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Fisheries that exploit mixed stocks are 
very common, and their management 
oftentimes requires assessment of com-
position of the mixed catches (Begg et 
al., 1999). Multilocus genotypes of fi sh 
are a natural tag by which to infer 
their origins. The unknown proportions 
from stocks comprising a stock mix-
ture, or its stock composition, can be 
estimated from genotype counts in a 
random sample of the stock-mixture 
individuals if relative frequencies (RFs) 
of the genotypes vary among the con-
tributing stocks. Larger differences in 
genotypic RFs among stocks result 
in more accurate and precise stock 
composition estimates. The conditional 
maximum likelihood (CML) method 
(Fournier et al., 1984; Millar, 1987; Pella 
and Milner, 1987) has most commonly 
been used for stock-mixture analysis. 
Baseline samples drawn from the sepa-
rate contributors are used in estimating 
the RFs of the observed stock-mixture 
genotypes in each stock. The CML stock 
composition estimate maximizes a like-
lihood function of the stock-mixture 
genotypes as if their RFs in the base-
line stocks were known without error. 
The baseline multilocus genotype RFs 
determine the outcome of a stock-mix-
ture analysis. Larger errors in these 
estimated RFs result in larger stock 
composition errors. Usually the vari-
ation in CML stock composition esti-
mates from baseline and stock-mixture 
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Abstract–An implementation of Bay-
esian methods to assess general stock 
mixtures is described. An informative 
prior for genetic characters of the sep-
arate stocks in a mixture is derived 
from baseline samples. A neutral, low-
information prior is used for the stock 
proportions in the mixture. A Gibbs 
sampler—the data augmentation algo-
rithm—is used to alternately generate 
samples from the posterior distribution 
for the genetic parameters of the sepa-
rate stocks and for the stock proportions 
in the mixture. The posterior distribu-
tion incorporates the information about 
genetic characters in the baseline sam-
ples, including relatedness of stocks, 
with that in the stock-mixture sample 
to better estimate genotypic composi-
tion of the separate stocks. Advantages 
over usual likelihood methods include 
greater realism in model assumptions, 
better fl exibility in applications, espe-
cially those with missing data, and 
consequent improved estimation of 
stock-mixture proportions from the con-
tributing stocks. Two challenging appli-
cations illustrate the technique and its 
advantages.

sampling is evaluated by the bootstrap 
method.

The estimation of the baseline mul-
tilocus genotype RFs depends on the 
mode of inheritance of the observed 
markers. Among molecular markers de -
veloped for fi sh, allozymes, mitochondri-
al DNA (mtDNA), minisatellite DNA, 
and microsatellite DNA are widely 
known for their utility in stock-mixture 
analysis. For mtDNA, the entire hap-
lotype passes as a unit from female to 
offspring and the baseline multilocus 
haplotype RFs are estimated directly 
by their observed RFs in the baseline 
samples. For allozymes, minisatellite 
DNA, and microsatellite DNA, the mul-
tilocus genotypes pass from parents to 
offspring under the usual rules of dip-
loid inheritance. The expected multilo-
cus genotype RFs for diploids equal the 
products of the genotypic RFs at the in-
dividual loci (or subsets of them) that 
pass independently from parents to off-
spring. In the special case when Hardy-
Weinberg equilibrium holds at a locus, 
its expected genotypic RFs are deter-
mined by its allele RFs: the homozy-
gote RFs equal the squares of their 
allele RFs and the heterozygote RFs 
equal twice the product of their allele 
RFs. To compute the estimated base-
line multilocus genotype RFs for dip-
loids, observed RFs of alleles or geno-
types in the baseline samples replace 
corresponding unknown RFs. The few-
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er the number of unknown RFs that need to be estimated 
from the available baseline samples, the more reliable the 
estimated baseline multilocus genotype RFs become (Al-
tham, 1984). Therefore, under Altham’s principle, allele 
RFs are to be estimated if Hardy-Weinberg equilibrium 
holds, and genotype RFs at the locus otherwise. If alleles 
among a linked subset of loci are not inherited indepen-
dently, the multilocus genotype RFs for the subset have to 
be estimated directly from their observed RFs in the base-
line samples.

The search for genetic variation by which to distinguish 
among populations of fi sh and other marine organisms 
has provided an embarrassment of riches. The numbers 
of mtDNA haplotypes (Epifanio et al., 1995; Bowen et al., 
1996; Rosel et al., 1999) and alleles at minisatellite and 
microsatellite loci (O’Connell and Wright, 1997) can often 
be so large that reliable estimation of their RFs in stocks 
is a concern. Baseline sample sizes are usually limited, 
and the relative precision of estimated RFs for the numer-
ous haplotypes, alleles, or genotypes (HAGs) declines with 
the magnitude of their RFs. Resulting stock composition 
estimates for the stock mixture may suffer. Grouping or 
binning of HAGs may help to control variation in estima-
tion of their baseline RFs (O’Connell and Wright, 1997). 
However, for stock-mixture analysis, the practical details 
of grouping so as to balance the loss of information about 
the mixture against the gain in precision of the baseline 
RFs are unresolved. Bayesian methods developed for es-
timating allele RFs at a locus (sec. 3.7 of Lange, 1997) 
and for estimating cell probabilities in contingency tables 
(Bishop et al., 1975; Sutherland et al., 1975; Leonard, 
1977) offer another attack on the problem. The Bayesian 
methods are applied later in estimating the RFs by using 
genetic similarities of stocks. 

Conditional maximum likelihood does not use the infor-
mation in the stock-mixture sample to improve the esti-
mates of baseline multilocus genotype RFs, and the omis-
sion becomes ever more meaningful with the accumulation 
of mixture individuals from a series of analyses performed 
on stock mixtures of the same baseline populations. The 
unconditional maximum likelihood (UML) (Pella and Mil-
ner, 1987) or unconditional least squares (ULS) (Xu et al., 
1994) methods have been suggested to remedy this short-
coming for analysis of a single mixture. For either ap-
proach, estimates are provided both for the stock propor-
tions and baseline genotypic RFs by optimizing a criterion 
of fi t to counts in both the baseline and stock-mixture sam-
ples. However, the fi tting criteria may have local optima 
(Smouse et al., 1990), and effective search for the global 
optimum and corresponding estimates from both methods 
is unresolved. A practical compromise for either method is 
to fi nd a particular local optimum by starting the search 
from the CML estimate of stock proportions and stock ge-
notypic RFs, the latter evaluated from the baseline sam-
ples alone.

None of the past approaches—CML, UML, or ULS—
makes use of the genetic similarities among stocks to es-
timate the relative frequencies of haplotypes, alleles, or 
genotypes more accurately in the separate stocks. Com-
mon HAGs are shared universally among stocks; HAGs 

with moderate RFs are shared at least regionally, and rare 
HAGs occur only sporadically. Instead, the similarities in 
HAG RFs are viewed solely as limiting success in distin-
guishing the origins of the stock-mixture individuals. Im-
proved estimates of HAG RFs, to replace simple observed 
values, would generally benefi t accuracy and precision of 
stock composition estimation, especially as the number of 
rare or uncommon HAGs increases (e.g. Xu et al., 1994). Es-
timation of RFs for rare HAGs in separate stocks from base-
line samples is especially problematic. Even when present 
in a population, they may well be absent from the baseline 
sample. The Bayesian proposal for stock-mixture analysis 
will shrink the observed baseline HAG RFs of individual 
stocks toward better-established grand, regional, or group 
means in order to control HAG RF estimation error.

All past approaches—CML, UML, or ULS—produce es-
timates of stock proportions that become increasingly bi-
ased as the true stock-mixture proportions become more 
uneven (Pella and Milner, 1987; Xu et al., 1994). Contribu-
tions from abundant stocks are underestimated and those 
from less common or even absent stocks are overestimat-
ed. No effective general solution for this bias has been pro-
posed. The Bayesian proposal results in a probability dis-
tribution for the stock composition estimates, the location 
of which can be characterized by various measures, such 
as the mean, median, and mode, which differ in their bias 
when viewed as potential point estimators. 

Finally, the previous estimation methods appear limit-
ed in capacity to attack practical problems that fail to fi t 
the standard mold of a sampled stock mixture and com-
plete baseline. In particular, missing information for en-
tire stocks from the baseline is very diffi cult to accommo-
date (Smouse et al., 1990). Despite their availability for 
a decade or more, nothing has been accomplished using 
these methods to incorporate genetic similarities of base-
line stocks to deal more realistically with missing data. 
The Bayesian proposal will initially fi ll in missing base-
line HAG RFs with appropriate grand, regional, or group 
means, proxies that are revised later during analysis of 
the stock-mixture sample.

Bayes methods have the potential to correct for these 
shortcomings better than the likelihood or least squares 
methods. In our study we describe the rationale for this 
new approach to stock-mixture analysis, develop the sta-
tistical models, and outline the numerical algorithms by 
which to quantify uncertainty in stock proportions of 
the mixture as well as in the baseline HAG RFs in the 
separate contributing stocks. Software developed for per-
forming the computations and summarizing results is 
available at our anonymous ftp site, with address ftp://
wwwabl.afsc.noaa.gov/sida/mixture-analysis/bayes. Two 
applications with special diffi culties are used as illustra-
tions. First, a winter stock mixture thought to be composed 
of four Northwest Atlantic harbor porpoise (Phocoena pho-
coena) populations is assessed. These porpoise populations 
are characterized by mtDNA haplotypes, the number of 
which exceeds baseline and stock-mixture sample sizes. 
Second, a Southeast Alaska steelhead trout (Oncorhynchus 
mykiss) stock mixture is resolved to two populations, only 
one of which could be sampled separately. Allozymes, mi-
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crosatellites, and mtDNA were available for independent 
and confi rming assessments of stock-mixture proportions 
from the two populations.

Methods

The premise of the Bayes method for estimating an un-
known quantity, θ, is that some information about θ is 
available before sampling begins. This information is in 
the form of a prior probability density, π(θ). After sam-
pling, the new data obtained, Y, are used to revise the 
prior to the posterior probability density for the unknown, 
π(θ|Y). The posterior is obtained by application of Bayes’s 
theorem, which states that the posterior is proportional to 
the product of the prior and the likelihood of the sample, 
π(Y|θ), viz.

 π π π( | ) ( ) ( | ),θθ θθ θθY Y= −k 1  (1)

where k d= ∫π π
θ

( ) ( | ) .θθ ΨΨ θθ θθ

Once the posterior for θ is known, a variety of point esti-
mates—mode, median, or mean—as well as the Bayesian 
posterior probability interval (the apparent counterpart 
of  frequentist confi dence intervals, but which actually is 
a direct probability statement about the unknown) for θ 
can be derived from it. In stock-mixture analysis, the un-
knowns separate into two evident blocks [θ = (p,Q)]: 1) 
the stock proportions of the mixture, p; and 2) the param-
eters, Q, needed to determine the genetic composition—
stock-mixture haplotype or multilocus genotype RFs—of 
the baseline stocks. For haploids, Q represents the base-
line haplotype RFs. For diploids, Q represents the array 
of baseline allele and genotype RFs that are needed under 
Altham’s principle to compute the stock-mixture genotype 
RFs in the baseline stocks. The new information comes 
from the baseline and stock-mixture samples for which 
the likelihood functions are unchanged from earlier likeli-
hood methods. The stock-mixture sample provides counts 
of haplotypes or multilocus genotypes, and the baseline 
samples provide counts from the separate stocks of the 
haplotypes or alleles and genotypes at the loci comprising 
the mixture multilocus genotypes. 

The standard stock-mixture analysis for complete base-
line and stock-mixture samples by Bayes methods will be 
outlined here, with details given in following sections. Ex-
tension to nonstandard applications will be indicated by 
example. First, a prior for θ = (p,Q) is developed, which is 
a product of block priors for its components, p and Q. The 
prior proposed for p, which will be called “uninformative,” 
allows any substantive stock-mixture sample information 
regarding p to overwhelm that from the prior. The prior 
for Q, used to analyze the stock-mixture sample, is infor-
mative and will be derived from the baseline samples to 
quantify uncertainty in the genotypic composition of the 
contributing stocks. Second, the standard likelihood func-
tion for the haplotype or multilocus genotype counts seen 

in the stock-mixture sample is described. Third, and last, 
the data augmentation algorithm, a Gibbs sampler, is used 
to alternately generate a sequence of samples from the 
posterior distributions for p and Q. The stock identities 
of the mixture-sample individuals are reassigned at each 
sampling cycle by using a chance mechanism that refl ects 
their uncertainty. The stock identities simplify greatly the 
revision of the prior distributions for p and Q to account 
for the stock-mixture sample information; just as with the 
baseline samples, counts of mixture individuals and their 
HAGs by stock are available at each cycle. Assignment of 
individuals to stock origin contrasts with their fractional 
allocation by the CML method (Pella and Milner, 1987). 
These samples from the posterior distributions are used to 
quantify the fi nal uncertainty in p and Q after observing 
the stock-mixture sample. 

Prior for stock-mixture proportions, π(p)

The prior for p can incorporate information about the 
stock-mixture composition other than that in the stock-
mixture sample if such is available. More commonly, how-
ever, such information is either unavailable or else the 
researcher prefers to let that of the stock-mixture sample 
dominate, just as it does with the earlier likelihood or 
least squares methods. Therefore, the prior proposed will 
be restricted, providing no useful information about the 
stock-mixture composition. Such an uninformative prior 
for the stock proportions of a c-stock mixture must be 
defi ned over the stock composition simplex, 
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have means, variances, and covariances given by 
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If a prior draw of p ~ D(α1,α2, .  .  . , αc) (the notation “x ~ f ” 
means “x is distributed as the probability density or prob-
ability function f ”) was obtained for the stock proportions 
of a stock mixture, and then a stock-mixture sample of size 
M was drawn such that the individuals could be correctly 
identifi ed to stock origin, their counts, Z=(z1,z2, .  .  . , zc), 
would have a conditional multinomial distribution, 

π( | , )
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or Z|p ~ Mult(M, p). The posterior for p, given Z, would 
be the Dirichlet (computational convenience), p|Z~D(z1 + 
α1, .  .  . , zc + αc). Notice that the prior parameters enter 
the posterior density in parallel with the sample counts 
and therefore could be viewed as counts obtained before 
the stock mixture was sampled (additional data) (sec. 3.5, 
Gelman et al., 1995). In fact, the mixture individuals are 
identifi ed to stock origin (with unavoidable random error) 
during each cycle of the data augmentation algorithm 
later when samples are generated from the posterior. With 
the stock origins identifi ed at a cycle, the uncertainty in 
p is described by the Dirichlet posterior with parameters 
equal to the sums of stock counts and prior parameters 
(zi+αi). 

With equal values summing to 1 assigned to its param-
eters or “prior counts,” α1 = α2 = .  .  . = αc = c–1, the Dirichlet 
prior meets our initial requirements. Specifi cally, the den-
sity is defi ned over the stock composition simplex, and the 
additional data, which is neutral in the sense of favoring 
equal stock proportions (mean stock proportions are c–1), 
would be equivalent to adding just a single individual to 
the stock-mixture sample. Means, variances, and covari-
ances (substitute zi + c–1 for αi in Eq. 3) of the resulting 
posterior distribution of p|Z, D(z1 + c–1, .  .  . , zc + c–1), ap-
proximate closely with increase of stock-mixture sample 
size, the observed stock proportions, their estimated vari-
ances, and their estimated covariances, respectively, from 
standard frequentist analysis of the multinomial sample, 
Z. Therefore, given the stock assignments of the mixture 
individuals, the posterior distribution for p will be a rea-
sonable description of its uncertainty for both Bayesian 
and frequentist statisticians. 

Prior for genetic parameters given baseline samples, 
π(Q|Y)

The genetic compositions—haplotype or multilocus geno-
type RFs—of the separate stocks are determined by their 
RFs of haplotypes, alleles, or genotypes, Q. An estimate of 
Q from the baseline samples must be used in place of the 
unknown Q to estimate the stock genetic compositions. 
When baseline samples are large, the observed and unbi-
ased value of Q, together with measures of precision, may 
be suffi cient to anchor the stock-mixture analysis. Com-
monly, baseline sample sizes are more limited and some 
tradeoff between bias and precision (sec 1.4.2 of Carlin 
and Louis, 1996; Bishop et al., 1975) in estimation of Q 
may well be advisable. The essential idea is to shrink the 

observed RFs of HAGs for individual stocks toward cen-
tral values that are more reliably determined and are 
consistent with the genetic similarity of the stocks. An 
informative Bayes prior distribution for these unknown 
genetic parameters underlying the stock-mixture sample 
can be derived from the baseline samples and would pro-
vide for such shrinkage. The statistical modeling begins 
with the allele RFs at a single locus but applies equally 
to haplotypes, alleles, or genotypes. Later, the modeling is 
extended to cover multiple loci.

The Bayesian scenario begins with an imaginary experi-
ment in which the RFs of the T distinct alleles for a single 
locus are drawn for each of the c baseline stocks (sec. 3.7 of 
Lange, 1997). Denote the resulting unobserved RFs for the 
ith stock by qi=(qi1, qi2,…, qiT). The draws from the stocks 
are independent and from a common Dirichlet probability 
density, which is the Bayes prior for baseline sampling, π(qi )
=D(β1,β2, .  .  . , βT). The justifi cation for the Dirichlet prior 
for baseline sampling parallels that for the earlier stock-
mixture composition prior, π(p), that is, computational con-
venience and its simple interpretation as additional data. 
Next, baseline samples of n1,n2,…,nc alleles of the locus 
are available from the c stocks. The counts of the different 
alleles—yi=(yi1,yi2, .  .  . , yiT) for the ith stock—have the mul-
tinomial distribution, Mult(ni, qi), and therefore the base-
line posterior for the unknown allele RFs in each stock is 
also a Dirichlet distribution, qi|yi ~ D(β1+yi1,β2+yi2, .  .  . ,
βT+yiT). The posterior mean of qi|yi can be written as 
a weighted average of the observed and prior mean RFs 
(Bishop et al., 1975; Sutherland et al., 1975),
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where the observed RF is yit/ni, its prior mean is βt/β., 
and β. =

t

T

=
∑

1

βt. If the baseline sample is missing (ni=0), the 
posterior mean equals the prior mean. Otherwise, the pos-
terior mean ranges between the observed and prior mean 
RFs (as a function of β. ≥0). Shrinkage from the usual esti-
mator of qi, the observed allele RFs, toward the prior mean 
increases with the prior “sample size,” β., but so does bias 
in estimates of the allele RFs. Therefore, the magnitude of 
the prior parameters should be no larger than necessary 
to satisfactorily control estimation error. 

Although the choice of a Dirichlet baseline prior was 
partly for convenience, the resulting posterior density has 
good properties. The posterior mean is a reliable estima-
tor for the unknown allele RFs: it is strongly consistent, 
becomes unbiased for large baseline sample size, and mod-
erates the extremes of the usual estimates—the observed 
RFs—among baseline stocks. All posterior means for the 
allele RFs are positive, so that absence of an allele from 
a stock’s baseline sample implies it is only rare and was 
missed in sampling rather than it is nonexistent. 

The values for the baseline prior parameters, β1,β2, .  .  . , 
βT, have been arbitrary. To complete the specifi cation of the 
baseline posterior, which will serve as the stock-mixture 
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prior for the allele RFs, their values must be assigned. Two 
approaches—empirical Bayes and pseudo-Bayes—are con-
sidered in which the prior parameters are functions of al-
lele counts in the baseline samples. The empirical Bayes 
method was previously developed for geneticists to esti-
mate allele RFs (Lange, 1997). In this method, the values 
assigned to the βs are those which maximize the Bayes 
prior predictive distribution (Gelman et al., 1995) for the 
allele counts in the baseline samples. This distribution is 
the marginal distribution of the allele counts, which results 
from averaging their multinomial distribution, Mult(ni, qi), 
weighted by the prior probability of qi, D(β1, β2, .  .  . , βT). 
The prior predictive distribution is parameterized by the 
βs alone, and the optimizing values can be computed from 
the allele counts (Appndx. 1). Limited experience during 
this study indicates that, with large baseline samples of 
a few baseline stocks, or lesser baseline samples for large 
numbers of baseline stocks, the empirical Bayes method 
can provide values for the prior parameters, which result in 
sensible weighting of the observed sample and prior means. 
Commonly, baseline sampling is more limited, and pragma-
tism requires a less-demanding alternative method.

The pseudo-Bayes method is based on several practical 
considerations to determine values for the baseline prior 
parameters. First, the baseline prior parameters, β1, β2, .  .  . , 
βT, have no intrinsic value, other than as tuning parame-
ters by which to perform stock-mixture analysis. Nonethe-
less, a sound rationale and simple computational formu-
las for their values are desirable. Second, the prior mean 
should refl ect the similarity of the allele RFs among the 
baseline stocks. Third, the weights assigned to the prior 
and observed allele RFs should allow a realistic evalua-
tion of the uncertainty in the genetic composition of the 
stock, yet not cause misleading bias in the estimated stock 
composition. Loci with large variation among stocks have 
more effect on estimated stock composition than those 
with small variation. Therefore, shrinkage from observed 
allele RFs toward prior means for loci with large varia-
tion should be less than for loci with small variation. If 
the prior parameter sum, β., is substantially smaller than 
the baseline sample sizes, the bias will be limited. How-
ever, with β.=0, all weight goes to the observed RFs. Then, 
when a baseline sample misses an allele that is present, 
sampling error will be underestimated (as it is with boot-
strapping under the CML method). Fourth, and last, the 
weight assigned to the observed RFs for a stock should be 
positively related to its baseline sample size.

The pseudo-Bayes method of this proposal is original to 
estimating allele RFs and appears in practice to satisfy 
the aforementioned criteria. The prior mean will be cen-
tered within the observed allele RFs for the stocks of the 
baseline samples with 

β βt ty t T= ⋅ =˜ , , , , ,. 1 2 K

where β̃. = is an estimate (Appndx. 2) of the value for β. 
that minimizes the baseline risk, or expected 
squared-errors between the posterior means 
at Equation 4 and the unknown allele RFs of 
all baseline stocks, and 
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 = is the baseline center, or unweighted arith-
metic mean, of the observed RFs for the 
t-th allele among stocks. 

With this defi nition for the βs, the prior mean equals the 
baseline center. The posterior mean for any stock is the 
weighted average of its observed allele RFs and the base-
line center as at Equation 4. Although the central allele 
RFs for the entire set of baseline stocks anchors the esti-
mation of Q in this description, extensions to accommodate 
regional or other groupings of stocks could be accomplished 
as simply by anchoring on regional or group centers.

Complete analysis of the baseline requires repeated and 
separate application of the empirical Bayes or pseudo-
Bayes methods to each locus. Suppose a total of H loci com-
pose the stock-mixture multilocus genotypes. Let the hth 
locus have Jh alleles with prior parameters βh = (βh1, βh2, 
.  .  . , βhJh

) and allele RFs in the ith stock of qih = (qih1, qih2, 
.  .  . , qihJh

). If Qi denotes the ith stock’s combined arrays, 
qi1,qi2, .  .  . ,qiH, then the prior for the allele RFs of the com-
plete baseline, Q=(Q1,Q2, .  .  .  ,Qc), will be 

π π π

β β β

( ) ( ) ( )

( , , , ) ,

Q Q qi ih= = =











===

=

∏∏∏

∏
h

H

i

c

i

c

h h hJ

h

H c

D
h

111

1 2

1

K

that is, prior draws for allele RFs are independent among 
stocks and loci. 

The baseline samples are drawn independently from the 
stocks. Denote by Yi = (yi1,yi2, .  .  . ,yiH) the H arrays of al-
lele counts in the baseline sample for the ith stock, and by 
Y, the entire baseline collection of Y1,Y2, .  .  . ,Yc. Then the 
Bayesian posterior density for the allele RFs of the entire 
baseline is the product of Dirichlet densities, 
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and each density in the product has a mean vector, for 
the stock and locus, equal to a weighted average of the 
observed allele RFs and corresponding prior means (as at 
Eq. 4). Although the statistical modeling of the baseline 
samples has been described with alleles and loci, it applies 
equally to any combination of independent components: 
alleles at loci, haplotypes at mtDNA, and genotypes at loci 
in Hardy-Weinberg disequilibrium. 

Stock-mixture sample likelihood function for 
unknowns, g (X |θ) 

The stock-mixture sample likelihood function is propor-
tional to the probability of drawing the observed stock-
mixture genotypes as a function of the unknowns, p and 
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Q. Denote the count of the jth allele of the hth locus for 
the mth mixture individual by xmhj. Let the collection of 
such counts, Xm, denote the multilocus genotype of the 
mth individual, and let the array X denote the collection 
of such arrays for the M individuals composing the stock-
mixture sample. Further, let the RF of individuals with 
the genotype Xm in the ith stock, which depends on that 
stock’s allele RFs, Qi, be denoted as f(Xm|Qi). The RF of 
the genotype in the stock mixture is the weighted sum,

i

c

=
∑

1

pif(Xm|Qi), and so the likelihood function for the stock-
mixture sample is

 g p fi

i
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In the Bayesian view, X is fi xed and g(X|p,Q) is a random 
function of the unknowns, p and Q. Again, although the 
likelihood function for the stock-mixture genotypes has 
been described with alleles and loci, it applies equally to 
stock-mixture genotypes of any combination of indepen-
dent components: alleles at loci, haplotypes at mtDNA, 
and genotypes at loci in Hardy-Weinberg disequilibrium. 

Posterior distribution of the unknowns, π(θ |X,Y) 

The Bayesian assessment of the unknown stock propor-
tions in the stock mixture and of the baseline RFs of hap-
lotypes, alleles, or genotypes is provided by their joint 
posterior distribution. This posterior distribution is propor-
tional to the product of the prior density for the unknowns 
and the likelihood function of the stock-mixture sample, 
given the unknowns. The prior density for the stock-mix-
ture proportions is the uninformative Dirichlet of Equa-
tion 2. The baseline posterior at Equation 5 becomes the 
stock-mixture prior for the HAG RFs. Prior information 
on stock-mixture composition and the HAG RFs is rea-
sonably considered independent, so the joint prior for the 
unknowns is the product (Eqs. 2 and 5),

 π π π( , ) ( ) ( | ).p Q p Q Y=  (7)

The posterior distribution for p and Q with the stock-
mixture sample observed, π(p,Q|X,Y), is proportional to 
the product of their likelihood at Equation 6 and their 
prior at Equation 7. Analytic evaluation of the posterior 
distribution is impractical because of the prodigious com-
putation required, caused by the combinatorial explo-
sion of terms in the likelihood function with increase in 
stock-mixture sample size (Bernardo and Girón, 1988). 
Instead, a suffi cient number of samples are drawn se-
quentially from the posterior distribution to accurately 
describe it. The data augmentation algorithm (Tanner 
and Wong, 1987; Diebolt and Robert, 1994) can be used 
to draw the sequence of samples. The idea underlying the 
algorithm is that the estimation problem would be much 
simplifi ed if the stock identities of the mixture individ-
uals were known. Given the stock identities, the poste-
rior distribution for the stock proportions and HAG RFs 
in the baseline stocks simply requires updating of the 

Dirichlet priors with multinomial counts from the stock 
mixture. 

The stock identities of the mixture individuals are deter-
mined by chance in the data augmentation algorithm. Let 
zm=(zm1,zm2, .  .  . , zmc) indicate the stock origin of the mth 
mixture individual by a single “1” at the coordinate of the 
contributing stock, and c–1 “0”s at the remaining coordi-
nates. For later reference, let Z=(z1, z2, .  .  . , zM) denote the 
stock origins of all the mixture individuals. If p and Q were 
known, the proportion of mixture individuals with genotype 
Xm that came from the ith stock could be calculated as 

 w p f p f i cmi i k k

k

c

= =
=
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1

K  (8)

Equivalently, the probability that a randomly drawn mix-
ture individual with genotype Xm came from the ith stock 
is wmi of Equation 8. The data augmentation algorithm 
draws the missing stock identity, zm, for each mixture indi-
vidual from the multinomial distribution, zm ~ Mult(1,wm), 
where the probabilities for the stocks listed by wm=(wm1, 
wm2, .  .  . ,wmc) are computed from the current samples of 
p and Q. Colloquially, the stock identity of each stock-mix-
ture individual is randomly assigned with the probability 
for any stock equal to the stock-mixture fraction of the 
genotype contributed by the stock.

In broad outline, the data augmentation algorithm used 
to draw posterior samples is straightforward. After the ini-
tial sample is obtained (as described later), a sequence 
of samples is drawn with each sample dependent only on 
the preceding sample, that is, the algorithm is a Markov 
chain Monte Carlo (MCMC) method. At the kth sample, 
two steps are performed:

1 Draw stock identities of the mixture individuals,  z(k)
m~

Mult(1,w(k)
m), using Equation 8 for genotype Xm and the 

current values p=p(k) and Q=Q(k), m=1,2, .  .  . , M.
2 Draw p(k+1) and Q(k+1) from their respective posterior 

densities, π(p|X,Y,Z(k)), and π(Q|X,Y,Z(k)).

The stock identities, Z(k), of the stock-mixture sample are 
suffi cient statistics for p (Pella et al., 1996). With them 
available, the genetic data of the stock-mixture sample is 
of no value to estimation of p. Therefore, the posterior for 
p is obtained by updating the Dirichlet prior for p with the 
counts of stock identities for the mixture individuals, 
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The posterior density for HAG RFs of the genetic com-
ponents, π(Q|X,Y,Z(k)), updates the stock-mixture prior, 
or baseline posterior, π(Q|Y), at Equation 5 for the HAG 
counts from the identifi ed mixture individuals as 

 π π( | , , ) ( | , , )( ) ( )Q X Y Z q X y Zi
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Notice that each of the updated Dirichlet parameters for 
the HAG RF in the ith stock equals the sum of the prior 
parameter, the HAG count in the baseline sample, and the 
HAG count for the mixture individuals identifi ed to the 
stock. 

The data augmentation algorithm cycles the two steps 
and eventually outputs a sequence, or chain, of samples 
of stock proportions and baseline genetic parameters from 
the posterior Bayes distribution. However, the early sam-
ples of a chain are infl uenced by the starting values of p 
and Q. To make valid inferences, early burn-in samples 
must be discarded and a suffi cient number of subsequent 
samples must be generated to accurately describe the pos-
terior. Statistics to determine the number of samples to 
generate per chain—the Raftery and Lewis (1996) conver-
gence diagnostic—or to monitor convergence of multiple 
chains to the desired posterior density—the Gelman and 
Rubin (1992) shrink factor—are widely used in practice 
and are comparatively inexpensive to compute. Although 
these two statistics are used in the applications that fol-
low, MCMC research is currently very active (e.g. Brooks 
and Roberts, 1999), and alternatives may prove to be su-
perior for these purposes. Main interest is usually in the 
stock composition of a stock mixture and so in the later ap-
plications the statistics have been applied only to samples 
of p even though they can be applied to samples of Q as 
well. However, convergence of samples for p without corre-
sponding convergence for Q is not thought to be possible.

The diagnostic outlined by Raftery and Lewis (1996) de-
termines the number of samples required for estimating 
quantiles (q) of posterior distributions with a specifi ed ac-
curacy (r) and probability (s). The FORTRAN implementa-
tion of the diagnostic, called GIBBSIT,1 is applied in later 
examples (with q=0.975, r=0.02, and s=0.95) to each of 
several chains of stock proportions generated from differ-
ent starting values. The diagnostic fi rst requires that an 
initial pilot sample be generated for each chain, which is 
used to compute its recommended number of samples. An 
additional number of samples are generated to satisfy the 
maximum recommended. The combined samples—original 
pilot samples and the additional samples—are used with 
GIBBSIT as pilot samples to compute recommended sample 
sizes again. Further samples are generated if the maxi-
mum recommended sample size for any stock exceeds the 
number so far generated. This iterative scheme is applied 
to the fi rst chain, beginning with a pilot sample size of 
235 (the initial number recommended from the chosen val-
ues of q, r, and s). The other chains are run the length of 

1 FORTRAN program GIBBSIT (version 2.0) can be obtained without 
cost from the general archive at http: //lib.stat.cmu.edu/.

the fi rst chain and then analyzed separately by GIBBSIT. If 
GIBBSIT suggests that any of the chains should be longer 
than the fi rst chain, then all the chains are run for the 
largest number of samples recommended for all stocks and 
all chains.

Gelman and Rubin (1992) recommended running a 
small number of independent chains with dispersed start-
ing points to reduce the possibility that a chain is ac-
cepted as representative of the posterior distribution be-
fore convergence has occurred. To monitor convergence of 
the chains to the posterior density, a univariate statistic, 
called the shrink factor (Gelman and Rubin, 1992), is com-
puted2 for each of the stock proportions. One chain per 
stock is started, with most of the stock mixture initially 
contributed by that stock. Once chains of samples are gen-
erated and length determined from the Raftery and Lew-
is diagnostic, shrink factors for all stocks are computed 
to verify that the chains have converged. The shrink fac-
tor is computed from the second halves of the chains and 
compares the variation within a single chain for a given 
parameter to the total variation among the chains. Esti-
mates of shrink factors close to one indicate convergence, 
and acceptable values are less than 1.2 (see Kass et al., 
1998). Because the shrink factor is computed from the sec-
ond halves of chains, the fi rst halves of chains are discard-
ed as burn-in samples. The purpose of discarding initial 
burn-in samples is to remove dependence on the starting 
values. Samples subsequent to the burn-in samples may 
be thought of as coming from the desired posterior dis-
tribution. Once convergence of chains has been verifi ed, 
the MCMC samples (after burn-in discard) of stock compo-
sition estimates are combined and summarized with var-
ious statistics (equivalent to parameters because of the 
large samples): means, standard deviations, and empirical 
percentiles (2.5, 50, and 97.5). Baseline haplotype, allele, 
or genotype RFs can be summarized similarly.

Checking the fi t of the stock-mixture model

Current stock-mixture modeling presumes that a stock 
mixture composed of random genotypes from the contrib-
uting stocks occurs and that a simple random sample of 
the mixture individuals has been drawn. Further, it is 
assumed that simple random samples of HAGs from all 
contributing stocks are available by which to estimate, 
with an appropriate and known genetic model, the stock-
mixture genotype RFs in each of the separate stocks. 
Samples are considered small in relation to the popula-
tions sampled, so that the multinomial distribution can 
be used to describe sampling variation in counts. These 
assumptions may be plausible in many applications, but 
violations can also occur. For example, baseline samples 
of juvenile salmon, drawn before their families have 
mixed, would have extra-multinomial variation (Waples 

2 Our current FORTRAN program for the diagnostic is a translation 
of Gelman’s S function itsim (free from the Statlib S archive at 
http://lib.stat.cmu.edu/), and its modifi cation (version 0.4) in 
CODA (Best et al., 1995) (free from the MRC Biostatistics Unit, 
University of Cambridge, at http://www.mrc-bsu.cam.ac.uk/
bugs/). 

(cont.)
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and Teel, 1990), as would stock-mixture samples if the 
populations segregated (McKinnell et al., 1997). The 
Bayes method opens the way for checking that the models 
fi t. Lack of fi t is indicated if the observed samples are 
unusual realizations of the Bayes posterior predictive 
distribution (Gelman et al., 1995). Test statistics should 
be designed to detect suspected problems in stock-mix-
ture analysis: unrepresentative samples, unsatisfactory 
priors, presence of extra stocks, etc. In particular, the hap-
lotype, allele, or genotype counts in the actual baseline 
samples should not be outliers of their corresponding pre-
dictive distribution. When violations to the assumptions 
are detected, the posterior distribution of stock propor-
tions and baseline genetic parameters would be mislead-
ing. New samples drawn by improved design, or alternate 
sampling models, could be needed to make the stock-mix-
ture analysis trustworthy.

Samples are easily drawn from the posterior predictive 
distribution. The kth predictive baseline sample for the 
HAG counts in a stock is simply a multinomial sample 
with size equal to that of the actual sample and with prob-
abilities equal to the HAG RFs in the kth posterior sam-
ple. The kth predictive stock-mixture sample is obtained 
in two steps. First, a multinomial sample of M individuals 
identifi ed to stock is drawn, with probabilities equal to the 
stock proportions in the kth posterior sample. Second, the 
stock-mixture genotype of each individual is generated by 
sequentially drawing the HAGs of the multiple characters 
by using the HAG RFs for its stock from the kth posterior 
sample. 

Applications

Two applications are considered next to illustrate use of 
the Bayesian method. In the fi rst application, large num-
bers of mtDNA haplotypes are present in the baseline and 
stock-mixture samples and pose special diffi culty in analy-
sis. The fairly common availability of mtDNA data makes 
this application of general interest. In the second applica-
tion, only one of two populations in a stock mixture could 
be sampled separately. The Bayesian solution for the miss-
ing baseline samples from the second population should be 
of special interest to biologists concerned with assessing 
stock mixtures of anadromous and resident populations 
in streams (Busby et al., 1996; Michael, 1983), and of gen-
eral interest for extensions to the standard stock-mixture 
analysis.

Example 1: mtDNA samples from harbor porpoise (Pho-
coena phocoena) of the northwest Atlantic Ocean (Rosel 
et al., 1999) Rosel et al. (1999) obtained mtDNA sequence 
data for samples from four summer breeding popula-
tions—Gulf of Maine-Bay of Fundy, Gulf of St. Lawrence, 
Newfoundland, and West Greenland—of harbor porpoises 
in the northwest Atlantic and from a wintering group 
along the mid-Atlantic states. The authors were reason-
ably certain that the wintering group comprised one or 
more of the summer populations. Because of special con-
servation concerns for the Gulf of Maine-Bay of Fundy 
population, the authors wished to determine if it alone 

could have been the wintering group. Contingency table 
analysis of the mtDNA haplotype frequencies indicated 
only that the Gulf of Maine-Bay of Fundy population was 
almost surely not alone (P<0.06), if at all present. Rosel 
et al. (1999) used a stock-mixture analysis by the CML 
method to attempt to delimit the population contributions 
better with the mtDNA data. Here the Bayesian method is 
applied to the same data for comparison. Summer sample 
sizes for each of the populations were between 40 and 80 
individuals, and the winter sample size was 41. A total of 
67 distinct haplotypes was observed in the summer sam-
ples, and the winter sample of 41 individuals included 
an additional 8 singleton haplotypes previously unseen. 
Among the total of 253 individuals of all samples, the fi ve 
most numerous haplotypes were represented by 45 (18%), 
42 (17%), 15 (6%), 9 (4%), and 7 (3%) individuals. Most 
haplotypes were sporadic in samples; the most common 
counts in the summer and winter samples being 0 and 1. 
The occurrence of a few fairly common and many scarce 
haplotypes is characteristic of mtDNA data (Xu et al., 
1994) and poses special diffi culty in estimation. For exam-
ple, under the CML method, stock-mixture haplotypes 
contributed by a particular stock have another apparent 
source if absent from its baseline sample.

Four chains of samples were generated by data augmen-
tation with both the empirical Bayes and pseudo-Bayes 
methods for specifying the baseline prior “count” param-
eters. The total prior “sample size,” β.  =Σβt, computed by 
the methods was 22 (pseudo-Bayes) and nearly 2000 (em-
pirical Bayes). An initial pilot chain of 235 samples was 
analyzed by using the FORTRAN implementation of GIBBSIT, 
which indicated that chains of  2012 samples should be 
run (given q=0.975, r=0.02, and s=0.95). The four chains 
were begun with diverse values for population propor-
tions: one chain was begun for each population, with it 
composing 0.95 of the stock mixture and the other three 
populations composed equal parts (thirds) of the remain-
der (0.05). The four chains had mixed suffi ciently, or con-
verged, by their second halves so that the Gelman-Rubin 
shrink factors were less than 1.03 for any one population. 
The samples from the second halves were pooled to rep-
resent 4024 draws from the posterior distribution. Predic-
tive baseline samples were generated from the posterior 
samples for haplotype RFs, and indicated lack of fi t only 
for the empirical Bayes method (Fig. 1). Therefore, only 
the posterior distribution from the pseudo-Bayes method 
will be described further. Parameters for population pro-
portions computed from the posterior sample (Fig. 2) in-
clude the mean, mode, median, standard deviations, and 
equal-tail bounds of posterior intervals (Table 1). Condi-
tional maximum likelihood estimates for the winter sam-
ple were computed for comparison, along with bootstrap 
evaluation of their precision from 1000 resamplings. Cor-
responding statistics of the bootstrap sample for the CML 
method are the means, standard errors, and 95% confi -
dence bounds (Table 2). This CML analysis differs from 
that of Rosel et al. (1999) by using 1) the counts of all 
individual haplotypes instead of pooling to form subsets 
with larger counts, and 2) an alternate method for con-
structing confi dence bounds. Rosel et al. (1999) used the 
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Table 1
Parameters of the posterior density for harbor porpoise population proportions composing the winter stock mixture. Reported pro-
portions do not necessarily sum to 1.0 because they are rounded.

 Posterior quantiles

Population Mean Mode1 SD 2.5% Median 97.5%

Gulf of Maine-Bay of Fundy 0.12 0.02 0.13 0.00 0.08 0.46
Gulf of St. Lawrence 0.48 0.69 0.19 0.14 0.48 0.84
Newfoundland 0.15 0.02 0.16 0.00 0.10 0.52
West Greenland 0.24 0.26 0.18 0.00 0.22 0.66

1 The mode is computed by 4-dimensional binning of the Markov chain Monte Carlo samples for stock proportions, each bin with sides of 0.05, and 
then normalizing the bin center having maximum count.

percentile interval (Efron and Tibshirani, 1993) for confi -
dence bounds. The alternate method, called the non-
symmetric percentile bootstrap (Lunneborg, 2000), is 

expected to have superior coverage properties to the stan-
dard percentile method for the usual skew distributions 
of stock-mixture composition estimates. The confi dence 

Figure 1
Histograms of predictive baseline population (Gulf of Maine-Bay of Fundy, top; Gulf of St. Lawrence, second; New-
foundland, third; and West Greenland, bottom) sample counts for the most common haplotype in the pooled summer 
and winter samples, by empirical Bayes (left) and pseudo-Bayes (right) methods. The actual count of the haplotype 
in each baseline sample is shown as a spike.
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Table 2
The conditional maximum likelihood point estimate for harbor porpoise population proportions composing the winter stock mix-
ture, and its bootstrap standard error and 95% confi dence bounds (nonsymmetric percentile method). Reported proportions do not 
necessarily sum to 1.0 because they are rounded.

 95% Confi dence bounds
 Point
Population estimate SE1 Lower Upper

Gulf of Maine-Bay of Fundy 0.19 0.14 0.00 0.37
Gulf of St. Lawrence 0.40 0.16 0.13 0.77
Newfoundland 0.18 0.15 0.00 0.35
West Greenland 0.24 0.15 0.00 0.48

1 These standard errors are reduced by 30% to 50% from those reported by Rosel et al. (1999). At our earlier recommendation, the authors pooled 
subsets of haplotypes without a well-grounded basis in order to avoid the small counts of individual haplotypes used here. The point estimate is 
unchanged, but the confi dence intervals differ mainly because a new method was used in their computation.

bounds were computed with an update of the program, 
SPAM 3.2 (Debevec et al., in press), available on the inter-
net at http://www.cf.adfg.state.ak.us/ geninfo/research/
genetics/Software/SpamPage.htm.

Both the pseudo-Bayes and conditional maximum likeli-
hood methods are in agreement on the population compo-
sition of the winter sample in fi ve respects (Tables 1 and 
2). First, any of the populations could be involved in the 
stock mixture and comprise much (upper posterior bounds 
range from 0.46 to 0.84, and upper confi dence bounds, 
from 0.35 to 0.77) of it. Second, the contributions by any 
of the populations are very imprecisely determined from 
the mtDNA counts (widths of all interval estimates exceed 
0.35, and standard deviations or standard errors range 
from 0.13 to 0.19). Third, more than one population seems 
to be present, given that none of the interval estimates in-
cludes 1.0. Fourth, the most frequent estimates, or modes, 
of the Bayes posterior imply that the mix is almost entire-
ly composed of the Gulf of St. Lawrence and West Green-
land populations (Fig. 2). Fifth, and last, the Gulf of St. 
Lawrence population was almost certainly present (lower 
95% posterior bound for the proportion, 0.14; correspond-
ing lower 95% confi dence bound, 0.13). 

The claim that the Gulf of St. Lawrence population was 
wintering along the mid-Atlantic coast is important to the 
conservation issue. Is its presence conspicuous to a direct 
examination of the genetic samples? The answer is yes 
if one knows where to look. The Bayes method actually 
identifi es the stock origins of the stock-mixture individu-
als during generation of each sample from the posterior 
distribution, and so the posterior identity distribution—
the relative frequency of assignment to each population—
for each stock-mixture individual is available. The identi-
ty distributions of mixture individuals showed 4 of the 33 
(12%) winter porpoise were more likely than not (posterior 
probabilities=0.60, 0.64, 0.67, 0.72) to be from the Gulf of 
St. Lawrence, and 4 more were more certainly (posterior 
probabilities=0.87, 0.88, 0.88, and 0.89) from that popula-
tion. Corresponding probabilities (Eq. 5, Pella and Milner, 
1987) from the CML method for the fi rst (0.62, 0.69, 0.70, 
0.81) and second groups (1, 1, 1, 1) agreed reasonably. The 

summer samples contained the following numbers of the 
same 8 haplotypes: Gulf of Maine-Bay of Fundy, 2 of 80 
(3%); Gulf of St. Lawrence, 14 of 40 (35%); Newfoundland, 
4 of 42 (10%); and West Greenland, 6 of 50 (12%). Except 
for the Gulf of St. Lawrence population, in which these 
haplotypes were fairly common, their observed RFs in the 
other populations were half or less of that (24%) in the 
winter sample. With the observed haplotype RFs assumed 
to be accurate, the probability is less than 0.05 that 8 of 
33 individuals with the haplotypes came from any popu-
lation other than Gulf of St. Lawrence. The conjunction 
of necessary sampling errors—higher frequencies of the 
8 haplotypes in the other populations or lower frequency 
in the stock mixture—without the presence of Gulf of St. 
Lawrence is deemed highly improbable from the Bayes 
computations. Without the posterior probabilities of stock 
identities, a search for direct evidence of the presence of 
particular populations in the winter sample would have 
been futile.

A total of 25 sets of simulated baseline and stock-mix-
ture samples of harbor porpoise mtDNA haplotypes was 
generated for each of four experiments. Sizes of the sim-
ulated samples equaled those of the actual data. The ex-
perimental conditions that were controlled include the pro-
portions from the four populations in the stock mixtures 
and their haplotype RFs. In three of the experiments, the 
Gulf of St. Lawrence population comprised 0.95 of the stock 
mixture, and the other stocks comprised equal thirds of 
the remaining 0.05. In the fourth experiment, the four pop-
ulations contributed equal parts (0.25) to the stock mix-
ture. The haplotypes of the samples were drawn with re-
placement from either the original baseline samples (0% 
addition) or augmented baseline samples for which half 
(50% addition) or all (100% addition) of the missing hap-
lotypes were replaced by singletons. The conditional maxi-
mum likelihood method was applied to each set of simu-
lated samples just as it had to the actual samples. The 
Bayes method was similarly applied, but with a single ex-
ception—a long fi xed sequence of 5000 samples (fi rst 2500 
discarded as burn-in) was generated for all sets to reduce 
processing labor. Average point estimates among the 25 
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sets of samples for each experiment—Bayes mode, Bayes 
mean, and conditional maximum likelihood (CML) esti-
mate—and their standard errors were computed (Table 3).

The main lesson of these simulations is that the Bayes 
method, as confi gured, performs reasonably well in the 
frequency sense, that is, under repeated sampling. The 
Bayes posterior mode seems to be a practical point es-
timator for population proportions in stock mixtures: it 
was less biased than the Bayes posterior mean and the 
conditional maximum likelihood estimate when the ex-
perimental conditions caused bias. As is characteristic of 
stock-mixture composition bias, uneven population contri-
butions combined with large variation in estimated con-
tributions were aggravating. When the populations con-
tributed equally (stock mixture 4), bias was negligible for 
any estimator, given the large variation of estimated popu-
lation proportions, but with unequal contributions (stock 
mixtures 1–3), the bias became increasingly severe be-
cause the haplotypes were added to the populations and 
increased the variation in estimated contributions. Lower 
bias of the Bayes mode was not without cost because its 
variation among sets of samples was generally larger than 
that of the Bayes mean or conditional maximum likeli-
hood estimate for the more-diffi cult third and fourth stock 
mixtures.

Example 2: Sashin Creek steelhead (Oncorhynchus mykiss) 
stock mixture Sashin Creek on Baranof Island in South-
east Alaska contains a population of anadromous rainbow 
trout, or steelhead, in its lower portion. In addition, a self-
sustaining population above a barrier waterfall was cre-
ated in 1926 by a transplant from the lower to the upper 
portion (which includes two lakes). Although the falls was 
a barrier to upstream migration, migrating juveniles from 
the upper portion apparently survived the plunge to the 
lower river. Samples of mature adults returning from the 
ocean, obtained from the lower portion, were compared 
with similar samples from the upper population for allo-
zymes (21 loci with 2–6 alleles per locus), microsatellites 
(10 loci with 3–26 alleles per locus), and mtDNA (5 haplo-
types). An excess of homozygotes at loci (Wahlund effect) 
provided evidence that the samples came from a mixture 
of both populations. In particular, the allozyme, PGK2, 
appeared to be fi xed (100%) in the upper population, yet 
the fi xed allele represented less than 50% of the PGK2 
alleles in the stock-mixture sample from the lower por-
tion. Biologists3 were able to infer that roughly 25% of the 
stock mixture probably originated from the upper popula-

3 Thrower, F. 2000. NMFS, Auke Bay Laboratory, Juneau, AK 
99801-8626.

Figure 2
Histograms of samples from the posterior distribution of unknown proportions of summer 
populations of harbor porpoise (Gulf of Maine-Bay of Fundy, Gulf of St. Lawrence, New-
foundland, and West Greenland) in the wintering group. 
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Table 3
Average point estimates—Bayes mode, Bayes mean, and conditional maximum likelihood (CML) estimate—and their standard 
errors (in parentheses) for 25 simulated samplings of four stock mixtures composed of harbor porpoises from the Gulf of Maine-
Bay of Fundy, Gulf of St. Lawrence, Newfoundland, and West Greenland. The haplotypes of stock mixtures were drawn from the 
original baseline samples (0%) or augmented baseline samples for which half (50%) or all (100%) of the missing haplotypes were 
replaced by singletons. Baseline and stock-mixture sample sizes were those reported by Rosel et al. (1999) and analyzed earlier in 
this section. Reported proportions do not necessarily sum to 1.0 because they are rounded.

Stock mixture Gulf of Maine-Bay Gulf of
and estimator of Fundy  St. Lawrence Newfoundland West Greenland

Stock mixture 1: 0% 0.95 0.01666 0.01666 0.01666
 Bayes mode 0.91 (0.07) 0.03 (0.02) 0.02 (0.00) 0.04 (0.07)
 Bayes mean 0.76 (0.17) 0.07 (0.11) 0.09 (0.12) 0.08 (0.12)
 CML mean 0.82 (0.09) 0.04 (0.06) 0.07 (0.08) 0.06 (0.08)

Stock mixture 2: 50% 0.95 0.01666 0.01666 0.01666
 Bayes mode 0.85 (0.15) 0.04 (0.07) 0.07 (0.11) 0.04 (0.07)
 Bayes mean 0.71 (0.20) 0.09 (0.13) 0.11 (0.13) 0.09 (0.13)
 CML mean 0.68 (0.13) 0.09 (0.10) 0.14 (0.09) 0.10 (0.09)

Stock mixture 3: 100% 0.95 0.01666 0.01666 0.01666
 Bayes mode 0.72 (0.30) 0.08 (0.19) 0.04 (0.06) 0.16 (0.27)
 Bayes mean 0.59 (0.24) 0.12 (0.17) 0.12 (0.16) 0.17 (0.20)
 CML mean 0.56 (0.13) 0.12 (0.13) 0.13 (0.11) 0.19 (0.14)

Stock mixture 4: 0% 0.25 0.25 0.25 0.25
 Bayes mode 0.25 (0.26) 0.18 (0.29) 0.21 (0.22) 0.36 (0.34)
 Bayes mean 0.27 (0.22) 0.23 (0.22) 0.24 (0.21) 0.26 (0.23)
 CML mean 0.30 (0.14) 0.21 (0.14) 0.24 (0.13) 0.25 (0.15)

tion. Their method depended on the fi xed condition of the 
locus in the upriver population: removal of about 25% of 
such mixture individuals resulted in the remainder meet-
ing Hardy-Weinberg equilibrium. This approach was dif-
fi cult to generalize to the other loci, most of which were 
highly variable. Further, the approach could not provide 
a complete description of the genetic composition of the 
lower-river population. To use the information better, all 
loci available for each type of genetic data were analyzed 
to provide a Bayes posterior distribution of the population 
proportions and their allele (allozymes and microsatellites) 
or haplotype RFs (mtDNA). Each type of genetic data was 
treated separately in order to examine the consistency of 
population composition estimates from independent data.

The stock-mixture prior distributions for the baseline 
characters required some change to accommodate the sin-
gle-population baseline. As is routine, loci were assumed 
to have been inherited independently, and their alleles 
were in Hardy-Weinberg equilibrium for either popula-
tion. However, the baseline prior parameters (βs) for each 
genetic character of the upstream population were un-
informative: their sum, the baseline prior “sample size,” 
equaled just 1, and each equaled the inverse of the number 
(Jh) of HAGs. (empirical Bayes or pseudo-Bayes methods 
for computing the prior parameters were not applicable 
with a single baseline population.) With the baseline sam-
ple counts for locus h denoted as yh = (yh1, .  .  . , yhJh)′, the 
stock-mixture prior (or baseline posterior) of HAG RFs for 
the upstream population was

π( | ) ( , , ).Q Yup up h h hJ h

h
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D y J y J
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= + +− −

=
∏ 1

1 1
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Notice that the stock-mixture prior “sample size” was the 
unit-augmented actual sample size, nh+1, where nh=Σyhj.

The corresponding downstream population stock-mix-
ture prior refl ected the even greater uncertainty in that 
population’s characteristics by a downstream stock-mix-
ture prior “sample size” equal to only 1, yet with average 
HAG RFs closely approximating those from the counts, xh = 
(xh1, .  .  . , xhJh)′, seen in the stock-mixture sample, viz. 
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The prior for population proportions, π(p), was the stan-
dard Dirichlet, D(0.5,0.5). Three chains were generated, 
beginning from diverse upriver population proportions of 
0.95, 0.50, and 0.05 (Fig. 3). The chain lengths for allo-
zymes and microsatellites were 10,000 samples with the 
fi rst 5000 discarded as burn-in. The posterior sample com-
prised the 15,000 samples from their second halves. The 
chain lengths for mtDNA were 100,000 samples and the 
posterior sample comprised the 150,000 samples from 
their second halves.
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Figure 3
The three chains of posterior samples for the unknown proportion from the upper Sashin 
Creek steelhead population present in the lower Sashin Creek stock mixture, based on 
microsatellite data. Each chain was initiated with a different value for the unknown upper 
proportion, 0.95, 0.50, and 0.05. All chains tracked to high proportions during the early 
phase and later stabilized at the equilibrium posterior distribution.

Table 4
Parameters of the marginal posterior density for the upriver steelhead proportion in the lower-river stock mixture.

 Posterior quantiles

Data Mean Mode SD 2.5% Median 97.5%

Allozymes 0.25 0.22 0.07 0.12 0.24 0.40
Microsatellites 0.24 0.22 0.06 0.13 0.24 0.37
MtDNA 0.41 0.00 0.19 0.01 0.46 0.70

The posterior marginal distributions of the upriver propor-
tion from allozymes and microsatellites were nearly identical 
and their modes (0.22) or means (0.24, 0.25) were support-
ive of the earlier approximate assessment of 0.25 (Table 4). 

Either data set points with high probability (0.95) to an up-
river population presence between 0.1 and 0.4 of the lower-
river stock mixture. The mtDNA was not nearly as informa-
tive in regard to population composition, judging from the 
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resulting posterior marginal distribution. Its standard de-
viation roughly equaled threefold, and its posterior interval 
length, twofold, that from allozymes or microsatellites.

Discussion

Analysts, accustomed to using likelihood or least squares 
methods for stock-mixture problems, should not be deterred 
by the novelty of the proposed Bayes method. Instead, the 
Bayesian implementation should be seen as eminently prac-
tical and sensible. The data augmentation algorithm rec-
ognizes each mixture individual as an entity and labels 
it with a stock origin. Given the stock assignments, the 
observed stock proportions are obvious estimates of the 
stock composition. In concurrence, the means, variances, and 
covariances of the Bayes posterior distribution for stock pro-
portions approximate closely the observed stock proportions, 
their estimated variances, and their estimated covariances, 
respectively, from frequentist methods. Given the current 
stock proportions and genetic parameters of an MCMC 
chain, the random labeling accurately refl ects the uncer-
tainty in stock origins. Each mixture individual is assigned 
to one of the baseline stocks, by using probabilities of stocks 
proportional to each stock’s contribution of its genotype to 
the mixture. Stock proportions and genetic parameters of 
the MCMC chain gravitate toward their true values because 
draws from the posterior, which integrates the baseline and 
stock-mixture information, are more probable nearby. 

One goal in developing a Bayesian method of stock-mix-
ture analysis was to replace the conditional maximum like-
lihood assumption of ignorable baseline sampling error by 
modeling that acknowledged the uncertainty in genetic com-
position of the baseline stocks. Ignorable baseline sampling 
error is especially unrealistic in applications for which un-
common genotypes are present. Stock-mixture individuals, 
particularly those with uncommon genotypes, may be con-
tributed by stocks whose baseline samples imply their ab-
sence. Current bootstrap resampling of the baseline samples 
does not accommodate reasonably this mismatch between 
stock-mixture presence and apparent absence of a genotype 
in a baseline stock. The individual is presumed to come 
from a stock different from that of the contributor. Such mis-
matches become frequent when many rare and uncommon 
genotypes occur, such as in mtDNA data. The simulations 
for harbor porpoise showed that as greater numbers of rare 
haplotypes occurred in the populations, the bias of the CML 
estimator became severe. When none of the baseline sam-
ples can explain presence of a stock-mixture genotype, the 
CML assumption leaves only an outside source. Data sets 
generated during bootstrap resampling can require an ap-
parent outside source even when the original samples did 
not. Pooling of uncommon types to circumvent their effects 
on estimation should be preceded by careful study to assure 
information useful to stock-mixture composition is not lost.

Some potential to improve stock-mixture assessment by 
Bayesian methods arises from the prior for θ=(p,Q), which 
has no counterpart in the likelihood approach. The Bayes 
proposal for stock-mixture analysis emulates the objectiv-
ity of likelihood methods by letting stock-mixture sample 

information dominate that of the neutral low-information 
prior for stock proportions. If information about p is truly 
unavailable, or the researcher prefers to withhold it and 
let the “data do the talking,” the neutral low-information 
prior will be adequate. However, the resulting composition 
estimates may be so imprecise as to be of limited practi-
cal value. If additional information is available, either cus-
tomizing the prior to include it, or updating the posterior 
(it becomes the prior) with the additional information may 
improve precision. As an example of updating, the three 
independent data sets for Sashin Creek steelhead trout 
could be integrated sequentially into a single posterior for 
population proportions.

In attempting to maintain objectivity for description of the 
uncertainty in genotypic composition of the separate stocks, 
the empirical Bayes method for specifying the baseline prior 
parameters was examined. The empirical Bayes method for 
choosing prior parameters for the haplotype, allele, or geno-
type RFs provided excessive weight to the prior mean for 
harbor porpoise, with the prior “sample size” parameter, β., 
for harbor porpoise of nearly 2000, many-fold the total of 
actual sample sizes. In addition, the empirical Bayes meth-
od consistently weighted prior means heavily on several ap-
plications examined and not reported. Information in these 
typical baseline samples is evidently inadequate for estima-
tion of the prior parameters. A full Bayesian analysis, which 
views them as random variables (sec. 5.3 of Gelman et al., 
1995), would require an informative prior for them. Because 
such an informative prior was not evident, the pseudo-Bayes 
approach (Bishop et al., 1975) was adopted.

Under the pseudo-Bayes approach, the posterior mean 
for HAG RFs of stocks interpolates between observed val-
ues for individual stocks and a baseline central value for all 
stocks, with the shrinkage, or weighting, determined by the 
values of the baseline prior parameters. The best choice for 
values of the prior parameters remains an open question. 
Possibly, the prior parameter values could be chosen for 
their performance in experiments of simulated stock-mix-
ture analyses. However, the computations involved would 
be extensive and without guarantee beforehand of a clear 
solution. This proposal included an objective criterion—
minimum squared-error risk of baseline allele RFs—by 
which to determine weighting between the prior and ob-
served HAG RFs from the baseline samples alone. Re-
searchers who fi nd choice of weighting a deterrent to ap-
plication of the Bayes method can set the baseline prior 
parameters to zero with the qualifi cation that variation of 
stock proportions may be understated as with the CML 
method. In return, the Bayes algorithm easily includes the 
information in the stock-mixture and baseline samples in 
assessing stock proportions. The simulations for harbor 
porpoise showed that the weighting from the pseudo-Bayes 
method resulted in good frequency performance. 

In many practical applications, fi sheries managers re-
quire a point estimate of stock composition. The well-
known bias of the conditional maximum likelihood esti-
mate has been troublesome for this reason. Any corrections 
for its bias have referred estimated stock proportions to 
simple one-dimensional graphical relationships between 
simulation averages and known stock proportions. The 
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simulations for harbor porpoise showed that the Bayes-
ian posterior mode had considerably less bias in situa-
tions for which the CML estimate was severely biased. The 
mode has intuitive appeal as the most frequent estimate 
from the posterior. Its promise for situations requiring 
point estimates needs to be explored by simulation in fur-
ther applications. In addition, computation of the multi -
dimensional mode requires some smoothing of the poste-
rior samples, such as the binning used here (see footnote, 
Table 1). Stock grouping, followed by summing of individ-
ual stock proportions for group totals, may also be neces-
sary because fi nding posterior modes becomes more prob-
lematic with large numbers of stocks.

The Dirichlet distribution was the basis for probability 
modeling because it is a natural choice. First, it is defi ned 
for random compositions (i.e. arrays with nonnegative 
elements that sum to one). Second, the posterior for 
multinomial data can be written in closed form and is 
also Dirichlet. Third, the prior parameters can be inter-
preted as additional data. Fourth, and last, it is easy to 
sample by computer. However, compositional data are al-
so nicely modeled with the logistic normal density (Aitchi-
son, 1986; Billheimer et al., 1998), whose fl exibility and 
relation to normal theory may have advantages in stock-
mixture analysis. Use of geographical structure for the 
stock proportions in complex stock mixtures comprising 
many stocks is an area for exploration with the logistic 
normal and Bayesian hierarchical methods.
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Appendix 1—The empirical Bayes method for 
maximum likelihood estimation of the Dirichlet 
prior parameters from the prior predictive 
distribution (adapted from Lange, 1997).

If the allele RFs at a locus for the ith stock, qi=(qi1, .  .  . , 
qiT)′, are distributed as the Dirichlet density, D(qi|β1,β2, 
.  .  . , βT), and the allele counts, yi=(yi1,…,yiT)′, in a random 
sample of ni alleles have the multinomial distribution, 
Mult(ni,qi), then the prior predictive distribution (Gelman 
et al., 1995) for the allele counts, obtained by integrating 
the product of the probability distributions, Mult(ni,qi) 
and D(qi|β1,β2, .  .  . ,βT), over the simplex, S(qi), is
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Estimation of the β’s begins with the logarithm of Equa-
tion 1, which can be viewed as the ith component of the 
loglikelihood or support function for the unknown β’s,
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The total support function for all baseline samples is the 
sum of the individual support functions at Equation 2, 
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where ψ ( ) log ( )w
d

dw
w= Γ  is the digamma function.

The elements of the information matrix are
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where the Kronecker delta is defi ned as δtu= 0 if t≠u, δtu=1 
if t=u, and 
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is the trigamma function. The observed information ma-
trix, or negative Hessian of the total support function, can 
be written as
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where D is a diagonal matrix with main diagonal ele-
ments
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1 is the unit column vector of T “1”s, and
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 is a scalar. (7)

A quasi-Newton search for the maximum likelihood esti-
mate of β=(β1, β2,…βT)′ is performed. At the kth step

 ββ ββ 1111(( ))( ) ( ) ( ) ( )[ ˜ ] ,k k k k kb+ −= + − ′1 1D S  (8)

where β(k) = the approximation of the maximum likeli-
hood estimate at the kth step,

 D(k)
 = denotes the matrix D at Equation 6 when 

evaluated at β(k),
 b̃ (k) = denotes the minimum of either the scalar, b, 

at Equation 7 when evaluated at β(k) or the 
ratio, (1–ε)/[1′(D(k)) –11] with ε being an arbi-
trary constant in (0,1), and

 S(k) = the vector of scores at Equation 3 evaluated 
at β(k).

An arbitrary choice for β(1) such as the unit column, 1, can 
be used to start the search.

Appendix 2—Minimum squared-error risk estimate 
of β. with the prior mean fi xed (an extension of sec. 
12.2.3 of Bishop et al., 1975).

Let the baseline risk criterion be the expected value of the 
squared distance of any matrix estimator of baseline RFs 
from the true values,
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where yi = (yi1, yi2, … , yiT)′ = the array of sample allele 
counts from the ith stock,

 λ = the baseline center, y=( y1,
 y2, .  .  . yT)′, 

 q̂i = (q̂i1, q̂i2, .  . . , q̂iT)′ and
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/ , , , , ,K  = the arithmetic average of 
the observed RFs of the 
tth allele among stocks.

With β. and λ viewed as fi xed, the baseline risk is

R
n

n
q

n
n q

i

ii

c

it

t

T

i
i it t

t

T

i

c

( ˆ , )

( ) .

Q Q
.

.
.

=
+







−








 +

+






−

= =

==

∑ ∑

∑∑

β

β
β

λ

1

2

2

1

2

2

11

1

The value of β. that minimizes the risk is found by set-
ting the derivative of the risk function (with respect to β.) 
equal to zero and solving. The minimizing value of β. must 
satisfy the following equation:
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The equation includes the unknown RFs, qi, and the 
observed RFs are substituted for their unknown values 
for estimation. The equation can be iterated to solve for 
the optimal β.. Beginning with an arbitrary value, β.=1, on 
the right-hand side, the fi rst revised value for optimal β. 
results on the left-hand side. This new approximation for 
optimal β. is used on the right-hand side to compute the 
next revision, and so on to convergence. If the resulting 
solution for optimal β. is less than 1, setting β. equal to 1 
seems to be a practical remedy when numerical problems 
occur in sampling of HAG RFs from their Dirichlet poste-
rior during MCMC computations. 
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