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A Simple Stochastic Model for Generating Broken Cloud Optical Depth 

and Top Height Fields 

Abstract 

A simple and fast algorithm for generating two correlated stochastic two-

dimensional (2D) cloud fields is described.  The algorithm is illustrated with two broken 

cumulus cloud fields: cloud optical depth and cloud top height retrieved from Moderate 

Resolution Imaging Spectrometer (MODIS).  Only two 2D fields are required as an input.  

The algorithm output is statistical realizations of these two fields with approximately the 

same correlation and joint distribution functions as the original ones.  The major 

assumption of the algorithm is statistical isotropy of the fields.  In contrast to fractals and 

the Fourier filtering methods frequently used for stochastic cloud modeling, the proposed 

method is based on spectral models of homogeneous random fields.  For keeping the 

same probability density function as the (first) original field, the method of inverse 

distribution function is used.  When the spatial distribution of the first field has been 

generated, a realization of the correlated second field is simulated using a conditional 

distribution matrix.  This paper is served as a theoretical justification to the publicly 

available software “Simulation of a two-component cloud field” that has been recently 

released.  Though 2D rather than full 3D, stochastic realizations of two correlated cloud 

fields that mimic statistics of given fields have proved to be very useful to study 3D 

radiative transfer features of broken cumulus clouds for a better understanding of 

shortwave radiation and the interpretation of remote sensing retrievals.   
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1. Introduction 

In order to better understand and predict shortwave radiation in realistic cloudy 

atmospheres, we need to specify the 3D distribution of cloud liquid water.  Also, 

statistical cloud retrievals that include 3D radiative transfer need to be trained on a large 

number of 3D cloud fields (Evans et al., 2008).  Realistic cloud fields and spatial 

distributions of cloud liquid water can be obtained from either dynamical or stochastic 

cloud models.  Based on cloud dynamics, physical (or dynamical) cloud models such as a 

large eddy simulation (LES) or a cloud resolving model (e.g., Ackerman et al., 1995) are 

physically consistent but require specification of a lot of atmospheric parameters and 

often are computationally expensive.  On the other hand, stochastic cloud models based 

on aircraft, satellite or ground measurements of cloud structure are computationally 

inexpensive and can output a much larger range of scales than dynamical models. 

Stochastic cloud models are mostly 2D since currently there are no techniques to measure 

a full 3D cloud structure.  (To get a 3D stochastic model one can assume the same 

statistics for both horizontal directions (see, Evans and Wiscombe, 2004 and Hogan and 

Kew, 2005). ) 

For the last two decades many different cloud stochastic models have been 

developed.   We break them into two classes.  The first class of cloud models uses only a 

few parameters to simulate the main aspects of the realistic cloud fields like mean, 

standard deviation and correlation often assumed to be a power-law.  These models are 

very simple and are generally used to test hypothesis and better understand cloud-

radiation interaction.  These are the fractionally-integrated cascade model (Scherzer and 

Lovejoy, 1987), the bounded cascades (Cahalan, 1994; Marshak et al., 1994), the 
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fractional Brownian motion (Voss, 1995), the Fourier filtering of Gaussian noise (Barker 

and Davies, 1992; Evans, 1993; Varnai 2000), the Poisson distribution of cloud elements 

(Zuev and Titov, 1995) to name a few.  These models generally produce an unbroken 

(overcast) 2D x-y field of cloud optical depth or cloud liquid water path. To obtain the 

desired cloud fraction, a simple threshold can be used (e.g., Barker and Davies, 1992; 

Marshak et al., 1998). 

The second class of cloud stochastic models provides a statistical reconstruction 

of an observed field and generates the detailed cloud structure.  They are also called 

statistical cloud generators (Venema et al., 2006a, Schmidt et al., 2007).  These cloud 

models are usually 3D rather than 2D.  For cumulus clouds, Evans and Wiscombe (2004) 

used time-height radar data to generate 2D realizations of cloud liquid water that are 

generalized to 3D fields assuming statistical homogeneity and horizontal isotropy.  For 

stratocumulus clouds, Di Giuseppe and Tompkins (2003) generated 3D cloud liquid 

water fields combining stochastic horizontal models based on power spectrum and 

Fourier filtering (at each height) with realistic vertical profiles of total water and 

temperature.  From radar time-height series using Fourier transform technique, Hogan 

and Kew (2005) generated realistic 3D cirrus clouds with fallstreak structure changing 

vertically the slope of the power spectrum.  Venema et al. (2006a,b) generated a 

surrogate cloud field with liquid water distribution and spatial correlation (through power 

spectrum) statistically similar to the observed one.  Venema et al., (2006b) also compared 

radiative properties of LES clouds with its surrogate fields and Venema et al., (2006a) 

provided an excellent review of different cloud generators.  Finally, we mention the 

Scheirer and Schmidt (2005) generator that reproduced cloud fields of liquid water and 
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effective radius using aircraft data.  Schmidt et al. (2007) used cloud fields simulated by 

the last three generators as input to a 3D radiative transfer model to compare its output 

with the radiative flux measurements.  

The current paper describes a simple stochastic model that belongs to the second 

class of cloud stochastic models.  For given 2D fields of cloud optical depth and cloud 

top height, the model generates realizations of these two fields with the same covariance 

of the cloud mask and the joint distribution as the original fields.  In contrast to Evans 

and Wiscombe (2004), it does not generate 3D cloud liquid water fields but rather 

provides the x-y fields of cloud optical and geometrical thicknesses (assuming a constant 

cloud base).  To simulate the required autocorrelation function, it uses spectral models of 

homogeneous random fields (Prigarin, 1995, 2001) rather than commonly used Fourier 

filtering (e.g., Evans, 1993; Di Giuseppe and Tompkins, 2003; Evans and Wiscombe, 

2004; Hogan and Kew, 2005; Venema et al., 2006b).  Another distinguishable feature of 

this paper is that it provides a theoretical background to the publicly available software 

that has been recently developed and released by the authors.   

The plan of the paper is as follows.  The next section briefly discusses two 

stochastic models of broken cloudiness that are based on a truncated Gaussian 

homogeneous field.  The (auto)correlation function of a 2D field defines its structure.  

Section 3 describes how to generate a quasi-Gaussian field with a given correlation 

function that is retrieved from the covariance of the indicator function of the original 

field.  Section 4 then explains how to modify the field to reproduce the observed 

distribution.  Finally in Section 5 we generate the second field using the joint distribution 

of the given fields of cloud optical depth and cloud top height.  Section 6 illustrates the 
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theory with MODIS data while Section 7 summarizes the main steps of the proposed 

algorithm and discusses its applications.  Section 8 gives a brief summary of the results.  

At the end, Appendix A demonstrates the relations between the covariance functions of a 

Gaussian random filed and its indicators, and Appendix B illustrates spectral models of 

Gaussian isotropic homogeneous random fields on the x-y plane. 

 

2. Quasi-Gaussian model of broken cloudiness  

Let us assume that our cloud field has a constant cloud base at height H0 and a 

variable cloud top described by 

w(x, y) = H
0
+max{a[v(x, y) ! d],0}, ! " < d < " . (1a) 

Here v(x,y) is a homogeneous Gaussian field with zero mean, unit variance, and a  

correlation function K(x,y) (with K(0,0)=1).  The point (x,y,z) belongs to a cloud if H0 ≤ z 

≤ w(x,y).  A value w(x,y) = H0 simply means that there is a cloud gap in the horizontal 

point (x,y).  The cloud top field w has two parameters: a and d.  Parameter a  > 0 stretches 

the cloud top field vertically and parameter d defines the truncation level (compare with 

Marshak et al., 1998).  

Simultaneously with Eq. (1a) we consider another model (Kargin and Prigarin, 

1988) of cloud top, 

w(x, y) = H
0
+max{a[ v(x, y) ! d],0}, 0 " d < # .  (1b) 

We will call Eqs. (1a) and (1b) by model A and B, respectively.  Figure 1 illustrates the 

difference between the two models.  We can see that for model A, positive d corresponds 

to a broken cloud field while negative d rather corresponds to a more “overcast” cloud 
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with a few gaps.  Based on Fig. 1, one can say that model B better represents the cellular 

structure of stratocumulus while model A is for more broken cumulus clouds. 

It can be shown that cloud fraction Ac has a different value for both models, 

namely: 

Ac = P{v(x,y)>d} = 1 – Φ(d), -∞ < d < ∞    (2a) 

for model A, 

Ac = P{v(x,y)>d} = 2[1 – Φ(d)], 0 ≤ d < ∞    (2b) 

for model B, where  

� 

!(d) =
1

2"
exp(#

x
2

2
#$

d

% )dx      

is the standard normal cumulative distribution function which ranges between 0 and 0.5 

for negative d and between 0.5 to 1 for the positive ones. 

For both models we can determine the average number of clouds mc per unit area 

as a limit of number of clouds in a convex domain of area S divided by S when S tends to 

infinity.  Note that mc is dimensionless.  Obviously mc will depend on d and 

autocorrelation function K.  For isotropic fields, one obtains (e.g., Sveshnikov, 1968, Eq. 

(45.51), pg. 441) 

2

3
exp( )

2(2 )
c

d d
m i k

!

= " ,      0d >      (3) 

where i=1 for model A and i=2 for model B.  Here k > 0 is the second derivative of -

K(x,y)  with respect to x or y taken at x=y=0 (with sign ‘-‘).   Note that for isotropic fields, 

the derivatives are equal (see Eq. (5) below).   
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Figure 2 shows the dependence of mc on cloud fraction Ac for both models and 

isotropic fields.  We see that the number of clouds first increases with cloud fraction and 

then decreases.  This is because cloud fraction Ac itself monotonically decreases with the 

truncation level d while number of clouds mc first increases with d then decreases (see 

Fig. 1).  Note that for model A, number of clouds mc for Ac > 0.5 (d<0) is not defined.  

Generalization of Eq. (3) to anisotropic fields is straightforward (Prigarin and Marshak, 

2005). 

To summarize, both cloud models A and B are uniquely determined by 

parameters a and d and a correlation function K.  To simulate a cloud field with a given 

cloud fraction Ac, we first solve Eq. (2) for the truncation level d.  Then one needs to 

generate the correlation function K(x,y) based on some additional information on 

correlation in a real cloud field.  Parameter a is determined from a simple one-point 

statistics of the cloud top field.  The most difficult part of such an approach is the choice 

(or generation) of the correlation function K; it will be discussed in the next section. 

Finally, we emphasize that the cloud top height field w(x,y) is simulated in two 

steps: (i) simulation of the Gaussian field v(x,y) with mean zero and correlation function 

K(x,y), and (ii) calculation of w(x,y) with parameters a and d using (1a) or (1b).  The 

problem of numerical simulation of Gaussian random fields has been well studied (e.g., 

Chapters 1, 2, 4 in Ogorodnikov and Prigarin (1996) and Prigarin (2001) and references 

therein) and will not be discussed here.  Appendix B illustrates the approximation of a 

Gaussian homogeneous random field used in the numerical examples in Section 6.  
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3. Correlation function 

The correlation function defines the geometrical structure of a cloud field, the size 

and distribution of individual clouds and space between them.  Perhaps the simplest 

and/or the most deterministic isotropic cloud field used in the first stochastic models can 

be defined by a Bessel function of the first kind, J0 (see, Gikhman and Skorokhod, 1977, 

pg. 87).  In this case, the correlation function 

2 2

0( , ) ( )K x y J x y!= +     (4) 

where parameter ρ is responsible for cloud sizes (the larger ρ the smaller an average 

cloud is.)  It is easy to see that  

� 

k = !
" 2K(x,y)

"x 2
x=y=0

= !
" 2K(x,y)

"y 2
x=y=0

=
#2

2
.   (5) 

Thus to define ρ, one uses Eq. (3) that relates the average number of clouds per unit area, 

mc, and second derivative k.  Because ρ is fixed, the use of correlation function (4) is very 

limited and cloud fields based on it are unrealistic (see Fig. 3 as an example).  

To generalize (4), Prigarin et al. (1998) used the radial spectral density of a 

Gaussian field, z(ρ), and a representation of the normalized correlation function as an 

integral over all cloud sizes ρ of a product between z(ρ) and J0, 

� 

K(x,y) = J
0

0

!

" (# x
2

+ y
2
)z(#)d# .    (6) 

Here, z(ρ) ≥ 0 and z(!)d! = 1

0

"

# .  Varying z(ρ), in general, one can get  “any” correlation 

function of a random isotropic field on the plane.  
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Below we briefly describe a general procedure of generating correlation function 

K(x,y) based on observations leaving the details for Appendix A.  As an illustration, in 

Section 6 we apply our algorithm to a broken cloud scene retrieved from Moderate 

Resolution Imaging Spectrometer (MODIS). 

Let I(x,y) be an indicator function (a binary cloud mask) that takes value 1, if 

there is a cloud above point (x,y), and 0 otherwise.  Based on observations, we can 

estimate the mathematical expectation of I, which is a cloud fraction Ac, i.e., 

Ac = E[I(x,y)]       (7) 

and its covariance function, 

KI(x,y) = E[I(x,y) I(0,0)] .     (8) 

It is known (Ogorodnikov and Prigarin, 1996, pg. 65) that the covariance function KI(x,y) 

of the indicator field I(x,y) and correlation function K(x,y) of a Gaussian field v(x,y) are 

nontrivially related.  This relationship allows us to retrieve correlation function K(x,y) 

from the measured covariance function KI(x,y).  The main steps of the retrieval are 

described in Appendix A.  Note that the truncation level d is uniquely defined from Eqs. 

(2) and (7). 

 

4. Geometrical thickness with a given density 

Equations (1a) and (1b) alone do not allow us to control the distribution of cloud 

geometrical thickness, w(x,y)-H0.  Determined by Eqs. (1a) and (1b), this distribution is a 

scaled up (a > 1) or down (a < 1) truncated (by a parameter d) Gaussian distribution; its 

density is defined by  
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fa (h) =
1

aC
!(
h

a
+ d), h > 0, C = !(x)dx

d

"

#   (9) 

where !(x) = 1

2"
exp(#x

2
/ 2) is a standard Gaussian density.  However, the observed 

distribution of cloud thickness does not necessarily satisfy Eq. (9).  In general, one has to 

modify Eqs. (1a) and (1b) in order to reproduce the observed distribution.  We describe 

below a modification of a Gaussian model that allows reproduction of any given 

distribution.  This modification is based on the method of inverse distribution function 

widely used in statistical modeling (e.g., Ogorodnikov and Prigarin, 1996, pg. 65-71). 

Let g(h) (h > 0) be a density of the observed distribution of cloud thickness. We 

denote its distribution function by 

G(h) = g(x)dx, h > 0
0

h

! .   (10) 

It is easy to see that if  

F(h) = f
1
(x)dx, h > 0

0

h

!    (11) 

is the distribution function with density f1(h) defined in Eq. (9) with a = 1 and ξ is a 

random variable distributed with the density f1 then G-1F(ξ) will have a density of the 

observed distribution of cloud geometrical thickness.  Indeed, there is a general statement 

(e.g., Gentle, 2003, p. 42): if F is a distribution function of a random variable ξ then F(ξ) 

is uniformly distributed on the interval (0,1).  Therefore, the random variable G-1F(ξ) has 

the probability density g.  (Note that the method of inverse distribution function similar to 
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the above has been also used by Evans and Wiscombe (2004) to generate lookup tables 

for cloud liquid water content and droplet effective radius (see their Eq. (A.3).)   

This leads us to the following modification of Eqs. (1a) and (1b): 

w(x, y) = H
0
+G

!1
F max{v(x, y) ! d,0}[ ], ! " < d < "   (12a) 

for model A, and 

w(x, y) = H
0
+G

!1
F max{ v(x, y) ! d,0}"# $%, 0 & d < ' .  (12b) 

for model B. 

In contrast to (1a) and (1b), distributions of cloud thickness w(x,y)-H0 defined by 

either (12a) or (12b) match the observed probability distribution G(h).  In addition, we 

recall that v(x,y) is a homogeneous Gaussian field with zero mean and unit variance; its 

correlation function K(x,y) is retrieved from the covariance function KI(x,y) of the 

observed cloud mask field I(x,y).  For both models, parameter d is uniquely determined 

from the average value of I(x,y), i.e. cloud fraction Ac (see (7)). 

  

5. Joint distribution of optical and geometrical thicknesses 

We assume here that we have two random variables: cloud optical depth τ(x,y) 

and cloud geometrical thickness h(x,y).  Then a pair (τ,h) will be a two-dimensional 

variable and P(τ1< τ < τ2, h1< h < h2) will be the probability that the values of τ and h fall 

in the intervals (τ1,τ2) and (h1,h2), respectively. 
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Practically (see next section), when two matrixes τ and h are given from 

observations, we first subdivide all their values into M and N bins, respectively.  Then we 

calculate a conditional distribution matrix, 

P(m,n) = P(τ is in m’s bin | provided h is in n’s bin), m=1,…,M; n=1,…,N.  (13) 

Now, if we assume that we have a realization of one variable, say h, then using the 

conditional distribution matrix P we can simulate a distribution of a second variable, τ.  

This is a straightforward procedure similar to a simulation of random number with a 

given distribution.  As a result for each point (x,y) we will get both τ(x,y) and h(x,y) 

preserving conditional distribution (13) as well as the distribution of the random vector 

(h(x,y), τ(x,y)).  The order of simulation (first τ and then h or first h and then τ) is 

irrelevant for the reproduction of the joint distribution of the components of this two-

dimensional vector.   

Note that realizations of the second component generated using a conditional 

distribution matrix (13) are usually more stochastic (or noisy) than the given one.  This is 

especially well pronounced if the original field has a strong spatial heterogeneity, e.g. the 

highest values are localized in several neighboring pixels.  In a simulated field, these high 

values are not necessarily well localized and sometimes can be distributed through the 

whole scene making it much noisier.  This problem has been discussed in more details in 

Prigarin and Marshak (2008). 
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6. Illustration with MODIS data  

To illustrate the above theory with observations, we have selected a 1 km spatial 

resolution MODIS 68 km by 68 km broken cumulus cloud scene (Fig. 4a) from a less 

polluted region in Brazil, centered at 17o S and 42o W.  The data were acquired on August 

9, 2001 at 10:15 am local time.  The solar zenith angle θ0=41o.  This scene is part of the 

International Comparison of 3D Radiative Transfer Codes (I3RC) phase 3 (Cahalan et al., 

2005) and has been used for the analysis of the retrieved droplet size by Marshak et al. 

(2006) and for the radiative effects of broken clouds on aerosol retrievals by Wen et al. 

(2007).  Cloud fraction in the scene, Ac=0.4.  The MODIS image is collocated with a high 

spatial resolution (15 m) Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) image (Yamagushi et al., 1998) plotted in Fig. 4b.  The solar 

azimuth angle ϕ0=23o (from upper right corner) as can be confirmed from the casting of 

the shadows. 

In panel (c) and (d) we have also added the retrieved cloud optical depth and 

cloud top height at a 1 by 1 km resolution.  While the retrieved 1 by 1 km cloud optical 

depth is an operational MODIS product, the operational cloud top height retrievals have a 

5 by 5 km resolution (Platnick, et al. 2003).  To estimate the 1 by 1 km resolution of 

cloud top height, we used the brightness temperature at 11 µm (MODIS band 31) (see 

Wen et al., 2007 for details).  As a result, panels (c) and (d) will be served as the basic 

scenes for our illustration. 

First, Fig. 5a shows the indicator function I(x,y) of the cloud optical depth field 

from panel 4c.  Cloud fraction, as a mathematical expectation of I defined in (7), will be 

0.4.  The right panel, Fig. 5b, is the indicator function of a realization of a simulated field 
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that has the same covariance function KI(x,y) as the measured one.  As shown in 

Appendix A, to get K(x,y) we first estimated the covariance function KI defined in (8) and 

then retrieved K(x,y) with the help of the Owen function (Prigarin et al., 2004). 

Next we illustrate how the distribution of cloud optical depth can be reproduced 

using Eq. (12a).  This is done for Model A which is, perhaps, better agrees with the 

results of observations than model B (Prigarin and Marshak, 2005).  Four realizations of 

cloud optical depth distribution are plotted in Fig. 6.  All of them have approximately the 

same covariance function KI(x,y) of the indicator field (see Fig. 7) and probability density 

function g(τ) as the original cloud optical depth field shown in Fig. 5c.  Figure 8 

illustrates these five pdfs: the original one and the four realizations of cloud optical depth 

from Fig. 6. 

Now we illustrate the joint distribution of optical depth and cloud top height.  

Figure 9 shows a joint distribution function while Fig. 10 shows an example of two 

conditional distributions F(h|τ) for τ=3.5±0.5 and τ=10±1.  The conditional distributions 

of cloud top height h are obviously different.  Finally, Fig. 11 for the realization of cloud 

optical depth plotted in Fig. 6b shows three realizations of cloud top height.  As we can 

see from Fig. 12 their pdfs match (approximately) the original pdf of cloud top height 

from Fig. 4d.   

 

7. Main steps of the model  

Based on the above description, the software “Simulation of a two-component cloud 

field” that generates realizations of cloud optical depth and cloud top height from given 

observations have been developed and is freely available for download from 
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http://i3rc.gsfc.nasa.gov/Public_codes_clouds.htm (click on PDF-based stochastic cloud 

model). 

Let us summarize here the main steps of the simulation procedure.  There are only 

two input files: cloud optical depth τ(x,y) and cloud geometrical thickness h(x,y) (as 

shown in Figs. 4c and 4d).   The main 11 steps are the following: 

1. Read input file τ(x,y); 

2. Estimate cloud fraction Ac, see (7); 

3. Find the truncation level d from (2);  

4. Estimate covariance function of the indicator field KI, see (8); 

5. Compute correlation function K, see Appendix A; 

6. Generate a Gaussian homogeneous random field v(x,y) with mean zero and 

correlation function K, see Appendix B; 

7. Simulate τ*(x,y) modifying the Gaussian field according to (12); 

8. Read input file h(x,y); 

9. Calculate joint distribution of τ and h fields, see Fig. 9; 

10. Calculate a conditional distribution matrix (13); 

11. Using the conditional distribution matrix, simulate realization h*(x,y) that 

corresponds to realization τ*(x,y) generated at step 7, see Fig. 11.   

In the software, the first 7 steps are accomplished by the executable file 0x-sp-a-

s.exe.  The input file is matrix τ(x,y).  The output files are: a realization τ*(x,y) of cloud 

optical depth field, the estimated covariance function of the indicator field, the computed 

autocorrelation function of the Gaussian field and histograms of the input and output 
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optical depth fields.  The executable file DISTR-M2.exe estimates a joint distribution 

function of two random fields τ(x,y) and h(x,y).  The output files of this program are the 

joint and conditional distributions (steps 8-10).  For the last step, the executable file 

X_Ysim.exe is used.  It provides a realization h*(x,y) of cloud top height field.  In that 

way, the realizations τ*(x,y) and h*(x,y) imitate the input fields τ(x,y) and h(x,y) 

reproducing the covariance function of the indicator field and joint distribution of τ and h 

components for  two-dimensional vectors (τ(x,y), h(x,y)).  Note, that here the random 

fields are assumed to be statistically homogeneous and isotropic. 

 

8. Summary  

Cloud stochastic models proved to be an important tool to study 3D radiative effects 

in clouds, especially in broken cumulus clouds (e.g., Barker and Davies, 1992, Evans, 

1993, Marshak et al., 1998, Varnai, 2000, Evans and Wiscombe, 2004, Schmidt et al. 

2007).  Here we have provided a theoretical description of a simple algorithm that 

generates realizations of the two correlated stochastic two-dimensional (2D) cloud fields 

that have similar statistical characteristics as given cloud fields.  Each step of the 

algorithm has been illustrated with two broken cumulus cloud fields: cloud optical depth 

and cloud top height retrieved from MODIS.  While most stochastic cloud models use 

Fourier filtering of Gaussian signal to generate the required correlation (e.g., Schertzer 

and Lovejoy, 1987; Evans, 1993; Di Giuseppe and Tompkins, 2003; Evans and 

Wiscombe, 2004; Hogan and Kew, 2005; Venema et al., 2006b), our algorithm is based 

on spectral models of homogeneous random fields (Prigarin, 1995, 2001).  A nonlinear 

transformation of Gaussian functions (the method of inverse distribution function) allows 
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us to keep distribution function similar to the one of the first original field.  Realizations 

of the correlated second field are generated using a conditional distribution matrix. 

This paper is accompanied by the software “Simulation of a two-component cloud 

field” that has been recently released and can be freely downloaded from 

http://i3rc.gsfc.nasa.gov/Public_codes_clouds.htm. The software generates a two-

component cloud field and provides programs to simulate two-dimensional distributions.  

The software contents a program (0x-sp-a-s) that generates realizations of a broken cloud 

field (X) with similar statistical characteristics (autocorrelation, density, and indicator 

functions) as the first given sample, a program (DISTR-M2) that estimates joint and 

conditional distributions for the two given samples and a program (X_Ysim) that 

simulates sample Y while the sample X is given.  At present, the software runs only on 

Windows PCs but will be later extended to other platforms.  

Finally we note that this model is a 2D stochastic model rather than 3D.  To extend it 

to a 3D cloud model, we need to assume a vertical profile of cloud liquid water (see, Di 

Giuseppe and Tompkins, 2003).  A simple linear increase of liquid water with height can 

be easily implemented in the frame of this model on its next stage.  
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Appendix A. Relations for covariance functions of a Gaussian random filed and its 

indicators 

Assume that v(x,y) is a homogeneous Gaussian random field on the plane with 

mean zero and correlation function K(x,y)=E[v(x,y) v(0,0)].  Let us consider two indicator 

fields with respect to a fixed level d: 

(1)
0   for v(x,y)<d

I (x,y)=
1   otherwise

!
"
#

,    (2)
0   for |v(x,y)|<d

I (x,y)=
1   otherwise

!
"
#

. 

These indicators correspond to Model A (1a) and Model B (1b) introduced in Section 2. 

In this Appendix we present the basic relations between covariance functions of the 

random field v(x,y) and its indicators (for details, see Prigarin et al., 2004).  For the 

covariance functions KI
(n)(x,y)=E[I(n)(x,y) I(n)(0,0)]=P{I(n)(x,y)=1, I(n)(0,0)=1} we have  

KI
(n)(x,y) =R(n)(K(x,y)),       (A1) 

where  

� 

R
(1)
(r) = !

r
(",#)d"d#

{# >d}

$
{" >d}

$   

� 

R
(2)
(r) = !

r
(",#)d"d#

{|# |>d}
$

{|" |>d}
$    (A2)  

and 

� 

!
r
(",#) = 2$ 1% r2 exp

" 2 + #2
+ 2r"#

2(1% r2)
& 

' 
( 

) 

* 
+ 

, 

- 
. 

/ 

0 
1 

%1

  (A3) 

is the probability density of a two-dimensional Gaussian random vector with zero mean, 

unit variance of  the components and correlation coefficient r between the components.  

To find the correlation function K(x,y) of the Gaussian random field for a quasi-

Gaussian model of broken clouds it is necessary to estimate function KI
(n)(x,y) that is the 
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covariance function of the cloud indicator field and to solve numerically equation (A1) 

(n=1 for Model A and n=2 for Model B).  For computations it is reasonable to use the 

following representations of (A2) in terms of Owen’s function: 

R(1)(r) = Φ(-d)-2T(d,a),   R(2)(r) =4Φ(-d)-4[T(d,a)+T(d,1/a)],  (A4) 

where Φ is the standard normal cumulative distribution function, (1 ) /(1 )a r r= ! +  and  

2 2

20

1
( , ) exp (1 ) / 2

2 1

a du
T d a d u

u!
" #= $ +% &

+
'   (A5) 

is Owen’s function. 
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Appendix B.  On simulation of a Gaussian homogeneous isotropic field with a given 

correlation function 

Here we briefly present a numerical method used in the software “Simulation of a 

two-component cloud field” for modeling Gaussian random fields on a plane (for details 

see Chapter 2 in Ogorodnikov and Prigarin (1996), Chapter 1, and particularly Section 

1.1.4, in Prigarin (2001) and Prigarin and Titov (1996)).  To simulate a Gaussian 

homogeneous isotropic random field v(x,y) with mean zero and correlation function 

K(x,y) we use an approximation of the following type:  

1 2

1 1

( , ) 2 ln
J M

JM

j km

j m

x y M c! "
#

= =

= #$ $ cos( cos sin 2 )
j jm j jm jm

x y! " ! " #$+ + , 

where   

( 0.5) / ,
j

j B J! = +     
/

2

( 1) /

( ) ,

jB J

j

j B J

c z d! !
"

= #    

 ( )
jm j

m M! " #= + ,      
0

0

( ) ( ) ( )z rJ r K r dr! ! !
"

= # ,  

, ,
jm jm j

! " # are independent random variables uniformly distributed in (0,1), and the same 

symbol K is used for the correlation function (of the isotropic field) depending on a point 

on the plane (x,y) and on the distance 

� 

r = x
2

+ y
2 : K(r)=K(x,y).  Function ( )z !  is the 

radial spectral density (see (6) in section 3).  Such numerical models are called spectral 

models because they approximate stochastic integrals in the spectral decomposition of the 

random field  

0 0

( , ) cos( ) ( ) sin( ) ( )v x y x y d d x y d d! " # ! " ! " $ ! "
+% +% +% +%

&% &%

= + + +' ' ' '  

by finite sums.  Here ξ(dλdν) and η(dλdν) are the orthogonal stochastic measures.  (For 

the details on the spectral decompositions see, e.g., Gikhman and Skorokhod (1977, p. 
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273).)  The spectral model is a sum of JxM random harmonics and it depends on three 

parameters J, M and B where B is an upper boundary of the radial spectrum of the model. 

(In the accompanied software “Simulation of a two-component cloud field”, parameters J 

and M are chosen manually, while B is specified automatically).  Additional information 

on construction, properties, errors and convergence of spectral models can be found in 

Prigarin (2001).  
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Figure Captions 

Figure 1.  A schematic illustration of models A and B.  H0 is a constant cloud base, d is a 

cutting threshold level. 

Figure 2.  Number of clouds per unit area, mc (k=1), as a function of cloud fraction Ac for 

both models A and B.  

Figure 3. Configuration of cloud fields (300 km by 300 km) for model A (left) and 

model B (right) on the basis of a Gaussian random field with correlation function J0 for 

the same cloud fraction Aс=0.58 (ρ=0.5; d= -0.20 for model A, and d=0.55 for model B).  

To simulate a Gaussian random field a spectral model from Prigarin, 2001 (Section 1.1.4) 

was used (see also Appendix B).  

Figure 4.  A 68 km by 68 km region in Brazil centered at 17o S and 42o W collected on 

August 9, 2001 at 1015 local time.  The solar zenith angle θ0=410; the solar azimuth angle 

ϕ0=23o (from the top). (a) MODIS true color RGB 1 km resolution; (b) ASTER RGB 15 

m resolution; (c) retrieved cloud optical thickness; (d) retrieved cloud top height (in km).  

Figure 5.  Indicator functions I(x,y) of a cloud field: white is cloud (I=1) while black is a 

cloud-free area (I=0).  Cloud fraction Ac=0.4. (Left) 68 km by 68 km MODIS image 

centered at (17.1o S,42.16oW) acquired on August 9, 2001. (Right) a realization of a 

simulated field.  

Figure 6.  Four realizations of cloud optical depth; all of them have the same covariance 

function of the cloud mask KI(x,y) and histogram g(τ) as the one in Fig. 4c.  Color scale is 

the same as in Fig. 4c.  The size of the images is the same as in Fig. 5: 68 km by 68 km. 
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Figure 7. Estimates of covariance function KI(x,y)=KI(r) (

� 

r = x
2

+ y
2 ) of the indicator 

function I(x,y) for the observed (solid line) and simulated (dot line) cloud fields from Fig. 

5.  

Figure 8.  The original histogram g(τ) and four other histograms that correspond to four 

realizations of cloud optical depth shown in Fig. 6.  

Figure 9.  Joint distribution of the given cloud optical depth and cloud top height fields.  

Figure 10.  The conditional distribution function F(h|τ) used to simulate cloud top height 

h.  F(h|τ) is shown for two values of optical depth τ. 

Figure 11.  (a) One realization of cloud optical depth from Fig. 6b.  (b)-(d) Three 

realizations of cloud top height distribution; they correspond to the cloud optical depth 

field shown in panel (a).  All realizations have the same conditional distribution F(h|τ). 

Figure 12. A probability density function (pdf) of three realizations of cloud top height 

shown in Fig. 11.  The original pdf of cloud top height from Fig. 4d is also shown. 
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FIGURES

 
 

Figure 1.  A schematic illustration of models A and B.  H0 is a constant cloud base, d is a 

cutting threshold level.
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Figure 2.  Number of clouds per unit area, mc (k=1), as a function of cloud fraction Ac for 

both models A and B.  
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Figure 3. Configuration of cloud fields (300 km by 300 km) for model A (left) and 

model B (right) on the basis of a Gaussian random field with correlation function J0 for 

the same cloud fraction Aс=0.58 (ρ=0.5; d= -0.20 for model A, and d=0.55 for model B).  

To simulate a Gaussian random field a spectral model from Prigarin, 2001 (Section 1.1.4) 

was used (see also Appendix B).  
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Figure 4.  A 68 km by 68 km region in Brazil centered at 17o S and 42o W collected on 

August 9, 2001 at 1015 local time.  The solar zenith angle θ0=410; the solar azimuth angle 

ϕ0=23o (from the top). (a) MODIS true color RGB 1 km resolution; (b) ASTER RGB 15 

m resolution; (c) retrieved cloud optical thickness; (d) retrieved cloud top height (in km).  
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Figure 5.  Indicator functions I(x,y) of a cloud field: white is cloud (I=1) while black is a 

cloud-free area (I=0).  Cloud fraction Ac=0.4. (Left) 68 km by 68 km MODIS image 

centered at (17.1o S,42.16oW) acquired on August 9, 2001. (Right) a realization of a 

simulated field.  
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(a)  (b)    

 

(c)  (d)  

 

Figure 6.  Four realizations of cloud optical depth; all of them have the same covariance 

function of the cloud mask KI(x,y) and histogram g(τ) as the one in Fig. 4c.  Color scale is 

the same as in Fig. 4c.  The size of the images is the same as in Fig. 5: 68 km by 68 km. 
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Figure 7. Estimates of covariance function KI(x,y)= KI(r) (

� 

r = x
2

+ y
2 ) of the indicator 

function I(x,y) for the observed (solid line) and simulated (dot line) cloud fields from Fig. 

5.  
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Figure 8.  The original histogram g(τ) and four other histograms that correspond to four 

realizations of cloud optical depth shown in Fig. 6. 
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Figure 9.  Joint distribution of the given cloud optical depth and cloud top height fields.  
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Figure 10.  The conditional distribution function F(h|τ) used to simulate cloud top height 

h.  F(h|τ) is shown for two values of optical depth τ. 
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(a) (b)  

 

(c) (d)  

 

Figure 11.  (a) One realization of cloud optical depth from Fig. 6b.  (b)-(d) Three 

realizations of cloud top height distribution; they correspond to the cloud optical depth 

field shown in panel (a).  All realizations have the same conditional distribution F(h|τ). 
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Figure 12. A probability density function (pdf) of three realizations of cloud top height 

shown in Fig. 11.  The original pdf of cloud top height from Fig. 4d is also shown. 

 


