 1.44 (0.01) 1.74
GEV −0.40 (0.06) −3.36 (0.08) 3.46 (0.01) −1.58 (0.07) −1.89 (0.07)

∆〈OLR〉% GCOP MAX RAN MROGH RAIS XOR XOH

EDF −0.01 (0.01) 0.26 (0.01) −0.51 (0.01) 0.05 (0.01) 0.14 (0.01) −0.18 (0.00) −0.33
GEV 0.19 (0.01) 0.47 (0.01) −0.40 (0.01) 0.26 (0.01) 0.34 (0.01)

a 4% error but SW biases in excess of 20% while the
MAX cloud fraction is in error by more than 20% but has
significantly smaller SW biases, about one third those of
RAN. Judging from the cloud fraction alone it appears
that RAN is better than MAX, but the exact reverse is
true for TRN and RFL. This value judgment about f
comes as no surprise really: there is broad awareness in the
GCM parameterization community that the cloud fraction
is a rather imprecise quantity, especially as it relates to
radiative transfer — a thin cloud may have negligible
radiative effect even though being technically classified as
cloud.

Next consider the LW biases for DLR and OLR.
Again, GCOP gives the smallest biases, but the results are
not nearly as definitive as for SW, and especially forOLR,
which is never in error by more that 0.5%. The analysis of
the LW biases is complicated (c.f. SW) by the contribu-
tions of cloud top and base temperature variability, but we
make the following observations: (1) The exact cloud frac-
tion (XOR) biases are smaller than for MAX and RAN,
indicating that the accuracy of the cloud fraction f is more
important in the LW than in the SW. This is consistent with
the fact that clouds become black in the LW faster than
they become saturated in SW reflectance, and so thinner
clouds, which contribute as much to f as thicker clouds,
become more important; (2) The larger biases for DLR
compared to OLR can be explained by the greater con-
trast between the brightness temperatures of the clouds
and the clear sky above than between the clouds and the
surface; (3) The signs of the XOR, RAN, and MAX biases
in Table III are consistent with the LW version of the
“plane-parallel bias”, namely that the homogenization of
cloud water path causes an increase in emissivity. Thus
the XOR and RAN methods, which tend to homogenize
cloud water path, act to blacken the clouds and therefore

cause them to radiate at an effective emitting height closer
to the boundary of the cloud. For DLR this causes the
LW radiation to come from closer to the warmer cloud
base (see Figure 1a). Conversely, homogenization pro-
duces an effective emitting height for OLR closer to the
colder cloud top. The signs of the MAX biases are just the
opposite, since the MAX method tends to increase cloud
inhomogeneity, as described above for SW. (4) The signs
of the LW biases for MAX and RAN are also consistent
with a simple column cloud fraction effect: RAN over-
estimates column cloud fraction and thereby shields the
cold sky for DLR and warm surface for OLR. The oppo-
site is true for MAX which underestimates column cloud
fraction. (5) As with the SW results, the sign of the LW
biases for MROGH and RAIS are more weighted towards
maximum overlap than random overlap;

Finally, we have looked into how smaller sample
sizes degrade the quality of the GCOP gridcolumn aver-
age when compared to large sample number averages
from the other generators. Specifically, Tables IV and V
present the number of iterations out of a total of 100 in
which 〈RFL〉 and 〈DLR〉 from a GCOP generator with
a reduced ensemble size, Ns, are less biased, in abso-
lute terms, that the biases from the other methods, which
are based on NH = 16384 subcolumns. It appears that
for the GEV margins, which are more representative of
a short-term GCM implementation, it is sufficient to use
only 32 subcolumn ensembles to equal or beat all the
other generator methods and the exact overlap methods.
This is encouraging, since 32 subcolumns is well within
the bounds of practical implementation with a Monte-
Carlo ICA (McICA) strategy (Räisänen and Barker, 2004)
to calculate gridcolumn-average radiative fluxes. Similar
performance was found for 〈TRN〉 and 〈OLR〉.
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Table IV. For various sized sample ensembles, Ns, the table
presents the number of realizations out of a total of 100 for which
〈RFL〉GCOP is less biased, in absolute terms, than 〈RFL〉 for the
methods in the other columns, each of which has its bias evaluated
using NH = 16384 subcolumns. All methods use GEV margins.

Ns MAX RAN MROGH RAIS XOR XOH

1 8 18 6 6 9 12
2 26 46 25 19 26 33
4 31 60 25 17 35 47
8 43 79 37 25 53 62

16 51 87 42 27 57 72
32 76 100 66 50 79 89
64 87 100 79 61 93 98

128 97 100 91 79 97 100
256 100 100 100 91 100 100
512 100 100 100 96 100 100

1024 100 100 100 100 100 100

Table V. As for Table IV, but for 〈DLR〉.

Ns MAX RAN MROGH RAIS XOR XOH

1 40 41 8 9 8 8
2 41 44 11 16 8 14
4 71 72 28 36 20 33
8 84 85 56 64 50 60

16 90 90 53 64 48 54
32 100 100 83 91 78 85
64 100 100 91 94 84 92

128 100 100 99 100 98 99
256 100 100 100 100 100 100
512 100 100 100 100 100 100

1024 100 100 100 100 100 100

7 Conclusions, Discussion, and Applications

We have shown that a general representation of GCM
column cloud fraction within the PDF-based statistical
cloud parameterization context can be obtained by the use
of statistical functions called “copulas” that encapsulate
the dependence structure of rank statistics in a multivari-
ate system. Using this theory and cloud resolving model
(CRM) simulations for guidance, a new formulation of
GCM cloud overlap has been obtained. Compared with
earlier overlap methods, including the “generalized over-
lap” approach of Räisänen et al. (2004) and Pincus et al.
(2005), the copula approach allows a far more general
specification of the correlation between pairs of layers. It
also allows for easy addition of new layer variables, such
as temperature, into the modeled gridcolumn statistics.

We find that Gaussian copula estimates of column
cloud fraction for a 12-layer test case using synthetic data
from a Goddard Cumulus Ensemble simulation are an
improvement over both random and maximum overlap
estimates and over several maximum-random combina-
tion methods. Furthermore, Gaussian copula Monte-Carlo
estimates of cloud water path variance and radiative fluxes
showed very significant improvement over all the other
generators for this test case. The Gaussian copula genera-
tor method also outperforms two exact overlap methods
described in the text. It is further found that as few as

32 randomly selected subcolumns from the Gaussian cop-
ula generator are sufficient to radiatively outperform all
the other generators with an essentially infinite number
of subcolumns. These results suggest significant poten-
tial for the copula-based parameterization of cloud over-
lap in future GCM cloud radiation parameterizations. In
a follow-up paper, we will present a more extensive test-
ing of the method using GCE simulations for a range of
synoptic conditions.

This paper has concentrated on the general theory
of the application of copulas to the description of the
horizontal and vertical distribution of temperature and
water content within a GCM-like gridcolumn. We provide
this theoretical basis in the hope that it will be used to
develop a new set of GCM cloud parameterizations. Our
initial thoughts on how this might be accomplished are as
follows: (1) Our starting point is that a good GCM param-
eterization should be governed by a reasonably small
number of parameters which are prognosticated or diag-
nosed. The method described in this paper requires a small
set of marginal distribution parameters for FTk

and FSk

for each of the K model layers, and a 2K × 2K corre-
lation matrix describing the Gaussian copula of T and
S. The K(2K − 1) unique elements of this correlation
matrix C, as calculated directly from the GCE data for this
study, are excessive for the purposes of parameterization,
so we will seek an appropriate model of C with one or sev-
eral length scale parameters, following the work of Gas-
pari and Cohn (1999) and Gaspari et al. (2006); (2) The
GEV distributions used for FTk

and FSk
each have three

parameters (a location, scale, and shape parameter) which
are roughly equivalent to the specification of the mean,
variance, and skewness for each of temperature and sat-
uration ratio. These will be prognosticated following the
lead of Tompkins (2002). A suitable diagnostic or prog-
nostic parameterization for the correlation length scales
used to model C will also be needed; (3) The marginal-
estimated layer cloud fractions and the copula-estimated
column cloud fraction can be output as diagnostics. The
radiative transfer calculations will use the Gaussian cop-
ula generator (§5.1) as an alternative to the more empirical
generator of Räisänen et al. (2004) in the implementation
of the Monte Carlo ICA method of Räisänen and Barker
(2004); (4) This paper has been limited to the simpler case
of water clouds, in which the saturation with respect to
water is typically very small and the excess total water
above saturation provides a good estimate of the liquid
water concentration (see §2.2). The parameterization of
ice clouds is more difficult, but as a first order exten-
sion of the method presented here, we will replace the
saturation vapor content with respect to water, qs(T ) in
this paper, with a generalized temperature-dependent con-
densation formation point, q∗s (T ), defined such that the
total (liquid + ice) condensate content is approximated by
ql + qi = (qt − q∗s )H(qt − q∗s ). The split between ql and qi
will be given by a temperature-dependent liquid/ice frac-
tion, as in many existing GCMs. A parameterized form
for this fraction, and for q∗s (T ), will be sought based on
analysis of GCE simulations and field data.
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We also hope to extend the usefulness of such a
copula-based GCM cloud parameterization to the context
of data assimilation for NWP applications. The high hor-
izontal and vertical resolution cloud data available from
current satellites (e.g., from MODIS on EOS Terra and
Aqua, and from CloudSat and other A-Train satellites) and
anticipated from future satellite missions (e.g., NPOESS)
holds a wealth of statistical information on the distribu-
tion of cloud water inside GCM-sized gridcolumns. We
envisage the use of this cloud data to update the marginal
and copula parameters of the new GCM parameterization
using a parameter estimation approach (e.g., Norris and
da Silva, 2007; Dee and da Silva, 1999; Dee et al., 1999).
In this way the information from high-resolution satellite
observations can be incorporated into global analyses.

The main reason for introducing copulas in cloud
applications is their direct relevance to the evaluation
of gridcolumn cloud fraction. Specifically, under the
assumptions of §2.2, the copula of the layer total satura-
tion ratios is a special function that converts the layer clear
fractions to the gridcolumn clear fraction, as in (6). Thus,
in §5 and related appendices, we showed that it is possible
to derive the copula associated with a number of existing
cloud fraction methods: random overlap, maximum over-
lap, Geleyn and Hollingsworth (1979) maximum-random
overlap, and a total water version of the Räisänen et al.
(2004) generator.

More generally, copulas can be used to conveniently
construct multivariate distributions with a priori specified
margins via Sklar’s theorem (5). This is because a copula
is a representation of the dependence structure between
variables in rank space, and when combined with marginal
distributions for each variable, a complete multivariate
distribution can be formed. This approach allowed us to
construct a joint distribution function for the saturation
ratio (and temperature) among the model layers, using
GEV or EDF margins and a Gaussian copula. One impor-
tant advantage of the copula approach is that it allows
complete flexibility in the choice of the analytic form
of the marginal distributions. Nothing in principle should
prevent replacement of the GEV distribution, which pro-
vided the best fit to our data, with better performing single
distributions, or even a mixture of distributions. What-
ever the chosen margin, it may be combined with a copula
choice, in our case the Gaussian copula, and tested for its
skill in representing quantities of interest via stochastic
generation, as in §6.

Such a flexibility may not be inherent to the peg-hat
approach of Larson (2007), which uses mixtures of multi-
normals in the phase space consisting of the total water
mixing ratio and liquid water potential temperature for
every layer. The choice of multinormal mixtures is neces-
sary in order to get margins which are mixtures of Gaus-
sians, and that are further constrained to be double Gaus-
sians to make the method tractable. While double Gaus-
sians margins are a reasonable fit to many observed and
CRM-simulated variables, they may not be completely
adequate for the highly skewed distributions sometimes
found in simulated or observed data (e.g., for the PDFs of

T12 and S5 from our GCE case study, in Figures 3 and 4,
or Figure 2d of Larson et al. (2001), from an aircraft leg
through cumuli that were rising into broken stratocumuli.)
Specifically, double Gaussians tend to have trouble captur-
ing a sharp increase on one side of a PDF that smoothly
transitions to a gradual decrease at the other tail. It is
thus our understanding that, in order to be tractable, the
peg-hat approach limits itself to very particular kinds of
marginal distributions, when the data itself may be sug-
gesting more general distributions. No such restriction is
imposed on the copula approach which allows complete
freedom to choose the margins of each variable in each
layer, from any analytic form deemed appropriate, to even
an empirical margin directly derived from the data (as in
our EDF). A copula-based algorithm essentially splits the
problem into two tractable parts: the margins are modeled
directly from the layer data, while the joint distribution of
the ranks is modeled with a copula.

Of course, the particular choice of copula function is
very important, since the best description of the correla-
tions among variables and layers in rank space remains
to be determined. Our use of the Gaussian copula has
been based on its simplicity and ease of use. Neverthe-
less, the Gaussian copula has been able to yield esti-
mates of cloud fraction, condensate path variance, and
gridcolumn-averaged radiative fluxes that are very close
to the GCE “truth” and are considerably more accurate
than other recent overlap methods (§6). Other copulas,
such as the Student-t copula (Demarta and McNeil, 2005),
should be investigated in the future. Such an investiga-
tion is beyond the scope of the current article, and will
require an examination of the many other fields, such as
hydrology and finance, where copulas have proven useful
(Cherubini et al., 2004; Dupuis, 2007; Genest and Favre,
2007; Salvadori and De Michele, 2007).

A criticism of copula methods (Larson, 2007)
revolves around the greater difficulty of formulating prog-
nostic equations for the rank correlations between vari-
ables, say moisture and temperature, than for the linear
correlations in physical space, since the filtered Navier-
Stokes equations naturally produce correlation terms in
the physical variables, not their ranks (e.g., Golaz et al.,
2002). This could indeed be a potential drawback of the
copula approach for those GCMs that choose to provide
the correlation terms prognostically via some sort of tur-
bulent closure. An analysis of this problem will require
further work, but we note the following: (1) There are still
many contexts, such as analysis of high resolution mod-
eling data, from CRM or Large-eddy simulation (LES)
models, where the copula approach can provide a use-
ful method of analysis of the “sub-gridscale” variability
among variables and layers; (2) In the context of GCM
parameterizations, it may be possible to construct simpler
diagnostic specifications of the intra-layer rank correla-
tions, coupled with diagnostic length-scale parameteriza-
tions of the inter-layer correlations as discussed earlier.

Ultimately, further studies will be required to com-
pare the peg-hat and copula methods, particularly once
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both approaches have matured into full GCM parame-
terizations. In the end, it may be that some combination
of elements from both approaches will produce the most
benefit. For example, if we consider that gridcolumn vari-
ability is largely composed of large-scale and convective
components, we could use a weighted sum of two multi-
variate distribution functions, each with its own margins
and copula. The weighting factor would be height depen-
dent and would need to be parameterized in some way.
This approach would allow greater simplicity in the mar-
gins and the copula of each component (large-scale and
convective). For example, it would allow bimodality in the
margins, but the component contributions to those margins
could have unimodal but non-Gaussian forms. For exam-
ple, in the case of cumuli rising into a largely decoupled
environment, we might expect positively skewed mois-
ture PDFs from the convective component, and perhaps
Gaussian PDFs for the large-scale component. Another
potential component could be added for convective out-
flow (anvils), as an extension of schemes which separately
model anvil clouds (e.g., Rienecker et al., 2007). Such
weighted multi-component systems contain similarities to
the mixture of Gaussians employed by Larson (2007), but
each component could project non-Gaussian margins, as
in this paper, by using copulas.
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A Multinormal Random Number Generation

A multinormal random vector Z = (Z1, . . . , Z2K)T ∼
N2K(0,C), where C is a strictly positive definite correla-
tion matrix, can be generated as follows: Z = HG where
H is the lower-triangular Cholesky decomposition of C,
such that C = HHT and H has strictly positive diagonal
entries, and G = (G1, . . . , G2K)T is a vector of indepen-
dent standard normal variates, i.e., each Gk ∼ N(0, 1)
independently.

For the two dimensional case (K = 1),

C =
(

1 ρ
ρ 1

)
and H =

(
1 0
ρ

√
1− ρ2

)
, (32)

where ρ ∈ (−1, 1) is the correlation coefficient, and Z =
(G1, ρG1 +

√
1− ρ2G2)T has a particularly simple form.

B The Räisänen et al. (2004) generator

Räisänen et al. (2004), in their Appendix B, describe
a version of their stochastic gridcolumn generator for
a total-water scheme. A corresponding version of this
generator for the saturation ratio S is as follows: for
sample n ∈ {1, . . . , Ns}, start with a sample rank vec-
tor R(n) = (V (n)

1 , . . . , V
(n)
K )T , each element of which is

uniformly distributed on [0, 1]. Then proceeding from
k = 2, . . . ,K, if V (n)

k ≤ rS
k−1,k, replace V (n)

k with V (n)
k−1,

otherwise, replace V
(n)
k with a new uniform variate

on [0, 1]. Finally, the generated S sample is S(n) =
(F−1

S1
(V (n)

1 ), . . . , F−1
SK

(V (n)
K ))T . The rS

k−1,k are the lin-
ear correlation coefficients between the marginal ranks of
S in adjacent layers, otherwise known as rank correla-
tions. Heuristically, the first replacement above maximally
overlaps layers k − 1 and k, while the second replace-
ment randomly overlaps them, and the two are chosen
between based on the specified rank correlation between
the layers. As Räisänen et al. note, their schemes assume
non-negative inter-layer correlations, i.e., in this context,
rS
k−1,k ∈ [0, 1]. We will discuss this assumption below.

Let us investigate the joint S distribution and copula
implied by this algorithm. For the first k layers, 1 through
k, define

F 1:k
S (s1, . . . , sk) ≡ Fr(S1 ≤ s1, . . . , Sk ≤ sk)

= Fr(V1 ≤ FS1(s1), . . . , Vk ≤ FSk
(sk))

= Fr(V1 ≤ r1, . . . , Vk ≤ rk)

= C1:k
S (r1, . . . , rk),

(33)

where ri ≡ FSi
(si). Consider first the two-layer case k =

2. As Ns →∞, a fraction rS
1,2 of subcolumns will have

V2 = V1, which is uniformly random on [0, 1], and a
fraction (1− rS

1,2) will have a new random V2, uniform
on [0, 1] and independent of V1. Therefore, by (33),

C1:2
S (r1, r2) = rS

1,2 min(r1, r2) + (1− rS
1,2) r1r2, (34)

which shows the familiar linear combination of maximum
and random overlap components (see §3.3). For the gen-
eral k > 2 case,

C1:k
S (r1, . . . , rk)

= rS
k−1,k C

1:k−1
S (r1, . . . , rk−2,min(rk−1, rk))

+ (1− rS
k−1,k)C1:k−1

S (r1, . . . , rk−1) rk,

(35)

which can be used iteratively to increase from k = 2 to
higher k. For example,

C1:3
S (r1, r2, r3)

= rS
2,3 C

1:2
S (r1,min(r2, r3))

+ (1− rS
2,3)C

1:2
S (r1, r2) r3

= rS
1,2 r

S
2,3 min(r1, r2, r3)

+ (1− rS
1,2) r

S
2,3 r1 min(r2, r3)

+ rS
1,2 (1− rS

2,3) min(r1, r2) r3

+ (1− rS
1,2)(1− rS

2,3) r1r2 r3.

(36)
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Let C1:k
S(i,j), i, j ∈ {1, . . . , k}, i < j, denote the 2-

copula formed from C1:k
S by marginalizing all layers but

i and j, i.e., C1:k
S(i,j)(a, b) ≡ C1:k

S (r1, . . . , rk), with ri =
a, rj = b, and all the other r arguments equal to 1.
Heuristically, C1:k

S(i,j) describes the dependence between
the ranks of S in layers i and j, without regard for any of
the other layers in {1, . . . , k}. Using this definition, and
(36), it is easy to show that

C1:3
S(1,2)(a, b) = rS

1,2 min(a, b) + (1− rS
1,2) ab, (37)

C1:3
S(2,3)(a, b) = rS

2,3 min(a, b) + (1− rS
2,3) ab, (38)

and

C1:3
S(1,3)(a, b) = rS

1,2 r
S
2,3 min(a, b) + (1− rS

1,2 r
S
2,3) ab,

(39)
More generally, using (35), the definition of a copula in
§3.2, and a process of recursion, it can be shown that

C1:k
S(i,j)(a, b) = rS

i,j min(a, b) + (1− rS
i,j)ab, (40)

where for non-adjacent i and j, we use the generalization

rS
i,j = rS

i,i+1r
S
i+1,i+2 . . . r

S
j−1,j . (41)

This means that any two layers have a linear combination
of maximum and random overlap, with a weight equal
to the product of all the interlayer rank correlations in
between the layers. As we noted earlier, the Räisänen et al.
generator assumes rS

k−1,k ∈ [0, 1], which is usually a very
good assumption for adjacent layers. However, we can see
that (41) therefore implies that rS

i,j ∈ [0, 1] for any pair of
layers. This generator therefore prohibits anti-correlation
between any layers, including well separated ones, even
though it is at least possible for such anti-correlations to
exist in nature due to complex dynamical and radiative
interactions on different scales in the atmosphere. This
is one advantage of the copula approach we present in
this paper, since it is general enough to allow elements
of minimal overlap as well.

Finally, let us consider the evaluation of the copula
of the entire gridcolumn, CS = C1:K

S , and the associated
gridcolumn cloud fraction f = 1− C1:K

S (f ′1, . . . , f
′
K).

The exact method involves beginning with (35) with k =
K and doing recursive evaluations until k = 2 when (34)
terminates the recursion. This will involve the calculation
and summing of 2K−1 terms. The alternative for large K
is to instead use the generator to evaluate a large number
Ns of sample subcolumns and evaluate the column cloud
fraction approximately from this ensemble. The error in
such a cloud fraction will decrease as Ns increases, and
will have similar statistical properties to errors in radia-
tive properties calculated using the generator (see, .e.g.,
Räisänen et al., 2004; Räisänen and Barker, 2004).

C Copulas for multiple cloud layers

One commonly applied assumption is that vertically sep-
arated cloud blocks (i.e., vertically contiguous blocks of

at least partially cloudy model layers, separated by com-
pletely clear model layers) are randomly overlapped. We
shall call this the “Random Overlap Across Clear Layers”
or ROACL assumption. Say there are M such blocks of
cloud, defined by

{f ′(1)1 , . . . , f
′(1)
K(1)}, . . . , {f

′(M)
1 , . . . , f

′(M)

K(M)},

such that all of the included model layers are at least
partially cloudy (i.e., all f ′(j)k < 1). The column clear
fraction for block (j) is

f ′(j) = C
(j)
S (f ′(j)1 , . . . , f

′(j)
K(j)),

where C
(j)
S is the marginal copula for block (j) layers

only. Then, since the blocks are randomly overlapped, the
clear fraction for the entire column is given by

f ′ROACL = ΠM
j=1C

(j)
S (f ′(j)1 , . . . , f

′(j)
K(j)).

One common subset of ROACL are the maximum-random
overlap schemes. The Tian and Curry (1989) version,
which we will denote MRO, specifies maximum cloud
overlap within blocks, and so has

f ′MRO = ΠM
j=1 min(f ′(j)1 , . . . , f

′(j)
K(j)).

D Geleyn and Hollingsworth (1979) Maximum-
Random Overlap

We discussed the “standard” version of maximum-random
overlap, denoted MRO, in Appendix C. In fact, there
is a much more commonly implemented variant, due to
Geleyn and Hollingsworth (1979). This variant, denoted
here by MROGH, has a gridcolumn clear fraction

f ′MROGH = f ′1 ×ΠK
k=2

min(f ′k, f
′
k−1)

f ′k−1

. (42)

We propose a corresponding S generator using Räisänen
et al. (2004) as a guide: for each sample n ∈ {1, . . . , Ns},
a rank vector R(n) = (V (n)

1 , . . . , V
(n)
K )T , is generated,

from which S(n) = (F−1
S1

(V (n)
1 ), . . . , F−1

SK
(V (n)

K ))T is
evaluated. For layer one, V (n)

1 is uniformly random on
[0, 1]. For each subsequent layer k = 2 . . .K, if V (n)

k−1 >
f ′k−1 = FSk−1(1), i.e., layer k − 1 is cloudy, then choose
V

(n)
k = V

(n)
k−1, otherwise choose V (n)

k uniformly random
on [0, f ′k−1].

Consider first the two-layer case k = 2. Using the
same notation as in Appendix B, as Ns →∞, we seek
the fraction C1:2

S (r1, r2) of subcolumns for which V1 ≤ r1
and V2 ≤ r2. Nsf1 subcolumns will have V1 > f ′1 and
therefore V2 = V1. But only Ns max(0,min(r1, r2)− f ′1)
subcolumns will obey the additional constraint that V1 ≤
min(r1, r2). Conversely,Nsf

′
1 subcolumns will have V1 ≤

f ′1 and therefore V2 uniformly random on [0, f ′1]. There-
fore, a fraction min(r1, f ′1)/f

′
1 of these subcolumns will
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have V1 ≤ r1, and an independent fraction min(r2, f ′1)/f
′
1

will have V2 ≤ r2. Consequently,

C1:2
S (r1, r2) = max(0,min(r1, r2)− f ′1)

+ min(r1, f ′1) min(r2, f ′1)/f
′
1.

(43)

Hence, f ′1:2 ≡ C1:2
S (f ′1, f

′
2) = min(f ′2, f

′
1), as required by

(42). For k > 2, using similar probability arguments, it can
be shown that

C1:k
S (r1, . . . , rk)

= max[0, C1:k−1
S (r1, . . . , rk−2,min(rk−1, rk))

− C1:k−1
S (r1, . . . , rk−2, f

′
k−1)]

+ C1:k−1
S (r1, . . . , rk−2,min(rk−1, f

′
k−1))

×min(rk, f ′k−1)/f
′
k−1,

(44)

and hence

f ′1:k = C1:k
S (f ′1, . . . , f

′
k) = f ′1:k−1 min(f ′k, f

′
k−1)/f

′
k−1,

since any copula is non-decreasing in each of its argu-
ments, per §3.2 (R3). This form for f ′1:k is consistent with
(42).
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Räisänen P, Barker HW. 2004. Evaluation and optimiza-
tion of sampling errors for the Monte Carlo Independent
Column Approximation. Q. J. R. Meteor. Soc. 130:
2069–2085.
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