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ABSTRACT

Model deficiencies limit a subseasonal or seasonal forecast system’s ability to produce accurate predic-
tions. In this paper, an approach for transforming the output of a forecast system into a revised forecast is
presented; it is designed to correct for some of the deficiencies in the system (particularly those associated
with the spatial correlation structures of the forecasted fields) and thereby increase forecast skill. The
approach, based on the joint consideration of the correlation structures present in the observational record
and the inherent potential predictability of the model, is tested on a preexisting subseasonal forecast
experiment. It is shown to produce modest but significant increases in the accuracy of forecasted precipi-
tation and near-surface air temperature at monthly time scales.

1. Introduction

The strategy employed for forecasting meteorologi-
cal variables such as precipitation and air temperature
in large part relies on the lead time of the forecast. For
medium-range weather forecasts, extending out to
about a week, forecast skill relies mostly on the correct
initialization of atmospheric states. For seasonal-to-
interannual (SI) forecasts, however, atmospheric ini-
tialization has almost no impact on skill. SI forecasts
must instead rely on the slower-moving components of
the coupled earth system, most notably the state of the
ocean. If the responses of precipitation and air tem-
perature to predictable ocean states are known, then

precipitation and air temperature are themselves pre-
dictable at SI leads.

At subseasonal time scales (up to about a month),
soil moisture, another slower-moving component of the
climate system, can also be an important source of pre-
dictability, particularly over the continents. Observa-
tional analyses (Vinnikov and Yeserkepova 1991; Entin
et al. 2000) show that in most places soil moisture
anomalies have time scales of persistence that exceed a
month, and climate system models typically capture
these time scales successfully (Seneviratne et al., 2006).
Some statistical studies (e.g., Huang et al., 1996) show a
connection between soil moisture and subsequent tem-
perature, even at leads beyond a month. Some model-
ing studies suggest that, for midlatitude continental re-
gions during summer, the contribution of land initial-
ization (and atmospheric initialization, to the extent
that it contributes to the evolution of soil moisture in
the first week or so of the forecast) to subseasonal pre-
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cipitation and air temperature prediction skill should
strongly outweigh that of ocean initialization (Koster
and Suarez 1995; Koster et al. 2000). Indeed, a number
of modeling studies have examined the impact of soil
moisture on precipitation (e.g., Delworth and Manabe
1988, 1989; Atlas et al. 1993; Hong and Kalnay 2000;
Dirmeyer 2000, 2001; Douville et al. 2001; Koster et al.
2006; Guo et al. 2006; among others). These studies
generally show that the impact is strong—simulated
precipitation does tend to respond in a predictable way
to variations in soil moisture.

True initialization studies, however, in which forecast
simulations are initialized with realistic land moisture
states and the resulting precipitation forecasts are com-
pared to observations, are few and far between. Those
that exist (e.g., Beljaars et al. 1996; Fennessy and
Shukla 1999; Douville and Chauvin 2000, Viterbo and
Betts 1999) find some cause for encouragement—
suggestions that the initialization does improve the
simulation of precipitation and/or temperature. Koster
et al. (2004, hereinafter K04) provide perhaps the first
precipitation forecast study that both utilizes realistic
soil moisture initial conditions and examines enough
independent forecasts (75 in all) to tease out a statisti-
cal characterization of soil moisture impacts on precipi-
tation forecast skill. The results, some of which are
shown in section 5 below, show a small but statistically
significant contribution of land initialization to forecast
skill in the center of the United States, the only large-
scale region on the globe in which the model’s inherent
potential predictability is relatively large (see section 2
below) and precipitation measurements are adequately
dense.

The skill levels quantified by K04 fall far below po-
tential predictability levels. Possible reasons for the
modest skill levels include the following: 1) the model
has errors in its representation of physical processes; 2)
the data used to initialize the model and validate its
performance have errors; and 3) the size of the forecast
ensemble (nine members) is insufficient to average out
all of the background noise in the signal. One obvious
way to increase the skill levels is to redo the forecast
experiment after significantly improving the model and
the quality of the input datasets. Such improvements
are a continuing goal at modeling and data centers.

It may be possible, however, to apply statistical tech-
niques to increase the skill levels now, without waiting
for model and data improvements. We examine this
possibility in the present paper. A simple statistical ap-
proach is applied that corrects for known biases in the
forecast model’s climatological statistics (particularly in
the spatial correlation structures of the forecasted vari-
ables), leading to improvements in its levels of forecast

skill. The approach should be transferrable to any fore-
cast system.

We begin in sections 2 and 3 with a discussion of
potential predictability and the spatial correlation
structures seen in models and observations. In section 4
we then describe a simple statistical approach that uses
both of these pieces of information to improve skill. In
section 5, we use the approach to transform the fore-
casts of K04, and we quantify the improvement in the
skill of the forecasts. A mathematically formal descrip-
tion of the approach is provided in the appendix.

2. Potential predictability: An example

In this paper, we define “potential predictability” as
the contribution of the land surface and/or sea surface
initialization to the “signal” contained in an ensemble
forecast. That is, it represents the degree to which the
precipitation and air temperature anomalies produced
by the different ensemble members of a forecast are
similar because of the land and/or ocean initialization,
even in the face of disparate atmospheric initialization
(representing, in an extreme way, internal atmospheric
noise, or “chaos”). The potential predictability is an
inherent property of a given forecast model. Here we
describe an example of its calculation, using results
from an existing forecast experiment.

a. Forecast system

The forecast experiments performed by K04 utilized
the atmosphere and land components of the seasonal
prediction system of the former National Aeronautics
and Space Administration (NASA) Seasonal-to-
Interannual Prediction Project (NSIPP), which is now a
part of the NASA Global Modeling and Assimilation
Office (GMAO). The atmospheric general circulation
model (AGCM) is a state-of-the-art, finite-difference
model run at 2° latitude � 2.5° longitude resolution. It
uses the relaxed Arakawa–Schubert scheme (Moorthi
and Suarez 1992) for convection, sophisticated codes
for shortwave and longwave radiation (Chou and
Suarez 1994), and fourth-order advection of vorticity
and all scalars in the modeled dynamics. The Mosaic
land surface model (LSM) of Koster and Suarez (1996)
is used, which is a soil–vegetation–atmosphere transfer
(SVAT) model that uses tiling to account for subgrid
vegetation distributions. The behavior of the coupled
land–atmosphere system relative to observations is well
documented (Bacmeister et al. 2000; Koster et al. 2000).
Although the model is far from perfect, it does success-
fully reproduce the broad features of observed precipi-
tation statistics across the globe.
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b. Forecast experiment

The K04 experiment consisted of two series of
1-month ensemble forecasts. A brief description of
these two series is provided here; the reader is referred
to K04 for a full description. Each series employed 75
forecast start dates—5 start dates (the first days of May,
June, July, August, and September) for each year in the
1979–93 period. Each 1-month forecast utilized nine
ensemble members. The forecast variables examined
were precipitation and near-surface air temperature.

Series 1 [“Atmospheric Model Intercomparison
Project (AMIP) mode”] served as the control. Sea sur-
face temperatures (SSTs) were prescribed throughout
the forecast period to observed, time-varying states,
taken from Rayner et al. (1996) for 1979–82 and Reyn-
olds and Smith (1994) for 1983–93. Land states and
atmospheric states were not initialized to realistic val-
ues; instead, the initial states were taken from values
generated for the start date in question by parallel
AMIP-style (Gates 1992) simulations, that is, long-term
atmospheric simulations with SSTs prescribed to obser-
vations. The land and atmosphere initial conditions
were therefore not similar between the nine ensemble
members, though any given set was consistent with the
given year’s SST distribution. [Note that the AMIP
mode simulations are described here in terms of initial-
ized forecasts to contrast them with the Land Data As-
similation System (LDAS) mode forecasts discussed
next. In actuality, the AMIP mode forecasts are simply
subsets of existing long-term AMIP integrations.]

Series 2 (“LDAS mode”) focused on land initializa-
tion. To generate realistic land states for the initializa-
tion of the forecasts, the land model in the forecast
system was driven offline with realistic meteorological
forcing for the 15-yr period, as provided by Berg et al.
(2003) and processed through the Global Land Data
Assimilation System (GLDAS; Rodell et al. 2004).
Land states were scaled for consistency with the fore-
cast system’s climatology (see K04). All other aspects
of the LDAS mode simulations were identical to those
of the AMIP mode simulations. (Note that the resulting
inconsistency between the land and atmospheric initial
conditions may have resulted in a “shock” at the be-
ginning of the LDAS forecasts, a problem that could
only hinder forecast skill levels.) In short, the LDAS
mode forecasts differed from the AMIP forecasts only
in their use of a realistic initialization of land surface
states.

Neither the LDAS nor AMIP series can rigorously
be called a true forecast experiment, because for both
series observed SSTs were prescribed throughout the
forecast period. The strategy employed by K04 was to

isolate the impacts of land initialization through a com-
parison of the LDAS and AMIP experiments; if fore-
cast skill was higher for the LDAS than AMIP series,
then the skill increase could be attributed to the land
initialization, because, again, that was the only differ-
ence between the two series. Even so, given that SSTs
typically persist over time scales much greater than a
month, the AMIP series can give a first-order indica-
tion of how predicted SSTs affect 1-month forecasts,
and thus the true potential predictability associated
with ocean initialization.

c. Quantification of potential predictability

A measure of a model’s potential predictability can
be derived from an extensive series of independent en-
semble forecasts. Various approaches for quantifying
predictability can be found in the literature (e.g.,
Zwiers 1996). The approach used here is fairly simple.
One ensemble member in each forecast is assumed as
“nature” and the average of the remaining ensemble
members make up the “forecast.” The square of the
correlation coefficient (r2) between the multiple inde-
pendent nature–forecast pairs is then determined. The
process is repeated several times, each time using a
different ensemble member as nature. The resulting av-
erage r2 is the desired measure of potential predictabil-
ity; given the construct of the K04 experiment, it mea-
sures the degree to which the model’s weather is con-
trolled by the prescribed SSTs and the land surface
initialization (for the LDAS forecasts) rather than by
noise associated with variations in the atmosphere’s ini-
tial conditions.

Such an analysis was used by K04 to determine the
potential predictability for boreal warm season months
(May through September) using the 15-yr forecast ex-
periment described in section 2b. Results are shown in
Fig. 1. We focus on the North American region in this
paper because, as explained by K04, it is the only large-
scale region that is both rich in data and home (in this
model) to a significant area of potential precipitation
predictability.

Results are shown for two meteorological variables—
precipitation and near-surface air temperature—and
for two combinations of boundary conditions. The pan-
els on the left were derived from the AMIP forecasts;
they show the potential predictability that stems from
knowledge of the SST boundary. Those on the right
show results from the LDAS forecasts, that is, the pre-
dictability stemming from knowledge of both SSTs and
land surface initial conditions. The land initialization
leads to a significant increase in potential predictability,
particularly in the center of the continent, where the r2

increases to more than 0.2 for precipitation and more
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than 0.3 for air temperature. In this forecast system,
knowledge of the land state at the start of the forecast
can potentially lead to important increases in forecast
skill, beyond that which can be obtained from knowl-
edge of SSTs alone. Note, however, that even with both
SST prescription and land surface initialization, the po-
tential predictability of precipitation, and even that of
temperature, is either negligible or modest in many
parts of the continent.

3. Spatial correlation structures in models and
observations

The second piece of information used in the pro-
posed approach for transforming forecasts is the spatial
correlation structure inherent in observed meteorologi-
cal fields. In this section, we illustrate the errors that
can occur in the simulation of these spatial structures.
For the model-based spatial correlations examined
here, we analyzed 612 values of monthly (June) pre-

cipitation and near-surface air temperature collected
from nine parallel AMIP-style simulations with the
model described in section 2a. The contributing simu-
lations covered (roughly) the latter two-thirds of the
twentieth century.

Although the observational spatial correlations were
based on a much smaller dataset, the sample sizes were
still large enough to capture the first-order structure of
the fields. For precipitation, we used the multidecadal
(1948–97) daily precipitation reanalysis of Higgins et al.
(2000). The input data for the reanalysis was a Unified
Raingauge Database (URD) for the United States,
which consists of daily rain gauge reports from multiple
sources in the United States, including the River Fore-
cast Centers (about 7000 sites per day), the National
Climatic Data Center (NCDC) daily cooperative net-
work (about 6000 sites per day), and the NCDC Hourly
Precipitation Network (about 2500 sites per day; aggre-
gated into daily accumulations). Several quality control
tests were applied to the daily gauge data (Higgins et al.

FIG. 1. (a) Potential predictability (r 2 from idealized analysis) of 1-month precipitation
totals when SSTs are prescribed. (b) Same as (a), but when SSTs are prescribed and all
ensemble members use the same land initialization. (c) Same as (a), but for air temperature.
(d) Same as (b), but for air temperature. The dark lines indicate regions for which the
potential predictability exceeds 0.25. All values above 0.052 are significantly different from
zero at the 95% level; those above 0.086 are significant at the 99% level.
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2000). The daily precipitation data were gridded at a
horizontal resolution of 1⁄4° latitude � 1⁄4° longitude
over the domain 20°–60°N, 140°–60°W using a Cress-
man (1959) scheme with modifications (Glahn et al.
1985; Charba et al. 1992). For the present analysis, to
maintain consistency with the AGCM data, the 1⁄4° �
1⁄4° daily dataset was aggregated in space and time into
a 2° � 21⁄2° monthly dataset.

For near-surface air temperature, we use a gridded
version (M. Fennessy 2005, personal communication)
of the Climate Anomaly Monitoring System (CAMS)
temperature dataset maintained by the Climate Predic-
tion Center of the National Centers for Environmental
Prediction. The dataset, constructed from station data
(Ropelewski et al. 1985), covers 58 yr (1946–2003) with
full coverage over the continental United States. Be-
cause of some problems with the data during the first 3
yr, we use only the 1949–2003 period for the statistics.

All data were converted to standard normal deviates
(i.e., all precipitation rates and air temperatures were
converted to anomalies relative to their long-term
means and were then normalized by their local stan-
dard deviation) prior to performing any statistical
analysis. The standardization was performed indepen-
dently for simulated and observed data, and it used
(here and throughout this paper) monthly means and
standard deviations rather than annual values, so as to
remove the imprint of the seasonal cycle on the anoma-
lies.

The top three panels of Fig. 2 show, for three repre-
sentative points in North America (both inside and out-
side the region of high potential predictability, from
Fig. 1), the correlations between total June precipita-
tion at the indicated point and total June precipitation
elsewhere on the continent, as simulated by the model.
The second row of panels shows the corresponding cor-
relations as derived from the observations. Notice that
in all cases, the observations show a larger correlation
structure for monthly precipitation anomalies. Stated
another way, the spatial extent of a given monthly
anomaly tends to be larger in the observations. For
example, for the observations, wet or dry conditions in
the central United States tend to coexist with similar
conditions in the west (center panel of Fig. 2b), whereas
in the model, conditions in the central United States are
uncorrelated with conditions elsewhere (center panel of
Fig. 2a). {Sampling error must, of course, be considered
here, particularly for the observations. With the obser-
vational sample size of 50, an underlying zero correla-
tion may give a false correlation of 0.2 or higher with a
probability of 0.08, and may give a false correlation of
0.4 or higher with a probability of 0.002, with the same

probabilities for the corresponding negative correla-
tions. With these probabilities, the orange [0.4] con-
tours in particular indicate that the observations and
the model have fundamentally different underlying cor-
relation patterns.}

The bottom two rows show the corresponding corre-
lations for average June near-surface air temperature.
The observed and modeled correlations look more
similar for air temperature than they do for precipita-
tion, though the simulated spatial length scales for air
temperature appear slightly too large in the western
and eastern United States and somewhat too small in
the center of the continent. The observations also show
a distinct negative correlation between temperature in
the eastern United States and temperature in the north-
west, a feature that is absent in the model.

4. Transformation of GCM forecasts

We now describe a simple statistical approach that
uses observations-based spatial correlations along with
an estimate of the model’s potential predictability to
improve forecast skill for precipitation and near-surface
air temperature.

a. Overview of approach

The shaded contours in Fig. 3 show the correlation
patterns for rainfall in the central United States. (The
map is copied from the middle panel of Fig. 2b.) Over-
laid on the map are heavy lines showing where the
model demonstrates a high degree of potential predict-
ability for rainfall (from Fig. 1b). Notice that the mod-
el’s forecast skill is potentially high at the grid cell hold-
ing the asterisk, but it is much lower at the grid cell
marked by the white circle, which lies outside the heavy
lines. The figure suggests the potential for improving a
forecast: if precipitation is known at the asterisk, then
according to the observed correlations, it is known (to
some degree) at the white circle. By using the observed
spatial correlation structure, we may be able to “trans-
late” the forecast at the asterisk spatially to a forecast at
the white circle, regardless of the model’s inherent skill
level at the latter location. We may be able to compen-
sate, to a degree, for errors in the model’s simulated
spatial correlation structure.

Described mathematically (and more generally, i.e.,
not constrained to only a single cell contributing fore-
cast information), we can produce a transformed fore-
cast vector x̃ (of length N) from a set of “predictor
forecasts” x (also of length N):

x̃ � Ax, �1�
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where A is an N � N transformation matrix and x is a
vector holding the original set of model forecasts in the
region considered. Statistically optimal approaches for
determining A include the reprocessing of data gener-
ated in a forecast experiment (such as that of K04);
taking xobs to be the vector of observed precipitation
rates, we could compute

A � �xobsx
T��xxT��1, �2�

where the “� �” symbols denote time averages and T
denotes the vector or matrix transpose. In essence,
�xobsx

T� is the cross-correlation matrix between model
predictions and observations, and �xxT� is the spatial cor-
relation matrix of the model forecasts. Unfortunately,

FIG. 2. (a) Correlations between monthly June rainfall in three representative points (marked with
asterisks) in North America and that elsewhere on the continent, as derived from 600� yr of AGCM
simulation data. (b) As in (a), but based on 50 yr of observational data. (c) Correlations between June
surface air temperature in three representative points (marked with asterisks) in North America and that
elsewhere on the continent, as derived from 600� yr of AGCM simulation data. (d) As in (c), but based
on 55 yr of observational data.
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while in theory (2) is an optimal fit (in a least squares
sense) to the training observations, in practice it comes
with a cost: it requires an extensive “training period” of
forecasts, that is, a large enough sample space for com-
puting accurate values for the elements of �xobsx

T�. The
results of an extensive analysis, not presented here, re-
veals that the 15-yr forecast experiment of K04 (e.g.) is
inadequate for an effective determination of �xobsx

T�,
apparently because the signals we seek are too subtle.

We therefore design an alternative approach for gen-
erating A, an approach that does not require an exten-
sive forecast training period. The alternative approach
instead relies on auxiliary information characterizing
model behavior and observations. It recognizes that for
a forecast at grid cell m to improve the forecast of a
quantity at a remote cell n, the following two conditions
must be met: (a) the model must have some predict-
ability for the quantity at cell m, and (b) in the obser-
vations, the quantity at cell m must be correlated with
that at cell n. The approach thus relies solely on two
important and (relatively) robustly determined charac-
teristics of the model and nature—the potential predict-
ability of the model (as plotted in Fig. 1) and the spatial
correlation structure of the observations (as described
in section 3). The observed spatial correlation structure
is accurately estimated from multidecadal datasets
(50� yr), as in Fig. 2. The potential predictability, an
internal model characteristic, is far more robustly de-
termined from the 15-yr forecast experiment than the
term �xobsx

T� in (2), particularly when the predictability
is low. Note that while in this paper we use the forecast
experiment to establish the potential predictability, it
could just as easily be derived from idealized model

prediction experiments that do not use an observations-
based initialization. These idealized experiments would
instead initialize a series of forecasts with states pro-
duced by the modeling system in free-running climate
mode, a much cheaper and easier way of generating
initial states than relying on an observations-based
analysis system. In other words, with the approach de-
scribed here, we could in principle generate the matrix
A prior to performing a single forecast experiment uti-
lizing observations.

In the simpler context of Fig. 3, we know that a pre-
diction at the asterisk may have some correlation to the
observed truth at the white circle, and that with a long
enough training period, we could get at that correlation
through (2). Here, we are instead attempting to esti-
mate a serviceable version of A through two more eas-
ily (and more cheaply) obtained relationships: that de-
scribing the model’s predictability at the asterisk (a
surrogate for the relationship between the model pre-
diction and the observational truth at the asterisk) and
that between the observational truth at the asterisk and
the observational truth at the white circle. Given the
high cost of training a forecast system, and the potential
difficulty in generating the multidecadal observational
data needed to perform the training in the first place,
the alternative approach, if it works, has a distinct ad-
vantage over the direct application of (2).

b. Details of approach

For a given region of interest (such as the continental
United States), N is set to the total number of grid cells
in the region. To generate the N � N matrix A, we
perform the following algorithm at each target (pre-
dictand) grid cell n independently [If cell n corresponds
to the nth element of vector x̃ in (1), then the algorithm
computes the nth row of A.]:

(a) The k “predictor grid cells” for target cell n (i.e.,
the k elements that have nonzero values in the nth
row of A) are identified.

(b) Multiple regression is performed on the observa-
tional dataset to determine how observed precipi-
tation data (not forecasts) in the k predictor cells,
suitably degraded with noise based on the forecast
model’s internal predictability, can best be used to
forecast the observed precipitation in the target cell
n. The regression coefficients produced in this ex-
ercise provide a potential nth row of the matrix A.

(c) Steps a and b are repeated for different trial values
of k. Each k value produces a different potential
nth row of A. The k value that best allows the ob-
servations to reproduce themselves at cell n deter-
mines which of the potential rows is chosen.

FIG. 3. Correlations between monthly June rainfall in the cen-
tral United States (marked with an asterisk) and that elsewhere
on the continent, from observations. Overlaid on the plot are
black lines showing the area of high potential predictability for
precipitation (r 2 	 0.25) in the model.
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These steps are now described in more detail. Dis-
cussion focuses on precipitation, but the same approach
can be applied to other meteorological fields, such as
near-surface air temperature.

1) IDENTIFICATION OF PREDICTOR CELLS

The first step of the approach is simple—for each
target grid cell n, we identify the k grid cells (m � 1,
2, . . . , k) for which the product of r 2

pot(Pm) and
Corr2(Pm, Pn) is largest. Here, r2

pot(Pm) is the potential
predictability of the model for precipitation at grid cell
m (as in Fig. 1, but for the specific month considered),
and Corr2(Pm, Pn) is the square of the correlation, from
the observations, between precipitation at cells m and n
(e.g., from Fig. 2 for June) for the month in question.
This selection criterion recognizes the fact that a cell m
will be a useful contributor to a prediction at cell n only
if the following two conditions are satisfied: (i) the
model shows some predictability for precipitation at m
(as represented by the first factor), and (ii) the obser-
vations show that precipitation is correlated at the two
locations (as represented by the second factor). To il-
lustrate, Fig. 4 shows, for four different values of k, the
identified predictor cells for precipitation forecasts at a
specific grid cell in the central United States. In each
case, the target cell itself is one of the predictor cells;
the subsequent regression analysis (see next section) is
made nontrivial by the addition of noise to the data at
this cell. To some extent, the robustness of the idealized

predictability and observed correlation estimates implies
some robustness for the selection of contributor cells.

2) MULTIPLE REGRESSION ANALYSIS

The ability of a set of k predictor cells (m � 1, 2, . . . ,
k) to contribute to a forecast at target cell n is estab-
lished through multiple regression analysis on the ob-
servational data (not the forecasts). To explain how this
is done, we first describe a simple but inadequate ap-
proach. A given year t of the T years of observational
record is chosen as the “target year.” Multiple regres-
sion is then performed on the T � 1 remaining years of
observations (i.e., not using the data for year t); the T �
1 observed precipitation values for the target grid cell n
are regressed against the T � 1 sets of k observed val-
ues at the predictor cells to produce a set of k regres-
sion coefficients. Using these coefficients in a predictor
equation, we can then “predict” the precipitation at n in
year t from the observed precipitation values at cells m
(m � 1, 2, . . . , k) in year t. We can then repeat the
process T times, taking each year in sequence as the
target year. This produces T “predictions” of the pre-
cipitation at cell n, which can be directly compared with
the T actual (observed) precipitations at n. A linear
regression of the predictions against the actual values
gives a measure of predictive skill using this approach.
The k coefficients from the multiple regression would
be the nonzero elements of the matrix A for the given
tested year.

FIG. 4. Predictor grid cells for the grid cell indicated by the heavy black circle, for four
different values of k.
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The flaw in this strategy is that in a forecast environ-
ment, the precipitation values at the k predictor cells in
year t will themselves be inaccurate, largely because
forecasted precipitation rates are subject to chaotic
noise. Indeed, this issue underlies the potential predict-
ability map shown in Fig. 1. By design, the potential
predictability (the model’s predictive skill under the as-
sumption of perfect model physics and perfect data) is
less than one solely due to chaotic dynamics in the mod-
eling system. Consider two predictor cells that show the
same observed correlation with target cell n. If the po-
tential predictability in the model at the first predictor
cell is smaller than that at the second, we want the first
cell to contribute correspondingly less to the trans-
formed forecast at n. The approach outlined above
does not allow this.

Thus, rather than regressing the T � 1 precipitation
values for the target grid cell n against the T � 1 sets of
k values at the predictor cells, we instead regress them
against “degraded” versions of the k values. The deg-
radation is keyed to the potential predictability in the
model—the lower the r2

pot(Pm) value at a predictor cell
is, the more the observational values there are de-
graded, and thus the less likely they are to contribute to
the predictor equation. The degradation is performed
as follows:

Pm,degraded�t� � rpot�Pm�Pm�t� � 
1 � rpot
2 �Pm��1�2��t�,

�3�

where �(t) is a random variable with zero mean and unit
variance at the given predictor cell. Because the meteo-
rological variables we consider here are already con-
verted to standard normal deviates, the coefficients uti-
lized in (3) ensure that the degraded time series also has
zero mean and unit variance.

The multiple regression on the degraded dataset pro-
vides a set of k regression coefficients that constitute
the nonzero elements of the nth row of matrix A for the
given tested year. A technical note: to extract the true
inherent signal in the data in the face of the noise added
through (3), the multiple regression is actually per-
formed on a greatly extended set of time series. First,
the original T � 1 precipitation values at the target cell
n are replicated 50 times, and the 50 time series are
concatenated into a single time series of 50(T � 1)
elements. Then, the k time series (one for each predic-
tor cell) of T � 1 degraded values are constructed 50
separate times, using different sets of random numbers
each time; these time series are concatenated into k
time series of 50(T � 1) values. The time series of
50(T � 1) values at the target cell are regressed on the
k time series of 50(T � 1) values at the predictor cells.

3) OPTIMIZING THE NUMBER OF CONTRIBUTOR

CELLS

We still must determine how many contributor cells
should contribute to a transformed forecast. We allow k
to vary as a function of month and location. In essence,
then, we construct five different A matrices (one for
each month from May to August), and the rows of a
given matrix have different numbers of nonzero ele-
ments, corresponding to different values of k for differ-
ent locations.

To choose k for a given location (target cell n), we
proceed as follows. First, for each trial k, we choose
contributor cells (step a) and perform the aforemen-
tioned multiple regression (step b). We then apply the
resulting regression coefficients to the observations
themselves (rather than to model forecasts) after de-
grading the observations with (3). In essence, for a set
of regression coefficients derived from observational
data spanning every year but year t, we determine the
ability of these coefficients to reproduce the observa-
tional data value at cell n in year t. The k that produces
the best estimates of the observations there (as mea-
sured with the r2 skill score, computed over the length
of the observational record) is assumed to be the “op-
timal” k for grid cell n. The nth row of the A matrix will
have that number of nonzero elements.

At first glance, it may seem surprising that the opti-
mal k can be less than the maximum k attempted. Re-
call, however, that we are performing the regression on
the years outside the year being tested. A k that is too
large will pin the regression coefficients to noise in the
T � 1 year that is irrelevant to what is happening in
year t, hindering the success of the regression in year t.
In practice, we have found that examining k values
from 1 to 30 is sufficient; the selected value of k is
generally less than 30, and the computationally de-
manding exercise of examining k values higher than 30
does not add or detract from the results.

c. Additional remarks

The above approach may appear ad hoc but is nev-
ertheless built on the following two reasonable assump-
tions: (i) a model forecast at a location with strong
potential predictability (in the model) can contribute to
a forecast at a remote location with weak potential pre-
dictability if the observations show a significant corre-
lation between the forecasted fields at the two loca-
tions, and (ii) the contribution of the forecast to the
remote location can be determined through statistical
analysis of the observational record, suitably degraded
to reflect the impact of noise on a forecast. The first
assumption, in particular, recognizes the presence of
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strong model errors (relative to observations) in the
simulation of the statistical structures of meteorological
fields (Fig. 2).

In essence, our approach assumes that some predict-
ability exists in nature both at the circle and at the
asterisk in Fig. 3, but that the forecast system, because
of various biases (e.g., excessive atmospheric noise),
misses the predictability at the circle. The approach
effectively uses the observed correlations to correct this
assumed deficiency. Of course, the model may also be
wrong about the predictability at the asterisk, and, if so,
using the predictability there to transform a signal
could cause problems. Still, the raw, untransformed
model forecasts are every bit as limited by biases in
model predictability; predictability biases help define
the limitations of a forecast model, and they are a prob-
lem whether the forecast is transformed or not. Our
approach effectively relies on the implicit assumption
that the predictability in the model, where it does exist,
has some connection to reality. The validity of this as-
sumption will be demonstrated if the approach does
indeed increase forecast skill (see section 5).

For the interested reader, a mathematically formal
discussion of the approach, with the underlying statis-
tical assumptions clearly outlined, is provided in the
appendix. The appendix shows that the only truly ad
hoc feature of the approach is the use of the product of
r2

pot(Pm) and Corr2(Pm, Pn) to determine the contribu-
tor cells, and, again, this feature of the approach is built
on reasonable assumptions regarding which cells should
indeed be able to contribute to the revised forecast.

The potential predictability of a model [r 2
pot(Pm)]

can, in principle, be determined with idealized forecast
experiments that do not rely on real-world initialization
and verification data, using instead, for example, snap-
shots of model conditions from a free-running model
experiment as initial conditions. As a result, the con-
struction of the transformation matrix A does not rely
on the traditional “training” of a system through joint
analysis of real forecasts with verification data. The
multiple regressions underlying A require only the
long-term observational record and the r2

pot(Pm) esti-
mates. In other words, the transformation matrix A can
be constructed prior to performing any real forecast
with the system, a distinct advantage to the approach,
given the difficulty of producing long records of realis-
tic initialization and verification data for the training
exercise.

We note the possibility that alternative methods
(e.g., based on canonical correlation analysis) could im-
prove the construction of the transformation matrix A
even further using information on idealized predictabil-
ity and observed correlations. Such developments are

left for future study. In any case, the effectiveness of the
approach as presented here will be established in the
next section through improvements in the model fore-
casts. We consider our tests to be fair because the A
matrices used to transform a forecast in a given year are
derived solely from information outside that year.

5. Application to a forecast experiment

Figures 5a,b show the original (untransformed) skill
of the forecast model in predicting monthly precipita-
tion under AMIP and LDAS modes, as documented by
K04. Skill in this analysis is shown here as the correla-
tion coefficient between the model forecast and the ob-
servations. (More advanced measures of skill, such as
the Brier skill score, were avoided given the limited
sample size in our study. Future work will address al-
ternative skill assessments, including those that look at
the variance and structure of the forecasted variables,
rather than at just their means.) Again, the forecasts of
K04 did not make use of realistic atmospheric initial-
ization—all skill was derived from either the prescribed
SST boundary condition (under AMIP mode) or the
combination of the prescribed SSTs and the initializa-
tion of the land states (under LDAS mode). The LDAS
skill levels are significantly larger than the AMIP skill
levels, particularly where the model has strong poten-
tial predictability (Fig. 1). (Differences of 0.27 and 0.38
between the LDAS and AMIP skill levels are signifi-
cant at the 95% and 99% confidence levels, respectively.)

We emphasize again that our tests of the forecast
transformation approach involve careful cross valida-
tion. In generating a transformed forecast for a given
month of year t, we use only information outside that
year to standardize the data, compute the observations-
based correlations, compute the model’s idealized pre-
dictability, establish the contributor cells, and perform
the multiple regressions that establish the A transfor-
mation matrix. In effect, for the tests below, the A ma-
trix differs for each tested month of each tested year.

Figures 5c,d show the skill levels for the transformed
precipitation forecasts, that is, the forecasts obtained
through the use of (1), with A computed as described in
section 4. While the skill levels remain modest, both
modes of the forecast, especially the LDAS mode, show
significant skill increases. The improvement is high-
lighted in the histogram plot in Fig. 5e. In LDAS mode,
the average precipitation forecast skill across the con-
tinental United States has increased by over 60%.

Figure 6 shows the corresponding results for air tem-
perature. Again, for both AMIP and LDAS modes,
using (1) to transform the forecasts improves the skill of
the forecasts almost everywhere. As seen in the histo-
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gram, skill in the AMIP mode has increased by about
35%, while that in the LDAS mode (which started off
being much higher than that in AMIP mode) has in-
creased by about 15%.

Note that the standardized ensemble mean forecasts
and the standardized transformed forecasts of a quan-
tity X (precipitation or air temperature) can be rebuilt
into absolute predictions of X using the observed mean
value (Xobs) and observed standard deviation (X,obs):

Xfcst,abs � Xfcst,standardized�X,obs � Xobs. �4�

When this is done, the resulting root-mean-square er-
rors (RMSEs, not shown) relative to observations are,
as expected from the correlation results, generally
smaller for the transformed forecasts.

The plots in Figs. 5 and 6 are a fair test of the effec-
tiveness of the forecast transformation procedure itself,
because the transformation matrices used for a given
year were not calibrated with observational data from
that year. As mentioned before, though, the skill levels
shown are not for “rigorously proper” forecasts, be-
cause the SST fields used for both the AMIP and

FIG. 5. (a) Forecast skill (measured as the correlation coefficient between model forecasts
and observations) for precipitation in AMIP mode, that is, given prescribed SSTs. (b) As in
(a), but in the LDAS mode, that is, given prescribed SSTs and a realistic initialization of land
surface states. (c) Forecast skill in AMIP mode when the forecasts are transformed with the
matrix A. (d) As in (c), but for forecast skill in LDAS mode. (e) Averages of the skill levels
over the continental United States. For (a)–(d), values of 0.15, 0.19, 0.27, and 0.35 are statis-
tically different from zero at the 90%, 95%, 99%, and 99.9% levels, respectively.
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LDAS modes were prescribed to observations rather
than predicted. Again, because these are 1-month fore-
casts and SSTs have much longer autocorrelation time
scales, corresponding plots obtained with a system us-
ing a full ocean model or persisted SST anomalies
would presumably be very similar. In any case, the
strategy behind the K04 study was to isolate the in-
crease in forecast skill associated with land moisture
initialization by subtracting the skill obtained through
the AMIP mode from that obtained through the LDAS
mode. In this way the impact of the SSTs used in the
forecasts, in particular, whether they are prescribed or
predicted, becomes less important.

A similar strategy can be employed here. Figure 7
shows the difference between the skill obtained under
the AMIP mode from that obtained under the LDAS

mode, for both the original forecasts and for the fore-
casts transformed with (1). Here, the skill for each
mode is represented as the square of the correlation
coefficient prior to the subtraction; in this way we quan-
tify the degree to which the land initialization “ex-
plains” the observed variance. Results for the original
forecasts are essentially those shown in K04, though
with contour levels reflecting a slightly improved esti-
mation of significance levels.

For precipitation, the “benefit” of land moisture ini-
tialization to a forecast, as measured by the plotted
difference in forecast skill, is larger for the transformed
forecasts. In other words, by this measure, K04 under-
estimated the positive impact of land moisture initial-
ization on a forecast. For air temperature, however, the
apparent benefit of land moisture initialization is

FIG. 6. As in Fig. 5, but for near-surface air temperature.
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roughly the same for the transformed forecasts as it was
for the original forecasts. For air temperature, a reduc-
tion in benefit is seen in parts of the southern United
States, while the northwestern part of the country sees
some increase in benefit.

Regardless of whether or not the land initialization
benefit appears to increase, we can conclude two things.
First, realistic soil moisture initialization does increase
skill, both for the original and for the transformed fore-
casts. Second, the transformation of the forecasts
through (1) increases skill for both the AMIP and
LDAS modes. In other words, the greatest total skill,
for both precipitation and air temperature prediction,
stems from the use of both land initialization and fore-
cast transformation (Figs. 5e and 6e).

6. Summary

We propose an approach for jointly utilizing two dis-
parate pieces of information—the statistical structure

of observed meteorological fields and the potential pre-
dictability within a forecast system—to develop a trans-
formation matrix that improves the subseasonal fore-
casts generated by the system. In essence, the approach
is based on the idea that a forecast can be spatially
“translated” from a location where the model has pre-
dictive skill to a location where it does not, provided
that the observations show the two locations are linked.
(The linkage may be absent in the forecast system be-
cause of biases in the modeled climate.) The statistical
structure of the observations can be robustly deter-
mined from existing multidecadal datasets. The poten-
tial predictability, an inherent property of a given
model, can be established through actual or idealized
prediction experiments. By using idealized prediction
experiments, in which soil moistures are initialized to
specific, model-consistent values that may have no con-
nection to observations, the transformation matrix can
be derived before any true forecast is attempted with
the system, which is an advantage if “training” a trans-

FIG. 7. Forecast skill (expressed for this figure as the square of the correlation coefficient
between the forecasts and observations) in the LDAS mode minus that in the AMIP mode,
a measure of the contribution of land state initialization to forecast skill. Results are shown for
(right) precipitation and (left) near-surface air temperature; (top) the results for the original
K04 study and (bottom) the corresponding results for the transformed forecasts are shown.
Differences of 0.029, 0.043, and 0.082 are statistically different from zero at the 90%, 95%, and
99% levels, respectively.
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formation matrix through extensive forecast experi-
ments is difficult due to computational constraints or
observational data limitations.

The effectiveness of the approach is tested by deriv-
ing the transformation matrices for the forecast system
utilized by K04 and then applying them to the subsea-
sonal (1 month) forecasts analyzed in that study. The
increases in skill obtained through the transformation
are modest but significant. On average, across the
United States, the transformation matrix increases the
subseasonal forecast skill stemming from SST prescrip-
tion and land initialization by about 60% for precipita-
tion and by about 15% for near-surface air tempera-
ture.

Skillful subseasonal (and seasonal to interannual)
forecasts have obvious societal benefits. As models,
data collection, and data assimilation strategies im-
prove, the forecasts should also improve. Each incre-
ment of forecast system improvement, particularly
those increments unrelated to the spatial statistical
structures of simulated meteorological fields, perhaps
can be enhanced further through the application of the
transformation strategy outlined in this paper.
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APPENDIX

Transformation Approach: Mathematical Basis

The approach to improving subseasonal forecasts de-
scribed above can be put into a more conventional sta-
tistical context if we formulate it as a problem in devis-
ing a statistical model that can help us find an optimal
choice for A in (1), based on the combined database of
observations, the forecast model runs, and the predict-
ability study results. The statistical model should be as
consistent as possible with what we know, but we are
limited in how flexible we can make the model because
of the finite amount of data available to us for estab-
lishing model parameters.

To simplify notation, we shall use � here to denote
what is notated as xobs in the main text. In other words,
� is the “true,” observed state of the atmosphere when
x is the ensemble mean forecast. Equation (1) is then
written

� � Ax � �, �A1�

where we have made the prediction error � relative to
the hoped-for improved forecast Ax explicit. The vec-
tors �, x, and � are of length N. As in the main text, the
components of the vectors � and x are standardized,
�x2

m� � ��2
m� � 1, and �xm� � ��m� � 0.

If we assume that the prediction errors are approxi-
mately normally distributed, then the optimal choice
for A is the standard linear regression result

A � ��xT��xxT��1, �A2�

which is just (2) in the new notation, where T indicates
matrix transpose. Because we lack a sufficient number
of pairs of observations and forecasts {�, x} from the
forecast runs, however, the inverse covariance matrix
�xxT��1 would be singular if we used only these data to
estimate it. We therefore try to obtain an estimate of
(A2) by bringing in the predictability studies and ob-
servational data in our database.

The matrix A in (A2) could be determined if we
knew the joint probability distribution P(�, x). The ap-
proach described here produces a model for the distri-
bution. To show that the approach creates a statistically
consistent description of P(�, x), it is helpful to decom-
pose it into the product of two distributions using
Bayes’s theorem:

P��, x� � P�x |��P���. �A3�

The conditional probability P(x |�) is the probability
that the forecast is x when the actual state of the atmo-
sphere is �. (Forecasts vary unpredictably depending on
details of the initialization and boundary conditions.)
The probability distribution P(�) on the right of (A3)
describes the distribution of possible states of the at-
mosphere, of which the observational data provide a
sample. Looking ahead, the methods we describe next
produce a model for P(x |�) that is entirely based on the
model predictability studies, while P(�) is based en-
tirely on observational data. The joint distribution P(x,
�) is thus a realizable distribution for � and x.

We try to construct a statistical model for P(x |�),
keeping in mind the limitations of our datasets. We
therefore attempt to represent the statistics of x by a
simple linear model

x � R� � �, �A4�

which estimates what the forecast would be knowing
the actual state of the atmosphere �, where � is the
unpredictable error in this estimate of x. Note that this
model is the reverse of (A1) and should be viewed as a
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best effort at representing the statistics of x given �, in
the “least squares” sense, whereas (A1) is a best effort
at representing the statistics of � given x, also in the
least squares sense.

We could in principle find an optimal matrix R in
(A4) from the forecast runs, but, again, the actual num-
ber of runs available is insufficient for this. It is here
that we bring in what we have learned from the pre-
dictability studies. Recall that the predictability studies
employ ensembles of multiple runs where each member
of the ensemble is successively treated as the actual
state of the atmosphere, which we can denote as �mod,
and the remainder are used to make the ensemble
mean forecast x. We estimate R and ���T� for (A4) by
replacing � with �mod and using the predictability study
runs as data. The standard linear regression estimate of
R is then

R � �x�mod
T ���mod�mod

T ��1, �A5�

where the angular brackets indicate an average over the
ensemble runs and choices �mod. In replacing � with
�mod in estimating R, we are in effect making the as-
sumption that the model’s potential predictability pro-
vides a useful approximation to R, which in reality
should be calculated from the model’s error in predict-
ing the true atmosphere’s behavior. The covariance sta-
tistics of � are given by

�� � ���T� � ��x � R�mod��x � R�mod�T�

� �xxT� � R��mod� mod
T �RT, �A6�

using (A5). We have thus used the predictability study
part of our database to specify the parameters in the
linear model (A4).

With the parameters R and �� of the linear model
(A4) in hand, we could in principle obtain A in (A2)
using (A4) and the covariance of the observational data

�� � ���T�, �A7�

because ��xT� � ��R
T and �xxT� � �� � R��R

T. This
would give us A as

A � ��R
T��� � R��R

T��1. �A8�

Recall that our original problem was that the limited
number of forecast experiments available for estimat-
ing A using (A2) caused the matrix �xxT� to be singular
and the estimate (A2) to be unusable. The estimate of
A given by (A8) might be finite even when our estimate
of �� is singular (because of insufficient observational
data), because of the addition of the symmetric matrix
�� to the “denominator” of (A8). The incorporation of
the predictability study information seems, in effect, to

have stabilized our estimate of (A2) in a manner analo-
gous to singular value decomposition methods for solv-
ing linear equations with an insufficient number of
equations (e.g., Press et al. 1992). Because there are
fewer years of observational data than the number N of
grid points, however, the stability characteristics of
(A8) are unclear to us. We have therefore chosen to
follow a more conservative route to estimating A than
the straightforward evaluation of (A8), and we intro-
duce further simplifying assumptions.

We first reduce the number of parameters in (A4)
considerably by ignoring off-diagonal terms in R and
��, assuming

�R�mm� � rm�mm� and �A9�

����mm� � �m
2 �mm�, �A10�

where �mm� is the Kronecker delta. These assumptions
might eventually be relaxed if more predictability runs
become available, but we feel they are necessary for
now in order to make progress. The variables x and �
are standardized, �x 2

m� � �� 2
m� � 1. Equation (A6)

therefore implies that

�m
2 � 1 � rm

2 . �A11�

The definition of potential predictability introduced in
the main text allows us to identify the diagonal ele-
ments rm and 2

m in (A9) and (A10), using (A5) and
(A11), as

rm � �xm��mod�m� � rpot,m and �A12�

�m
2 � ��m

2 � � 1 � rpot,m
2 . �A13�

The modeling approach described here can be re-
lated directly to the description of the transformation
approach described in section 4. Recall that in the
transformation approach, the observations in a given
year are degraded using (3), and a multiple regression is
performed to determine how the degraded observa-
tions relate to an observation at a target cell. Perform-
ing the multiple regression separately for each target
cell fills out the matrix A. The degradation in (3) cor-
responds exactly to (A4) in the formalism of this ap-
pendix, with R taken to be the diagonal matrix holding
the idealized predictability estimates, as indicated by
(A12), and � being a vector of uncorrelated random
unit normal deviates scaled by the factor (1 � r2

pot,m)1/2,
as indicated by (A13).
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Said another way, (A4) provides a framework for
generating a very large number of artificial “model
forecasts” x that reflect the model’s own inherent pre-
dictability characteristics, and (A4) can be used easily
given the assumptions leading to (A12) and (A13),
which make (A4) equivalent to (3). By concatenating
multiple repeat time series of the observations, as de-
scribed in the main text, we have enough data for a
reliable multiple regression [as in (A2), but cell by cell]
to fill out the matrix A. When combined with the ob-
jective method described in the main text of reducing
the number of grid cells in the predictor equations as
much as possible to minimize the prediction error, the
modeling approach outlined here becomes identical to
the procedure described in the main text.

The multiple regressions on the degraded time series
in section 4 should approach (A8) (with the diagonal
forms of R and ��) in the limit of a very large number
of simulations. The use of (A8) in its more general form
may be a profitable direction for future exploration of
the method.
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