About DOE Button Organization Button News Button Contact Us Button
Search  
US Department of Energy Seal and Header Photo
Science and Technology Button Energy Sources Button Energy Efficiency Button The Environment Button Prices and Trends Button National Security Button Safety and Health Button
_DOE Office of Fossil Energy Web Site

Fossil Energy

-

Clean Coal & Natural Gas Power Systems

-

Carbon Sequestration

-

Hydrogen & Other Clean Fuels

-

Oil & Natural Gas Supply & Delivery

-

Natural Gas Regulation

-

U.S. Petroleum Reserves

-

IN YOUR STATE

OFFICES & FACILITIES

EMAIL UPDATES

Register to receive Fossil Energy NEWSALERTS by e-mail.

GO to Link

QUICK REFERENCE

You are here:  Clean Coal & Natural Gas Power Systems > Coal Gasification R&D

Gasification Technology R&D

DOE's Gasification Research Program

Program Performance Goal:
By 2010, complete research and development for advanced power systems capable of achieving between 45 and 50 percent electrical efficiency at a capital cost of $1000 per kilowatt (in constant 2003 dollars) or less for a coal-based plant.

MORE INFO


Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen, and other valuable energy products.

Coal gasification electric power plants are now operating commercially in the United States and in other nations, and many experts predict that coal gasification will be at the heart of future generations of clean coal technology plants.

Rather than burning coal directly, gasification (a thermo-chemical process) breaks down coal - or virtually any carbon-based feedstock - into its basic chemical constituents. In a modern gasifier, coal is typically exposed to steam and carefully controlled amounts of air or oxygen under high temperatures and pressures. Under these conditions, molecules in coal break apart, initiating chemical reactions that typically produce a mixture of carbon monoxide, hydrogen and other gaseous compounds.

Gasification, in fact, may be one of the most flexible technologies to produce clean-burning hydrogen for tomorrow's automobiles and power-generating fuel cells. Hydrogen and other coal gases can also be used to fuel power-generating turbines, or as the chemical "building blocks" for a wide range of commercial products. [> Read more about hydrogen production.]

The Energy Department's Office of Fossil Energy is working on coal gasifier advances that enhance efficiency, environmental performance, and reliability as well as expand the gasifier's flexibility to process a variety of coals and other feedstocks (including biomass and municipal/industrial wastes).

Environmental Benefits

The environmental benefits of gasification stem from the capability to achieve extremely low SOx, NOx and particulate emissions from burning coal-derived gases. Sulfur in coal, for example, is converted to hydrogen sulfide and can be captured by processes presently used in the chemical industry. In some methods, the sulfur can be extracted in either a liquid or solid form that can be sold commercially.  In an Integrated Gasification Combined-Cycle (IGCC) plant, the syngas produced is virtually free of fuel-bound nitrogen.  NOx from the gas turbine is limited to thermal NOx. Diluting the syngas allows for NOx emissions as low as 15 parts per million. Selective Catalytic Reduction (SCR) can be used to reach levels comparable to firing with natural gas if required to meet more stringent emission levels. Other advanced emission control processes are being developed that could reduce NOx from hydrogen fired turbines to as low as 2 parts per million.

The Office of Fossil Energy is also exploring advanced syngas cleaning and conditioning processes that are even more effective in eliminating emissions from coal gasifiers. Multi-contaminant control processes are being developed that reduce pollutants to parts-per-billion levels and will be effective in cleaning mercury and other trace metals in addition to other impurities.

Coal gasification may offer a further environmental advantage in addressing concerns over the atmospheric buildup of greenhouse gases, such as carbon dioxide. If oxygen is used in a coal gasifier instead of air, carbon dioxide is emitted as a concentrated gas stream in syngas at high pressure. In this form, it can be captured and sequestered more easily and at lower costs. By contrast, when coal burns or is reacted in air, 79 percent of which is nitrogen, the resulting carbon dioxide is diluted and more costly to separate.

Efficiency Benefits

Efficiency gains are another benefit of coal gasification. In a typical coal combustion-based power plant, heat from burning coal is used to boil water, making steam that drives a steam turbine-generator. In some coal combustion-based power plants, only a third of the energy value of coal is actually converted into electricity.

A coal gasification power plant, however, typically gets dual duty from the gases it produces. First, the coal gases, cleaned of impurities, are fired in a gas turbine - much like natural gas - to generate one source of electricity. The hot exhaust of the gas turbine, and some of the heat generated in the gasification process, are then used to generate steam for use in a steam turbine-generator. This dual source of electric power, called a "combined cycle," is much more efficient in converting coal's energy into usable electricity. The fuel efficiency of a coal gasification power plant in this type of combined cycle can potentially be boosted to 50 percent or more.

Future concepts that incorporate a fuel cell or a fuel cell-gas turbine hybrid could achieve  efficiencies nearly twice today's typical coal combustion plants. If any of the remaining heat can be channeled into process steam or heat, perhaps for nearby factories or district heating plants, the overall fuel use efficiency of future gasification plants could reach 70 to 80 percent.

Higher efficiencies translate into more economical electric power and potential savings for ratepayers. A more efficient plant also uses less fuel to generate power, meaning that less carbon dioxide is produced. In fact, coal gasification power processes under development by the Energy Department could cut the formation of carbon dioxide by 40 percent or more, per unit of output, compared to today's conventional coal-burning plant.

The capability to produce electricity, hydrogen, chemicals, or various combinations while  eliminating nearly all air pollutants and potentially greenhouse gas emissions makes coal gasification one of the most promising technologies for energy plants of the future.

 



PROJECT INFO


PROGRAM CONTACTS

>

Gary Stiegel
National Energy Technology Laboratory
PO Box 10940
U.S. Dept. of Energy
Pittsburgh, PA 15236
412-386-4499


>

Stewart Clayton
Office of Fossil Energy
(FE-22)
U.S. Dept. of Energy
Washington, DC 20585
301-903-9429


 Page owner:  Fossil Energy Office of Communications
Page updated on: December 08, 2008 

The White House USA.gov E-gov IQ FOIA
U.S. Department of Energy | 1000 Independence Ave., SW | Washington, DC 20585
1-800-dial-DOE | f/202-586-4403 | e/General Contact

Web Policies | No Fear Act | Site Map | Privacy | Phone Book | Employment