Estimating Password Strength

 (fools rush in where angels fear to tread- this approach is preliminary and may change)

Bill Burr
 NIST
 william.burr@nist.gov
 301-975-2914

Disclaimer - Preliminary

- This is a proposal for review and comment.
- It is subject to change, large and small
- Can easily adjust threshold
- May also significantly change approach
- There probably is no right solution

Review the Bidding

 - Assurance Levels- Draft GSA/OMB guidance defines 4 assurance levels
- http://a257.g.akamaitech.net/7/257/2422/14mar200108 00/edocket.access.gpo.gov/2003/pdf/03-17634.pdf
- Assurance level needed determined by consequences of authentication error
- Inconvenience
- Financial loss
- Distress
- Standing or reputation
- Harm to agency programs or reputation
- Civil or criminal violations
_ Personal safety

Assurance Levels

- Level 1 - Minimal Assurance
- Little or no assurance on the asserted identity
- Authentication Error might at worst result in
- minimal inconvenience, financial loss, distress, damage to reputation
- no risk of harm to agency programs or public interests, release of sensitive information, civil or criminal violations or to personal safety

Assurance Levels

- Level 2 - Low Assurance
- "On the balance of probabilities" there is confidence in the asserted identity
- Authentication Error might at worst result in
- minor inconvenience, financial loss, distress, damage to reputation
- no risk of harm to agency programs, public interests, release of sensitive information or personal safety
- civil or criminal violations not normally subject to agency enforcement efforts

Assurance Levels

- Level 3 - Substantial Assurance
- Transactions that are "official in nature"
- High confidence in the asserted identity
- Authentication error might at worst result in
- significant inconvenience, financial loss, distress, damage to reputation, harm to agency programs \& public interests
- a significant release of sensitive information
- civil or criminal violations normally subject to agency enforcement efforts
- no risk to personal safety

Assurance Levels

- Level 4 - High Assurance
- Very high confidence in the asserted identity
- Authentication error might result in
- considerable inconvenience, financial loss, distress, damage to reputation, harm to agency programs \& public interests
- extensive release of sensitive information
- considerable risk of an egregious criminal act
- civil or criminal violations of special importance to agency enforcement efforts
- risk to personal safety

Passwords and Assurance levels

- Level 1 - PINs
- Level 2 - "Strong" passwords done tolerably well
- What's a strong password?
- Level 3 - very strong passwords done really well
- What's very strong and done really well?
- Level 4 - you gotta be kidding

What is a password?

- Password is a secret character string you commit to memory.
- Secret and memory are the key words here
- As a practical matter we often do write our passwords down, whatever we are supposed to do with them, and when we do write them down we have to protect them
- A password is really a (generally weak) key
- People can't remember good keys
- Enrolment and verification phases

Passwords will ever be with us

- Multifactor authentication
- Something you are
- Something you have
- Something you know
- Problem comes when we depend on passwords as the only factor in remote authentication

Password Hell

- We all are asked to remember far too many passwords
- Forced to change them frequently
- often peremptorily forced to change a password without warning when we try to \log on
- Every system has different rules for passwords
- Often use them only very infrequently
- May be given arbitrary, randomly generated passwords
- who can remember these?

Simplification

- We're only concerned with on-line authentication to a server, not passwords used, for example to encrypt or lock local files
- Assume that the authentication server is secure and can impose rules to detect or limit attacks

Attacks on Passwords

- In-band
- Attacker repeatedly tries passwords until he authenticates/gets access
- guessing, dictionary, or brute force exhaustion
- Can't entirely prevent these attacks
- can ensure they don't succeed very often
- Out of band - everything else
- Eavesdropper
- Man-in-the-middle
- Shoulder surfing
- Social engineering

Password Strength

- Define password strength in terms of probability of a determined attacker discovering a selected user's password by an in-band attack
- Strength is then a function of both the "entropy" of the password and the way unsuccessful trials are limited
- Many strategies for limiting unsuccessful trials
- 3 strikes and you're out
- hang up after an unsuccessful trial
- some total number of unsuccessful trials and lock account
- change passwords periodically
- notify user of successful and unsuccessful login attempts
- Trade-offs with help desk costs

Strong Password Definition

- The probability of an attacker with no a priori knowledge of the password finding a given user's password by an in-band attack shall not exceed one in $2^{16}(1 / 65,563)$ over the life of the password
- The more entropy required in the password, the more trials the system can allow
- Note that there is not necessarily any particular time limit

Estimating Password Entropy

- Entropy of a password is the uncertainty an attacker has in his knowledge of the password, that is how hard it is to guess it.

$$
H(X):=-\sum_{x} P(X=x) \log _{2} P(X=x)
$$

- Easy to compute entropy of random passwords
- We typically state entropy in bits. A random 32bit number has 2^{32} values and 32-bits of entropy
- A password of length l selected at random from the keyboard set of 94 printable (nonblank) characters has 94^{l} values and about $6.55 \times l$ bits of entropy.

User Selected Passwords

- People have a hard time remembering random passwords
- So we may let them pick their own
- People pick bad passwords
- Passwords that are easy to remember are often easy to guess
- use common words
- frequency distributions of characters
- phone number, street address, SSN, dog's name, birthday...
- Sophisticated attacker takes advantage of this with (possibly large) dictionaries of common passwords

Entropy of User Chosen Pswd

- No really rigorous way to estimate
- Propose starting from Shannon's estimate of entropy in English text
- C. E. Shannon, "Prediction and Entropy of Printed English" Bell System Technical Journal, v.30, n.1, 1951, pp. 50-64
- One of the most widely referenced papers in computing
- Seems to be relatively little progress beyond Shannon.

Shannon's estimate of entropy

- Shannon used 26 English letters plus space
- Left to their own devices user will choose only lower case letters.
- Shannon's method involves knowing the $i-1$ first letters of a string of English text; how well can we guess the i th letter?
- Entropy per character decreases for longer strings
- 1 character 4.7 bits/character
$-\leq 8$ characters 2.3 bits per character
- order of 1 bit/char for very long strings

Use Shannon as Lower Bound

- Users are supposed to pick passwords that don't look like ordinary English
- But, of course, they want to remember them
- Attacker won't have a perfect dictionary or learn much by each unsuccessful trial

Estimate Entropy vs PWD length

Password Length	Entropy Bits	Password Length	Entropy Bits
1	4	10	21
2	6	12	24
3	8	14	27
4	10	16	30
5	12	18	33
6	14	20	36
7	16	30	46
8	18		

Draft for comment

Estimate Entropy vs PWD length

- 1-10 character passwords consistent with curves in Fig. 4 of paper
$\checkmark 10-20$ character passwords assume that entropy grows at 1.5 bits of entropy per character
- Over 20 character passwords assume that entropy grows at 1 bit per character

Password Rules

- We can increase the "effective" entropy of user chosen passwords by imposing rules on them that make the passwords less like ordinary English (or French or German or..) words. For example:
- Passwords must contain at least one upper case letter, one number and one special character
- Passwords must not contain any strings from a dictionary of common strings

Password Rules

- Rules reduce the total number of possible passwords, which is bad
- But they can eliminate a lot of commonly used (easily guessed) passwords and make users select passwords they just wouldn't otherwise choose, stretching the effective space
\bullet If we go overboard rules make it hard to remember the passwords
- We let users pick their passwords in the first place so they can remember them

Proposal

- Award an entropy bonus of up to 6 bits for password composition rules
- Award an entropy bonus of up to 6 bits for a dictionary test
- Bonus declines for long "pass-phrases"
- Have to contain common words or you can't remember them
- No bonus for over 20 char.
- Rules don't work as well in combination for very short passwords

How do rules affect entropy?

- Assign entropy "bonus" for composition rules
- Consider
- Passwords must contain at least one upper case letter, one lower case letter, one number and one special character
- we'll often get just one of each, however long the password, at the the beginning or the end of the password
- Redskins1!
- Algernon8*
- A!1lgernon
- some combinations will be common
- 1! 2@ 3\#
- Probably some benefit even for very long passwords

Estimate Entropy vs PWD length

 with Composition Rule| Password
 Length | Entropy
 Bits | Password
 Length | Entropy
 Bits |
| :--- | :--- | :--- | :--- |
| 1 | - | 10 | 27 |
| 2 | - | 12 | 30 |
| 3 | - | 14 | 33 |
| 4 | 15 | 16 | 36 |
| 5 | 18 | 18 | 39 |
| 6 | 20 | 20 | 42 |
| 7 | 22 | 30 | 52 |
| 8 | 24 | | |

Draft for comment
Subject to change

Dictionary Test

- Attacker will use a dictionary first
- Can be quite extensive
- Test passwords against a dictionary
- Even a big dictionary doesn't occupy much of the total password space and half the passwords is one bit of entropy
- Dictionary less effective for long passwords
- Need to allow phrases of words if long passwords are to be practical
- Assume dictionary test doesn't help for 20 char or longer passwords

Estimate Entropy vs PWD length with Dictionary Test

Password Length	Entropy Bits	Password Length	Entropy Bits
1	-	10	26
2	-	12	28
3	-	14	30
4	14	16	32
5	17	18	34
6	20	20	36
7	22	30	50
8	24		

Draft for comment

Estimate Entropy vs PWD length with Rule \& Dictionary

Password Length	Entropy Bits	Password Length	Entropy Bits
1	-	10	32
2	-	12	34
3	-	14	36
4	16	16	38
5	20	18	40
6	23	20	42
7	27	30	52
8	30		

Draft for comment

Entropy estimate versus length

Draft for comment Subject to change

A Measurement Experiment?

- No time to affect the first round of guidance; but
- Can we find a source of lots of actual user selected passwords?
- On the order of at least hundreds of thousands
- With different rules
- Probably could live with password hashes
- Use collision frequencies
- Couldn’t use hash(password||username||salt)

Proposed Thresholds

- Level 1, minimal assurance
- Probability of a successful in-band password attack less than .0005 (one in 2^{11})
- Level 2, low assurance
- Probability of a successful in-band password attack less than .000015 (one in 2^{16}).
- Level 3 , substantial assurance
- Probability of a successful in-band password attack less than .000001 (one in 2^{20}).

Level 1 - Minimal Assurance

- Basically for PINs, or passwords sent without encryption
- Not expected to resist eavesdroppers
- No more than 1 in 2^{11} (2048) chance of inband attack succeeding over life of password

Level 2 - Low Assurance

- Useful for routine e-commerce and e-gov transactions
- Must resist eavesdroppers
- resist off-line analysis of authentication protocol run
- Resist replays
- No more than 1 in $2^{16}(65,536)$ chance of in-band attack succeeding over life of password
- Not required to defeat man-in-the-middle or verifier impersonation attacks

Level 3 - Substantial Assurance

- Useful for e-commerce and e-gov transactions of substantial value
- Must resist eavesdroppers
- resist off-line analysis of authentication protocol run
- Resist replays
- Resist man-in-the-middle or verifier impersonation attacks
- No more than 1 in $2^{20}(1,000,000)$ chance of inband attack succeeding over life of password

Example - Level 2

- 6 characters, randomly selected
- 94^{6} possible values (about 6.9×10^{11})
- That's about 39 bits of entropy
- Authentication system must limit the total number of unsuccessful authentication attempts to $94^{6} / 2^{16} \approx 10,000,000$

Example - Level 2

- 8 characters, user selected, no composition rule or dictionary check
- estimate 18 -bits of entropy which is about 250,000
- Authentication system must limit the total number of unsuccessful authentication attempts to $2^{18} / 2^{16}=4$ trials

Example - Level 2

- 8 characters, user selected, with composition rule and dictionary check
- estimate 30-bits of entropy which is about 10^{9}
- Authentication system must limit the total number of unsuccessful authentication attempts to $2^{30} / 2^{16}=2^{15} \approx 16,000$ trials

Example - Level 2

- 6 characters, user selected, with composition rule and dictionary check
- estimate 26-bits of entropy
- Authentication system must limit the total number of unsuccessful authentication attempts to $2^{26} / 2^{16}=1024$ trials

Zero Knowledge Password Auth.

- Verifier and claimant share a password
- If attacker fools claimant into an authentication protocol run, he gains no knowledge of password
- Verifier and claimant wind up with a strong shared secret, which can be used in any protocol that requires a symmetric key
- Eavesdropper learns nothing about password or strong shared secret

Diffe-Hellman key exchange

Pick a generator \mathbf{g} of a large finite group \mathbf{G}. a and b are large random numbers.

Alice and Bob now share a common secret $\mathrm{g}^{a b}$.
An eavesdropper must solve discrete log problem to

EKE exchange

Let p be Alice's password, $w=$ hash(p), Bob knows w, and $\mathrm{E}_{w}(x)$ be X encrypted under key w

Alice and Bob now share a common cryptographic strength secret $\mathrm{g}^{a b}$.

Draft for comment
Subject to change

Token Type by Level

Allowed Token Types

Hard crypto token	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Soft crypto token	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
password with zero knowledge protocol	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
Strong password with eavesdropper protection	\sqrt{l}	$\sqrt{ }$		
PIN	$\sqrt{ }$			

Required Protections by Level

Protection Against Eavesdropper Replay		2	3	4
On-line guessing		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Verifier Impersonation	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
Man-in-the-middle			$\sqrt{ }$	$\sqrt{ }$

Auth. Protocol Type by Level

Allowed Protocol Types	1	2	3	4
Private key PoP	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Symmetric key PoP	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
Zero knowledge password	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	
Tunneled password	$\sqrt{ }$	$\sqrt{ }$		
Challenge-reply password	$\sqrt{ }$			

Required Protocol Properties by Level

Required properties

Shared secrets not revealed to $3^{\text {rd }}$ parties

Session Data transfer authenticated

1	2	3	4
		$\sqrt{ }$	$\sqrt{ }$
$\sqrt{ }$			

