

Nuclear Physics A 595 (1995) 409-480

NUCLEAR PHYSICS A

The 1995 update to the atomic mass evaluation

G. Audi^a, A.H. Wapstra^b

 ^a Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CSNSM, IN2P3-CNRS, Bâtiment 108, F-91405 Orsay Campus, France
 ^b National Institute of Nuclear Physics and High-Energy Physics, NIKHEF-K, PO Box 41882, 1009 DB Amsterdam, The Netherlands

Received 7 November 1995

Abstract

This paper presents a complete list of "mass excesses", which is an update of the similar values in the 1993 Atomic Mass Evaluation, and a list of the isomeric transition energies which are best determined from a combination of masses. A list of new or revised experimental data for mass determination is also given. The significance of these data, and their possible deviation from earlier ones or from expectations are discussed. Adopted new procedures and policies are presented.

1. Introduction

In 1993, we published the "1993 Atomic Mass Evaluation" (Ame'93) [I]-[IV], a set of tables and graphs based on an evaluation of atomic masses from experimental data and, for a few nuclides, from values obtained by extrapolation.

The present work is the first update of those tables in a regular series as announced in Ame'93. Updates are accompanied by electronic versions of the full mass table and tables of reaction and separation energies, distributed by the newly created Atomic Mass Data Center (AMDC) and by the usual nuclear data centers as for the 1993 ones [1]. The published version of the present update contains only a full list of atomic mass excesses (M - A) (Table I) and of isomeric excitation energies (Table II), a list of new or revised experimental data (Table III), and comments on the new data and their evaluation. A list of references for these data is also given in Table III. The next update is foreseen in 2 years and will be followed by a full publication of the AME in 1999. The mass excess values given in Table I are expressed in energy units. For the precise meaning of the energy unit we refer to [IV], Section 2. Full mass values or nuclear binding energies can be calculated as described in Section 3.

In the description below quoted works that are also referenced in Table III are given in the same Nuclear Data Sheets style as there.

The cut-off date for the data from literature used in the present Ame'95 evaluation was April 30, 1995. Preprints and private communications that were received until June 30, 1995 have also been included. The final calculation was performed in October 1995.

2. New features

In Ame'93, the table of masses and of nuclear-reaction and separation energies gave values "derived from all experimental data" where available. Special tables (Table B and Table C in [I]) gave cases where, based on an analysis of systematic trends of masses, or of mass differences like decay energies and neutron and proton binding energies, we recommended to replace some particular (see Section 9) experimental data by values considered more dependable. In the present Tables I and II, these more widely used "best recommended values" for masses and isomeric excitation energies are given. Table IV lists the few new or removed cases in this category, and the consequences on the mass values if the deviating data were used. The table of masses derived from "all experimental data" is, as usual, available electronically.

The names and the chemical symbols of the elements 104 to 109 as recommended recently by the Commission on Nomenclature of Inorganic Chemistry of the International Union of Pure and Applied Chemistry (IUPAC) were used: 104 dubnium (Db), 105 joliotium (Jl), 106 rutherfordium (Rf), 107 bohrium (Bh), 108 hahnium (Hn), and 109 meitnerium (Mt). This choice is made for convenience and does not express a preference. For the elements 110 and 111 we use the provisional symbols Xa and Xb.

Among the new features in this evaluation, our policies in the treatment of isomers has been improved. As in Ame'93, we present a list of excited states involved in this evaluation (Table II). However, excitation energies following from precision γ -ray measurements are combined, where necessary, with reaction energies to the relevant state. Thus, such energies are only mentioned in remarks to the table of input data. Excitation energies obtained from combination of masses of different nuclides are best determined from the evaluation of masses. Therefore we think it useful to give, in each of our updates, a full list of those excitation energies, as we do for the ground-state masses. Section 8 is devoted to the isomer issue and discusses further our policies, illustrated by some particular cases.

In making estimates for unknown masses we take into account all available experimental information. In particular, knowledge of stability or instability against particle emission or limits on proton or alpha emission yield upper or lower limits on the separation energies.

	Mass exce	ess (keV)	Atomic m	ass (µu)
¹ n	8071.3228	0.0022	1008664.9232	0.0022
1 H	7288.96940	0.00064	1007825.03214	0.00035
² H	13135.7196	0.0010	2014101.77799	0.00036
³ Н	14949.7942	0.0015	3016049,2675	0.0011
³ He	14931.2036	0.0014	3016029,30970	0.00086
⁴ He	2424.91109	0.00095	4002603,2497	0.0010
¹³ C	3125.01081	0.00095	13003354,8378	0.0010
¹⁴ C	3019.8923	0.0037	14003241,9884	0.0040
¹⁴ N	2863.41701	0.00083	14003074.00524	0.00086
¹⁵ N	101.43823	0.00085	15000108.89844	0.00092
¹⁶ O	-4736.9983	0.0015	15994914.6221	0.0015
²⁰ Ne	-7041.9297	0.0019	19992440,1759	0.0020
²⁸ Si	-21492.7931	0.0024	27976926.5327	0.0020
⁴⁰ Ar	35039.8897	0.0039	39962383.1232	0.0030

Table A The most precise masses

3. Table of mass excesses in keV*

Table I gives values in the keV* units defined in [IV], Section 2. Only for the most precise values, it is important that they are a fraction of a ppm different from the same quantities expressed in the international volt. The masses M in mass units u, and the binding energies B in keV* can be calculated using the relations:

M = A + D/931493.86, $B = Z \times D(H) + N \times D(n) - D$

with respective approximate standard deviation errors:

$$m = \delta/931493.86,$$

$$b = \sqrt{(Z \times \delta(\mathbf{H}))^2 + (N \times \delta(\mathbf{n}))^2 + \delta^2}$$

in which D is the mass excess [M(in u)-A], in keV*, and δ its one standard deviation error, as given in Table I. In almost all cases the error contribution due to H can be neglected, but that due to the neutron makes, in a few cases, the values of B less precise than their corresponding D.

For the most precise masses the formula for calculating m is not exact. Table A gives for them values of both mass excesses and atomic masses with increased significant digits.

The uncertainties in mass differences, e.g. the β -decay energies given in [I], cannot be derived correctly from the present tables. They can be found in the tables made available electronically [1]. In all but a few cases, they differ very little from the uncertainties given in [I] and [II].

A table of correlation coefficients as in [II] is not given here but is available electronically from the Atomic Mass Data Center [1].

4. New elements and a new (semi-) magic number

Very recently, the Darmstadt group [95Ho03], [95Ho.A] and [95Ho04] announced the discovery of isotopes 269 Xa, 271 Xb and 272 Xb of the elements 110 and 111. Earlier, a Berkeley group [95Gh04] had announced the possible observation of 267 Xa. Although the reported α -particle energies probably do not belong to branches to the ground-states of their daughters, they nevertheless give information of use for getting good estimates for the masses of very heavy nuclides.

Another important discovery in this region is due to a collaboration of Livermore and Dubna physicists who found the existence of a sub-shell closure at N = 162. In a first paper they reported the observation of two new isotopes of element Z = 106 and interpreted the results as evidence for extra stability at Z = 108 and N = 162 [94La22]. And at the ENAM'95 conference, Oganessian et al. [95Og.A] reported the discovery of ²⁷³Xa, the first nuclide with N = 163, which exhibits a drastic increase of the α -energy, confirming the subshell closure at N = 162. Such an effect could be responsible for the amazing fact that the increasing probability for spontaneous fission, so evident for elements until Z = 104, is far less prominent than expected beyond this element. This closure was predicted by Cwiok et al. [2]. It is worth mentioning that, in a recent paper, Brenner et al. found, in an analysis of the first 2⁺ states in even–even nuclides, that a spherical subshell might close at N = 164 [3]. It would be interesting to repeat this analysis with the assumption of a sub-shell closure at N = 162 as observed by [95Og.A].

5. New data from mass spectrometry

5.1. Stable nuclides

Data with high precision (of the order of 1 part in 10^{10}) are reported by the MIT group [94Di.A] using a Penning-trap spectrometer. A careful evaluation of the systematic errors and analysis of the obtained data allowed this group to achieve very satisfactory internal consistency checks. Their impressive report [94Di.A] is, in this sense, recommendably complete. Yet, they should not remain unchallenged: checks by another group, at the same level of precision, are highly desirable to strengthen the validity of their mass measurements, and transform these very precise measurements into very accurate ones. Some of their results were already used in the 1993 tables and have been revised only slightly (except for the ${}^{12}C+{}^{2}H-{}^{14}N$ combination). New is the result for ${}^{28}Si$ where 2 orders of magnitude in precision have been gained compared to Ame'93. From this result follow improved values for the other stable Si isotopes. This may become important in future for the definition of the mass unit, the kg. If it is defined in terms of the atomic mass unit, by accepting a defined value for the Avogadro constant, realization of a mass standard may be best done by constructing an ultrapure Si crystal. New also is the result for ${}^{15}N$, of importance for the calibration of γ -ray

energies (see Section 6.1).

Other groups working with Penning-trap spectrometers in Ohio and Stockholm have obtained results for D, ²⁰Ne, ²²Ne and ²⁸Si (and a preliminary value for the hydrogen mass) which confirm, at their respective level of accuracies, the corresponding more precisely known masses. Also interesting is the measurement of ⁸⁶Kr [95Ca.A] improving the accuracy of this mass by a factor of 4.

Classical mass-spectrometry on stable and nearly β -stable nuclides along the "backbone" is also producing results, like the new values for Xe, obtained at Winnipeg. Their planned measurements on Hg isotopes to solve the mercury problem (Section 7 in [IV]) are eagerly awaited.

5.2. Nuclides far from stability

The nuclides somewhat removed from the line of stability, especially the most exotic ones, are of interest in helping to determine the yet poorly known trends of the masssurface, i.e. the behavior of the binding energies for large differences between numbers of neutrons and of protons. This is reflected in the excessively large deviations amongst the predictions of the models (see e.g. ref. [4]) notably along the astrophysical rprocess paths. Yet, the longest isotopic chains known with fair precision (40 keV) does not exceed 28 nuclides (for Cs) or 33 in the case of Pb (though interrupted).

We must, in the first place, mention the new Penning trap measurements [95Ha.1], [95Bo.1] on heavy Rb, Sr, Cs and Ba isotopes, obtained after the move to the new ISOLDE facility. They led to drastically improved accuracies far from stability. For the lighter Rb isotopes, the differences with earlier data on isobaric Sr mass values agree quite well with the reported values for the $Rb(\beta^{-})Sr$ decay energies. This makes it even more amazing that the Sr values do not agree so well with the reported β -decay energies of these isotopes and their daughters. The dependability of the Penning-trap measurements after dismounting and reassembly of the apparatus is assessed by the perfect agreement obtained for the heavy Cs and Ba isotopes before and after the move. In our 1993 mass adjustment, the 91 Sr(β^{-}) decay energy was already one of the three somewhat severe difficulties mentioned in Section 3.2 of [IV]. Values of 2669(10) [53Am08], 2684(4) [73Ha11] and 2704.5(3.0) keV [80De02] were reported, to which one could add the McGill value 2709(15) [83Ia02]; but the new doublets implicate a value 2730(10) keV, higher than all of them. Re-studying the three papers mentioned, we found no reason to distrust the first two, measured with magnetic spectrometers. The third was measured with a semiconductor spectrometer; but we note that the error above is the one mentioned in the abstract and that the text mentions errors of 5 and 8 keV. But even the latter does not quite cover the difference with the mass spectrometer result. This is just one example, albeit the most worrisome, of difficulties we had with the new values. Our studies, together with that of Hartmann [94Ha.A], led to a revision of some error values reported by the authors in ref. [80De02] and of the consistency factors (see below) of some other mass-spectrometric data. The decay energy of 91 Rb(β^{-}) has also been increased due to the feeding of the 93.628 keV level in ⁹¹Sr. Nevertheless, the overall consistency of the data in the A = 88-96 region leaves something to be desired.

A very recent improvement [5] in this Penning trap spectrometer allowed massmeasurements [95Be.A] of some rare-earth nuclides (¹⁴³Pm, ^{139,140,142,143}Sm and ¹⁴³Eu). The previously well determined masses are checked within the estimated uncertainties. Most interesting is the result obtained for ¹⁴⁰Sm for which in Ame'93 we gave a "recommended" mass 380 keV below the one derived from decay data: the new result agrees perfectly well with our estimate. The value obtained for ¹⁴³Eu is in very good agreement with the new result from St Petersburg [94Po26]; they both solve the earlier (slight) discrepancy among 3 β^+ -decay energies for this nuclide (see [IV], p. 294): the value of [74Ch21] is now at 3.5 σ from the adopted average. In these Penning trap experiments, contaminations give clear signatures and we can thus have confidence in the obtained results. For ¹⁵⁴Dy some doubt existed in the early analysis used here about a possible contamination, therefore we did not accept it in the present evaluation.

A new experiment by the SPEG group at GANIL has been mentioned recently [6] for proton-rich nuclides along the rp-process path, but unfortunately their analysis was not completed in time to be included in the present update. Also at GANIL, a new method using the CSS2 cyclotron [95Le.B] yielded the first direct mass-measurement of ¹⁰⁰In with a precision of 420 keV, in perfect agreement with the value found indirectly in its delayed-proton decay spectrum [95Sz01].

Last but not least, the ESR group [7] reported the measurement of a wealth of new masses in the p-rich region around Pb. They could not be used here, but it is expected that they will have an important contribution to the next update.

5.3. Mass-spectrometric consistency factors

In the past, we found reasons to increase errors reported for results obtained with classical mass spectrometers. This is not so for results reported with Penning trap instruments. Therefore, in this Ame'95 update, we no longer increase the errors reported for them. This is also true for the new ISOLTRAP measurements on Rb, Sr and rareearth nuclides: they are accompanied by some new measurements on neutron-rich Cs and Ba isotopes which agree satisfactorily with reaction and decay data. We therefore decided for the time being, to accept these Penning trap measurements as they stand, and to live with the bad consistency reported in the previous section.

We found that on-line mass measurements of the Orsay-ISOLDE group performed in the early eighties agree somewhat less good with newer data than suggested by the "consistency factor" of 1.5 that we used earlier. We felt forced to increase it to 2.5. As a result a few mass values, for the most exotic nuclides, are now given with larger uncertainties than in Ame'93.

Also the mass measurements of the St-Petersburg group with the PRISM spectrometer [8], performed until now only for 7 isotopes of Rb, do not agree well with other data, exhibiting a systematic deviation with N and a large (v/s = 4.01) average discrepancy. The calibration procedure in which elements (Zr, Nb, Mo) different from the measured Rb were used, may have resulted in different ionization locations in the source, which

may be a reason for such an effect. No other measurements with the same spectrometer have been reported since then. The necessary consistency factor CF = 4 is such that these data are outweighed by the ensemble of all the other ones.

6. New reaction and decay data

Whereas mass-spectrometric data almost always yield experimental values for masses, it is not always so for energy measurements from decays or reactions. The latter may occur between nuclides for which no mass values can be determined. If then a later experiment determines the mass of one of them, the other one follows and sometimes even more. A nice example can be found in the determination of the isomeric excitation energy of ¹⁸¹Os by the ISOCELE group [95Ro09]. The mass of the excited isomer being known from its β^+ -decay, not only the ground-state mass of ¹⁸¹Os is now known, but also the masses of ¹⁸⁵Pt from its α -decay to ¹⁸¹Os, of ¹⁸⁵Au from its β^+ -decay and of its α -daughter ¹⁸¹Ir.

Among the newly (since the Ame'93) measured ground-state masses, one may note nuclides beyond the neutron drip-line (¹⁰He and ¹⁶B) by groups at RIKEN and at HMI, and beyond the proton drip-line (¹⁰⁵Sb) by the Berkeley group; and also very neutron-rich nuclides (¹³⁴Sn, ^{154,155}Nd and ¹⁹⁹Ir) at Studsvik, Idaho and Daresbury, and proton-rich ones (⁸⁶Mo, ¹⁰⁰In, ¹³⁷Sm, ¹³⁹Eu, ¹⁵⁶Er, ^{207,208}Ac, ²¹¹Th, ^{213,214}Pa, ²¹⁹U and ^{228,229}Pu) by groups at Kyushu, Leuven, Dubna, GSI and Jyväskylä (with RITU).

Important information is also brought, as stated above, by new data not connected to known masses. Such is the case of the proton decay of ¹¹²Cs, ¹⁶⁷Ir and ¹⁸⁵Bi (Daresbury and Argonne), the β^+ -decay of ^{134,135}Pm (Dubna) and the α -decay of ¹⁷²Au (Daresbury). Also, in the region ($Z \ge 82, N \le 126$), where not so many masses are known, the several α -decay energies measured at RITU plus some others from RIKEN, LBL and GSI help map the region; they are milestones awaiting connections to the backbone of masses.

Some very heavy nuclides and more especially new elements (see Section 4) have been identified and their half-lives and α -decay energies determined. With few exceptions the observed α lines do not connect ground-states, but they still give useful information in getting good estimates of the Q_{α} energies.

6.1. Gamma-ray recalibration

The mass spectrometric result on ¹⁵N reported by the MIT group [94Di.A] (see Section 5.1) is of importance for the calibration of γ -ray energies. The change due to this result is rather larger than the uncertainty reported for the 1975 [9] value. The latter comes from notes on only one measurement left after the death of Lincoln Smith and the deviation is therefore not so surprising. Recent measurements on the ¹⁴N(n, γ)¹⁵N reaction by an Oak Ridge-Los Alamos group [94Ju.A] confirm the new value. It will lead to a recalibration of γ -rays in precise (p, γ) and (n, γ) reaction energies. On average, the energies are increased by about 6 ppm. The necessary corrections are numerous but only slight. They will be made in next update.

6.2. Proton emission

Several new cases have been investigated by groups at Argonne (Atlas), Berkeley, Daresbury and Garching. An older result on ¹²¹Pr, not included in Ame'93, was a reason to add a number of estimated mass values between this nuclide and those given in [I]. In the estimates from systematic trends, proton decays are often quite useful in changing extrapolations into interpolations!

Noteworthy is the newly reported proton energy of ¹¹²Cs which is smaller than that in ¹¹³Cs, contrary to the normal increase with decreasing neutron numbers, probably reflecting a stronger neutron-proton pairing energy. Such an inversion is also observed for ¹⁰⁸I for which an upper limit of 500 keV is reported for the energy of the emitted protons. Moreover, in the latter case, since this energy must be positive, we represented this result as a measured value.

Interesting are also the new results of [95Da.A] on proton emission from nuclides up to ¹⁸⁵Bi. The results they found for proton emission of the two isomers of ¹⁶⁷Ir, and for their α -decay chains, may lead to a series of interesting isomeric excitation energies.

6.3. Other decays and reactions

Since the Ame'93 new α -energy measurements have been performed by groups at Leuven, Oak Ridge, Daresbury, Orsay and Dubna. The number of new results on β -energy measurements from groups at Buenos Aires, Dubna, GSI, Idaho, Jyväskylä, Notre-Dame, Studsvik, and elsewhere is also quite impressive. At the same time, some β^- -decay data have been revised (see e.g. Section 9) often following a better knowledge of the decay schemes, or their errors have been re-evaluated (see e.g. Section 5.2). They are reported in Table III.

Quite important are the very precise differential reaction energies performed at Heidelberg on ⁴⁰Ar, by the Garching group on Th isotopes and also by the Tübingen-Indiana group on Hg isotopes. Thermal neutron capture γ -decays, that provide some of the most precise data, have been reported by groups at ILL and Latvia, for Ni and Ba isotopes. Among the latter we were worried by the strongly discrepant results (5.8 σ) for ¹³⁴Ba by [93Ch21] when compared to the previous ones obtained at McMaster [90Is07] and Latvia [93Bo01]. We tend to trust the work of [90Is07] in which the calibration is carefuly described, whereas [93Bo01] who obtain the lowest value give no data on calibration. We decided to provisionally not use the latter result and live with the remaining discrepancy among the other two, which is treated by the procedure described in [IV], Section 3.2.

6.4. Final levels in α -decay

In α -decay, the energy of emitted α -particles is usually measured with good accuracy. For nuclides with an even number of protons and neutrons, the strongest branch always goes to the ground-state of the daughter. Unfortunately, this is not so for other nuclides and in many cases the energy level fed by the observed α -ray is not known. One then has only a lower estimate of the decay energy (except of course when the observed α -ray originates from an upper isomeric level).

In the region of deformation, where the Nilsson model holds, the "favored" and often most intense α -decay of an odd mass nuclide feeds the level in the daughter with the same Nilsson model quantum number assignment as in the parent. Mostly, this is not the ground state. For the region above A = 225, we noticed already for our 1993 mass evaluation that the distances between Nilsson particle levels in known cases did not vary greatly. We therefore made estimates, based on these systematics, of excitation energies of final levels in cases where they were not observed. In this way, we derived what we judged to be good estimates for the α -decay energies in such cases (see [10]). The values computed with the help of such estimates (and, for the rest, with purely experimental results) were indicated with a special symbol (*) different from that used for systematics (#). This policy is generalized in this Ame'95 update.

Unfortunately, the systematics of Nilsson assignments to nuclides with odd numbers both of protons and neutrons is more complicated. We did not try to make a similar analysis for them. A first review of the deformed region A = 155-185 seems to indicate that extrapolations of excitation energies of Nilsson levels are less dependable there.

6.5. The ¹⁰Li ground-state mass

The important question of which state is the ground-state often occurs in the mass evaluation. An example is given by ¹⁰Li, which is unbound to particle emission and whose states are observed as resonances. Masses have been measured in recent experiments at MSU [94Y001] and at HMI [95B0.A]. The apparent discrepancies among their results, and also with previous studies, are due to the different selectivities of the reactions used. The mass measured by [95B0.A] at 240(60) keV above the one neutron threshold unambiguously corresponds to a 1⁺ state with the configuration of a 1p^{1/2} neutron resonance coupled to the 3/2⁻ core of ⁹Li. The main peak seen at MSU [94Y001] at 540(60) keV corresponds to a p-wave neutron resonance, and thus most probably to the 2⁺ state of the same configuration, while a much weaker 'non-conclusive' peak that would correspond to an s-wave resonance might be observed at a lower mass, less than 100 keV above threshold.

Combined results of two other experiments, at MSU [11] and at GSI [95Zi.1], give strong evidence for an s-wave strength rising towards the threshold that either could be interpreted as a final state interaction without the character of a resonance, or as a true resonance. In the latter case it would be most probably a 2^{-} state.

We accept here, provisionally and until improved measurements are performed, the proposal of P.G. Hansen [12] based on the GSI result of a true resonance with an excitation energy below 50 keV, corroborating the weak peak of Young [94Y001] mentioned above. However, the user of our tables should keep in mind that the resulting adopted value for the ground-state mass of ¹⁰Li is not final and that in the case where the s-wave strength near the threshold should be later proved not to be a resonance, the ground-state mass would be some 200 keV higher.

6.6. ⁹⁹Rh isomers

A new publication [13] confirms an earlier one of [69Ph01], that the 4.7 h 9/2⁺ isomer in ⁹⁹Rh is 64.3(.4) keV above the 16.1 d $1/2^-$ one. We had first accepted the [74An23] conclusion that the β -decay energy of the 16.1 d isomer is larger than that of the 4.7 h one; the data of [59To.A], given only in an abstract, we trusted less. Unfortunately, the J^{π} systematics (see Section 8) of ground-states and excited isomers for odd-Z, even-N nuclides in this region do not show a preference for either of the two alternatives. In view of the new result, we restudied the [59To.A] work. Their rather extensive γ - β coincidence data in combination with the modern decay scheme [14] lead to the conclusion that the decay energies calculated from the four [59To.A] β -branches agreed excellently and that the lower branches found in the singles β -spectrum by [74An23] must be considered mixtures and therefore should be given little weight. A happy consequence of the resulting changes is that some earlier bad agreements with other data almost disappear.

7. Estimated mass-values for nuclides far from stability

Quite often the users of our tables are interested in unknown nuclides that are within reach of the present accelerators and isotope separators technologies. We therefore decided to estimate values for all nuclides for which at least one piece of experimental information is available (e.g. identification or half-life measurement or proof of unstability towards proton or neutron emission). In addition, we want to achieve continuity of the set of nuclides for which we estimate mass values in N, in Z, in A and in N - Z. This set is therefore the same as the one defined for the NUBASE database [15]. As a result, the total number of nuclear ground states for which masses are given is increased from 2650 in Ame'93 to 2931. In estimating mass values for the new nuclides, some of the methods and tools described in reference [4] have been used, together with the predicted masses from the models of Groote–Hilf–Takahashi [16] and Duflo–Zuker [17], where only the spherical parts have been considered, as illustrated in Fig. 1 for the second model.

8. Treatment of excitation energies of isomers

The excitation energy of an isomer is derived either from measurement of γ -transition energies, or from a combination of reaction energies, particle decay energies and sometimes, as in the case of $^{122}Cs^m$, mass-spectrometric data. Whereas the nuclear structure evaluators are the most qualified to give values for the excitation energies of the first category, the AME can best give values for the second category. Up to now we were interested only in those isomers which were essential in deriving the ground-state masses: those cases where experimental data allowed determination of the masses of both states. If the excitation energy of the upper level was known from γ -ray measurements, its combination with the mass of the upper level lead to a more accurate value of the mass of the ground state. If not, the data mentioned presented the best available estimate of the excitation energy of the upper isomer.

Our present policy, discussed with ENSDF evaluators, is to include in our evaluation all isomers for which the excitation energy is not derived from γ -transition energy measurements (γ -rays and conversion electron transitions), and also those for which the precision in γ -transitions is not decidedly better than that of particle decay or reaction energies leading to them.

Also, to be consistent, those very precise excitation energies derived from γ -energy measurements should be treated in the AME as any other level entering a reaction or a decay relation, i.e. their value should be added to or subtracted from the measured energy to yield a ground-state to ground-state energy. Our general policy in averaging energy lines of different levels (in the same decay or reaction and in a given experiment) is to assign to the average, the error of the most precise item, instead of the error on the average, provided these errors are not dominated by statistics. This avoids giving an over-optimistic result for that decay or reaction. The new treatment of the very precisely known isomeric excitation energies permits us to apply the above policy to them also and thus to repair a slight defect in the previous evaluations.

As a consequence, contrary to the Ame'93, the table of isomers (Table II) lists only those isomers that are evaluated here.

In order to be consistent with the database NUBASE that is currently being set up by a collaboration including the present authors [15], only upper states with half-lives larger than 1 ms are strictly called isomers and labeled by appending an 'm' or an 'n' to the nuclidic name. States with shorter half-life which are essential for the mass evaluation are labelled with 'p' or 'q', as for other levels of interest.

8.1. Uncertain assignments for isomers

In some cases the value determined by the AME for the isomeric excitation energy allows no decision as to which of the two isomers is the ground-state. This is particularly the case when the uncertainty on the excitation energy is large compared to that energy, e.g.:

$$E^{m}(^{82}\text{As}) = 140 \pm 200 \text{ keV}; E^{m}(^{134}\text{Sb}) = 50 \pm 150 \text{ keV}; E^{m}(^{154}\text{Pm}) = 50 \pm 130 \text{ keV}.$$

In the above examples all three nuclides are odd-odd ones for which in general the trends in J^{π} systematics are of no help. Neither could any preference for ground-state or excited state be derived from nuclear structure data. The assignment we adopted as a general rule is such that the value for E^{m} is positive.

There are cases, though, where data exist on the order of the isomers, e.g. if one of them is known to decay into the other one, or if the Gallagher-Moskowski rule for relative positions of combinations points strongly to one of the two as being the ground-state. There are also cases where a preferred ordering could be derived from the trends of systematics in J^{π} . We take these two types of constraints into consideration. In the first case the distribution of probability is truncated and only its positive part is accepted. In the second case, the ordering suggested by systematics is accepted even if it may yield a (slightly) negative value for the excitation energy, e.g. -80 ± 190 keV for ¹⁹⁵At. Such systematics are still more useful for odd-A nuclides, for which isomeric excitation energies of isotopes (if N is even) or, similarly, isotones follow usually a systematic course. This allows to derive estimates both for the relative position and for the excitation energies where they are not known.

8.2. Some particular isomers

Isomers in ¹³⁷Pm: The possible existence of isomers may cause an uncertainty in the mass assigned to the ground-state. An example might be found in ¹³⁷Pm, for which Gromov et al. [95Gr.A] report a β^+ -decay of its 2.4 m high-spin isomer. In the isotopes of this nuclide, the $11/2^-$ levels are the upper isomers. Yet, extrapolation of their level energies, and also consideration of their half-lives, suggest that it could also be the ground-state in ¹³⁷Pm. Though no isomeric activity is known for this nuclide, we nevertheless treat its data as a decay from an isomeric state located at an estimated energy of 0 ± 100 keV to take the above uncertainty into account.

Isomers in ¹⁶⁷Ir and in its α -daughters: Another case are the α -decay sequences starting with the two isomers of ¹⁶⁷Ir [95Da.A]. Analysis of their proton decays indicates that the earlier known ¹⁶⁷Ir is in reality an upper, $11/2^-$ isomer. Its known α -decay chain involves other upper isomers, except that (as was known earlier) the last member, ¹⁵¹Tm $11/2^-$ is a ground-state. Their new data on the α -decays of the involved ground-states lead to a revision of their masses. This revision is not final; their data on the isomeric excitation energy of ¹⁶⁷Ir (as yet only known from a graph, and therefore not added yet to Table III) can only be reconciled with the data on the isomers of ¹⁵¹Tm and their α -parents in ¹⁵⁵Ho if some of the α -transitions reported for the ground-states feed low excited states in their daughters, as it is not at all unlikely.

Isomers in ¹⁹⁰**Re:** The isomeric excitation energy value derived from differences in β^- -decay energy is 210±290 keV. However it is also known from nuclear structure data [14] that the 6⁻ isomeric state should lie above the 3⁻ level at 119.12 keV, resulting in a lower limit. Theoretical estimates reported in [14] give isomeric excitation energy values of 173 and 220 keV. Thus, it seems reasonable to assume an upper limit of

300 keV. From a uniform distribution of probability in the so defined allowed range 119-300 keV, we derive an energy of 210 ± 50 keV, in agreement with all of the above information.

Isomers in ²⁴⁸**Bk:** In the Ame'93 we considered the 1⁻ isomer to be the ground-state and derived an excitation energy of 20 ± 50 keV for the 6⁺ isomer, from a combination of β^- and α energies. This result does not agree with the nuclear structure evaluation [14] where the 6⁺ state is considered as the ground-state: its long half-life (more than 9 years) places it below the 8⁻ state, which in turn should be below the 1⁻ state from the Gallagher–Moskowski rules. The excitation energy mentioned was derived from the assumption that the α -decay of ²⁵²Es (spin-parity probably 5⁻) feeds the high spin isomer in ²⁴⁸Bk. It is not to be expected, though, that the ground-states in ²⁵²Es and ²⁴⁸Bk have the same Nilsson model configurations and the α -decay to the ²⁴⁸Bk rather probably will feed a 5⁻ level above the ground state. We therefore now assume that this α -decay is followed by a transition, for which we give a reasonable energy.

9. Accidental deviations from systematic trends

It is well known that the mass-surface exhibits a very regular behavior with some superimposed "irregularities". Series of irregularities that could be observed for several Z at the same N or for several N at the same Z are considered as "structures" (shell or subshell-closures, shape transitions), whereas single irregularities could be called "accidents". Among the latter are cases where the result is derived from one, two or (in one case) three measurements of the **same** physical quantity, all diverging from the mentioned regularity and which were not confirmed by a different method. Only these cases are concerned here. They can be considered as incentives to remeasure the masses of the involved nuclei (and of their neighbors), **preferably by a different method**, in order to remove any doubt and possibly point out true irregularities due to real physical effects.

Following the new policy defined in the Ame'93 (ref. [I], Section 4), we continued and extended our work in flagging clearly these "accidents". In Ame'93, this action was limited mainly to experimental data for such cases, published in regular refereed journals. In the present Ame'95 update many data that appeared in other types of publication were similarly included with the same special flag (data-flag 'D', see Table III). This flag allowed to repeat an adjustment with them included, in order to derive Table IV-b and the series of tables of "purely experimental data" (see Section 2) that are available electronically.

In Table IV-a we give a list of updates for those deviating experimental data not checked by another method. We recommend to replace them by the values given in column 4, obtained from the regular trends of the atomic masses. Listed are not only those items that were not given in Table B of [I] but also those which are withdrawn from that table and those for which the recommended value and/or its uncertainty have changed (even slightly). Probably the most striking feature in this table is that it is

dominated by β^+ data, which was already observable in Table B of [I]. In the second part of Table IV, we give the list of the nuclides for which the mass value is changed when the data above are included in the adjustment. Column 2 gives the modified mass value, while column 3 repeats for comparison the recommended values derived from systematic trends. We discuss below some of the items in this table.

In the 90 Tc(β^-)-decay, combination of the work of Iafigliola et al. [74Ia01] with later data suggested that the reported β -endpoint belongs to a mixture of transitions to the ground-state (22%) and to the 948.1 keV excited level. This removed the earlier accident.

For ¹⁰⁸Mo, a re-measurement by the same method (β^{-} -decay) has been performed by a group in Jyväskylä and gave a result very similar to the previous one. It urged us to re-examine the surface of masses in this region to try to accommodate this constraint (see e.g. [III], figure 4). This we found not to be easy. Without making rather drastic changes, the deviation could only be decreased from 500 keV in Ame'93 to 370 keV. Now, on one hand one cannot exclude that the neighborhood of the possibly semi-magic number N = 64 plays a role. In fact, the experimental Q^{-} for the isotone ¹⁰⁹Tc (that we also label 'D') may point in the same direction. On the other hand, it sometimes happens that repeated measurements with the same method may encounter the same systematic bias. For the time being, we decided to not yet accept these two data. The situation appeals for experiments on these nuclides and on neighboring ones, more specially ^{109,110}Mo and ¹⁰⁷Nb, by a non- β^{-} -decay method.

The new measurement of the mass of 140 Sm with the Penning trap spectrometer at Isolde, in perfect agreement with our estimate, removed this case from Table IV (see Section 5.2).

Due to the work of groups at GSI and Dubna, mentioned in Section 6, the $^{156}\text{Tm}(\beta^+)^{156}\text{Er}$ decay energy is now known and determines the mass of ^{156}Er to be -64260(70) keV, a much closer value to our estimated -64100#(250) keV for this nuclide in Ame'93, thus removing this case from the list.

Two out of the three data given in Ame'93 for the β -decay of ¹⁵⁸Er have been reassigned to its daughter ¹⁵⁸Ho. The third one is in contradiction with the upper limit given by [75Bu.A] and is therefore labeled 'F'.

The new result of [94Po26] for the decay of 162 Lu, although not in disagreement with the older data, brings the average to a higher value that is not unacceptable when compared to systematics. They are thus accepted.

In the case of ¹⁷⁶Tm the data from [67Gu11] were re-analyzed leading to a decrease of the decay energy and at the same time the systematics have been revised yielding a value at only 120 keV from the re-analyzed experimental one. This item is therefore withdrawn from Table IV.

In one case, the mass-spectrometric triplet involving 204 Fr, we decided to replace the experimental value by a systematic one, not as a result of a strong deviation from systematic trends but because of the unpleasant consequences on the errors of its descendants, more particularly its grand-daughter 192 Tl for which we can give a quite accurate estimate of the mass derived from its double- β decay energy (compare [1], p. 56 and the present value in Table I).

Finally, consideration of the reports on the β^{-} -decay of ²⁰⁴Au showed that the accepted decay energy belonged to a 4 s activity whereas later only a ten times longer half-life was found connected with this nuclide. This data is now flagged 'F' and replaced by a systematic estimate.

10. General information

The table of masses (Table I) and the table of nuclear reaction and separation energies (Ref. [II]) are available electronically [1] at the "Atomic Mass Data Center" (AMDC) and at the usual nuclear data centers. A total of six files can be obtained. The first file with name **mass_rmd.mas95** contains the table of masses, as printed here plus the binding energies, the β -decay energies and the atomic masses. The next two files correspond to the table of reaction and separation energies (cf. [II]) in two parts of 6 entries each: **rct1_rmd.mas95** for S_{2n} , S_{2p} , Q_{α} , $Q_{2\beta}$, $Q_{\epsilon p}$ and $Q_{\beta n}$, and **rct2_rmd.mas95** for S_n , S_p , $Q_{4\beta}$, $Q_{d,\alpha}$, $Q_{p,\alpha}$ and $Q_{n,\alpha}$. The three last files with names **mass_exp.mas95**, **rct1_exp.mas95** and **rct2_exp.mas95** are identical to the first three ones except for the values resulting from the use of the few deviating experimental data, listed in Table B of [I] and updated in Table IV here. Most readers can best use the set of recommended tables (labelled with 'rmd') whereas the more specialized user could with benefit analyze the second set with label 'exp'.

Acknowledgements

We wish to thank our many colleagues who answered our questions about their experiments and those who sent us preprints of their papers. The help of the NNDC at Brookhaven laboratories is highly appreciated. One of us (A.H.W.) expresses his gratitude to the NIKHEF-K laboratory for the permission to use their facilities.

References

References such as 75Bu.A, 94Po26 or 95Zi.1 are listed under "References to table III" (p.470).

- [1] G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 1.
- [II] G. Audi and A.H. Wapstra, Nucl. Phys. A 565 (1993) 66.
- [III] C. Borcea, G. Audi, A.H. Wapstra and P. Favaron, Nucl. Phys. A 565 (1993) 158.
- [IV] G. Audi, A.H. Wapstra and M. Dedieu, Nucl. Phys. A 565 (1993) 193.
- [1] The six files in the electronic distribution can be retreived from the Atomic Mass Data Center (AMDC) by anonymous ftp to: csn-hp.in2p3.fr, in directory /pub/AMDC. Description of the procedures for retrieval from the other data centers can be obtained: for Western Europe and Japan, from NEA-DB, internet nea@nea.fr; for USA and Canada, from NNDC, internet nndc@bnlnd2.dne.bnl.gov; for other countries, from IAEA, Vienna; bitnet rnds@iaea1.

- [2] S. Cwiok, S. Hofmann and W. Nazarewicz, Nucl. Phys. A 573 (1994) 356.
- [3] D.S. Brenner, N.V. Zamfir and R.F. Casten, Phys. Rev. C 50 (1995) 490.
- [4] C. Borcea and G. Audi, Rev. Roum. Phys. 38 (1993) 455.
- [5] H. Raimbault-Hartmann et al., to be published in Europhysics Letters.
- [6] M. Chartier, N.A. Orr, W. Mittig, J.C. Angélique, G. Audi, J.M. Casandjian, A. Cunsolo, C. Donzaud, A. Foti, A. Lépine-Szily, M. Lewitowicz, S. Lukyanov, M. Mac Cormick, D.J. Morrissey, A. Ostrowski, B.M. Sherrill, C. Stephan, T. Suomijärvi, L. Tassan-Got, D.J. Vieira, A.C.C. Villari and J.M. Wouters, Abstracts ENAM'95 conference, Arles, June 1995, p. A7.
- [7] H. Wollnik, Oral presentation at the ENAM'95 conference, Arles, June 1995.
- [8] G.D. Alkhazov, B.N. Belyayev, V.D. Domkin, Yu.G. Korobulin, V.V. Lukashevich and V.S. Mukhin, Iz. Ak. Nauk. SSSR, ser. Fiz. 53 (1989) 2089.
- [9] L.G. Smith and A.H. Wapstra, Phys. Rev. C 11 (1975) 1392.
- [10] A.H. Wapstra, to be published.
- [11] R.A. Kryger, A. Azhari, A. Galonsky, J.H. Kelley, R. Pfaff, E. Ramakrishnan, D. Sackett, B.M. Sherrill, M. Thoennessen, J.A. Winger and S. Yokoyama, Phys. Rev. C 47 (1993) 2439.
- [12] P.G. Hansen, Nucl. Phys. A 588 (1995) 1c.
- [13] V. Ravi Kumar, V. Lakshminarayana, B.V.T. Rao, M.L.N. Raju, T.S. Reddy, S. Lakshminarayana, K.L. Narasimham, K. Premachand, B.M. Rao and R.K. Bhowmik, J. Phys. G: Nucl. Phys. 20 (1994) 441.
- [14] Nuclear Data Sheets.
- [15] G. Audi, O. Bersillon, J. Blachot and A.H. Wapstra, Proceedings ENAM'95 conference, Arles, June 1995, p. 125.
- [16] K. Takahashi, H. von Groote and E.R. Hilf, Preprint IKDA 76/26 November 1976.
- [17] J. Duflo and A.P. Zuker, Phys. Rev. C 52 (1995) 23, and private communication February 1995.

Table I. Atomic mass table

EXPLANATION OF TABLE

Α	Mass number $A = N + Z$.
Elt.	Element symbol (for $Z > 103$ see Section 2).
Orig.	Origin of values for secondary nuclides.
	$zp \ nn$: mass of ^A Z derived from mass of ^{A+z+n} (Z + z).
	Special notations:
	IT when $z = 0, n = 0;$
	+ when $z = +1, n = -1;$
	- when $z = -1, n = +1;$
	++ when $z = +2, n = -2;$
	ϵ p when $z = -2, n = +1;$
	$+\alpha$ when $z = +2, n = +2;$
	x for distant connection.
S	Flag () for nuclei for which masses estimated from system-
	atical trends are thought better than the experimental masses.
Mass excess	Mass excess $[M(in u)-A]$, in keV, and its one standard devi-
	ation error. In cases where the furthest-left significant digit in
	the error was larger than 3, values and errors were rounded off,
	but not to more than tens of keV. (Examples: 2345.67 \pm 2.78 \rightarrow
	$2345.7 \pm 2.8, 2345.67 \pm 4.68 \rightarrow 2346 \pm 5, \text{ but } 2346.7 \pm 468.2 \rightarrow 2346.2 \rightarrow 2346.2$
	2350 ± 470).
	# in place of decimal point: value and error derived not
	from purely experimental data, but at least partly from systematic trends.
	* in place of decimal point: value and error, for nuclei be-
	yond $A = 225$ derived from purely experimental data but
	including estimates of excitation energies from applica-
	tion of the Nilsson model (see Section 6.4).

426

A EI	. Orig.	S Mass (ke	excess V)	A Elt.	Orig.	\$ Mass e: (keV	<pre>kcess /)</pre>	A Elt.	Orig.	s	Mass e: (keV	kcess ')
1 n		8071.323	0.002	14 Be	x	39880	110	23 N	×		37740#	710#
н		7288.969	0,001	В	+	23664	21	0	x		14620	100
				C		3019.892	0.004	F	p-2n		3330	80
2 H		13135.720	0.001	N		2863.417	0.001	Ne	- n		-5153.64	0.25
				0		8006.46	0.07	Na			9529 49	0.21
3 H		14949.794	0.001	F	х	33610#	400#	Mg			- 5472 7	13
На		14931.204	0.001	16 0				AĬ	p4n		6767	25
					+3p	28967	22	Si	· x		23770#	200#
4 H	— n	25930	110		n	9873.1	0.8)				
He		2424.911	0.001	N		101.438	0.001	24 N	х		47040#	500#
Li	-p	25320	210		. 4-	2855.4	0.5	0	x		18970	310
				r	рчп	16780	130	F	x		7540	70
5 H	-nn	36830	950	16 B	x	37080	60	Ne	— nn		- 5948	10
Но	—n	11390	50	C	-nn	13694	4	Na	—n		-8417.60	0.22
Li	~р	11680	50	N	n	5683.4	2.6	Mg			-13933.38	0.19
Bc	x	38000#	4000#	0		- 4736.998	0.001	Al	_		-55	4
				F	_	10680	8	Si			10755	19
6 H	— 3n	41860	260	Nc		23992	20	Р	x		32000#	500#
He		17594.1	1.0	17 B	×	42720	1.40					
Li		14086.3	0.5		20-0	43720	140	25 O	x		27140#	370#
Bc	-	18374	5	N	2p=11	7871	15	F	x		11270	80
					τp	809_00	0.21	Ne	2p-n		- 2060	40
7 Hc	+	26110	30	F		1951.70	0.21	Na			-9357.5	1.2
Li		14907.7	0.5	No	+3n	16490	50	Mg			-13192.73	0.19
Be		15769.5	0.5		(244	10120	50	Al	-р		- 8915.7	0.7
В	+3n	27870	70	18 B	х	52320#	800#	Si	+3n		3825	10
			_	С	++	24920	30	P	x		18870#	200#
8 He		31598	7	N	+	13117	20					
Li		20946.2	0.5	0		782.1	0.8	26 0	x		35160#	430#
Ве		4941.66	0.04	L F		873.4	0.6	F	x		18290	120
В	4	22921.0	1.1	Ne	—pp	5306.8	1.5	Ne	++		430	50
C	4 n	35094	23	Na	x	25320#	400#	Na			-6902	14
0.114		40920	60	19 B	х	59360#	400#	Mg			- 16214,48	0.19
9 10	++	40620 24052 0	10	C C	x	32830	110	Al			- 12210.34	0.20
Ba		24955.9	0.4	i n	p—2n	15860	16		+nn		- /145	3
R		12415 7	1.0	0	— n	3334	3	r c	x		10970#	2007
с С	- 00	28913.7	2.2	F		-1487.40	0.07	3	x		23970#	300#
C	PP	20010.0	- . -	Ne	-	1751.1	0.6	27 6	v		25050	420
10 He	++	48810	70	Na	p4n	12929	12	Ne	Ŷ		20000	420
Li	—n	33050	15	20 C	x	37560	200	Na	Ŷ		5580	40
Be		12606.6	0.4	N	x	21770	50	Me	—n		- 14586-50	0.20
В		12050,8	0.4	0	— nn	3796.9	1.2	Al			-17196.83	0.13
С	_	15698.6	0.4	F		-17.40	0.08	Si	_		- 12384 43	0.16
Ν	••••	39700#	400#	Ne		-7041.930	0.002	Р	p4n		- 750	40
				Na		6845	7	S	·		17510#	200#
11 Li		40796	27	Mg	4n	17571	27	Ì				
Be	n	20174	6	110		45060 #	500 H	28 F	x		33230#	510#
В		8668.0	0.4		*	45900#	500#	Ne	x		11280	110
С		10650.5	1.0	0	20	25250	90	Na			1030	80
Ν	+3n	24960	180	E	- 50	NUO2 47.6	12	Mg	+		~15018.8	2.0
				No		5731 72	0.04	Al	— n		16850.55	0.14
12 Li	x	50100#	1000#	Na		- 3731.72	0,04	Si			-21492.793	0.002
Be	— nn	25076	15	Ma	p 3n	-2184.5	16	Р	-		7161	4
В	+pn	13368.9	1.4	Al	⊤.лı ×	26120#	300#	S			4070	160
C		0.0	0.0		~	20120#	JN K/M	CI	x		26560#	500#
N		17338.1	1.0	22 C	x	52580#	900#					
0	—pp	32048	18	N	x	32080	200	29 F	x		40300#	580#
12 0.	177	22440	500	0	— 4n	9280	60	Ne	x		18020	300
13 BC		33660	500	F	+	2794	12	Na			262()	90
Б	— nn	3125 /011	1.1	Ne		-8024.34	0.22	Mg	— 3n		- 10661	29
C N		5125.011	0.001	Na		-5182.1	0.5	Al	nn		- 18215.5	1.2
N	+ 3n	2342,40 23111	10	Mg	+nn	396.8	1.4	Si	-n		- 21895.025	0.028
U	-ru	الاليس	10	AI e:	x	18180#	90#	Р	-p		- 10951.9	0,7
				3	x	32100#	2007	S	+. ' П		-3160	30 200#
				I				G	x		10140#	2007

A Elt.	Orig.	s	Mass ex (keV	cess ')	A Elt.	Orig.	S	Mass ex (keV	cess)	A Elt.	Orig.	S	Mass ex (keV	cess)
20. 11-			222.40		24.24			20010#						
30 Ne	x		22240	820	. 36 Mg	x		20910#	900#	42 51	X		15000#	700#
Mo			8990	90 70	AI e:	×		12400	270	P e	X		17240	220
A1	4		- 15872	14		1			100		x		-17240	330
c;	т р		- 13672	0.04	r e	+		-20231	0.22		x		- 24990	110
51 D	-11		- 24452.00	0.04	3	÷Ρ		- 30003.90	0.25	Ar	— nn		- 34420	40
r e	—p		- 20200.0	0.4				-29321.89	0.06	C.	—n		-35021.3	0.3
3	+00		- 14003	200#				- 50230.44	0.25	Ca c.			- 38346.8	0.4
۲. ۲.	x		4440#	200#				-17425	8	50			-32120.9	0.4
~	*		20060#	300#		40		- 6440	40		— pp		-25121	2004
31 No			20940#	000#	50	*		1390,7#	500#		x		-81/0#	200#
JI NO	~		12440	900#	27.14-			20100#	000#	Cr	x		5990#	300#
Mo	×		3220	80	37 Mg	×		29100#	900# 540	42 D			2000#	5/V) #
A1	- <u>2</u> -		14054	20	e:	· ·		500	120	40 F	x		3080#	500#
Si	p-20		- 14934	0.07	51	n_2n		18000	40		X		-12480	840
P	-11		22240.90	0.07	r c	p-20		-10990	40		2-2-		- 24030	160
s	⊥n			1.5	3			- 20690.22	0.25		2p.5n		31980	70
CI CI	n/in		7060	50				-30948.0	0.05	С.,	+		- 30393	9
۵r			11300#	210#	v v			24700.24	0.3	Ca So			- 36406.4	0.5
~			11500#	210#		—p ⊥3n			22	- эс Т	p		-30187.0	1.9
32 No	v		37180#	880#	Ca Su	тлі х		- 13101	200#		-n2p		29320	220#
Na Na	ĉ		18300	490	SU	^		2040#	500#	Ċ.			- 18020#	250#
Mo	Ŷ		800	100	38 41			15740#	560#	U U	x		-2140#	90 7
41	Ŷ		-11060	00	- 50 Ai	ĉ		3740	270	AAD			0700#	7004
Si			- 24080 9	20	D	Ŷ		14470	140	44 P	×		9200#	700# 500#
- 51 P	n			0.10	6	* _			140		x		- 10880#	200#
ŝ	-"		- 24303.32	0.19		+		- 20601	0.11		X		- 19990	220
CI CI	_		-13331	7		-1		- 29797.96	0.11		$+\alpha$		- 32202	20
Ar			-2180	50				34714.8	0.5		+		- 33810	40
ĸ	x		20420#	500#	C.	±nn			5	Sc	_ D		-41409.1	1.9
	~		204201	500#	Sc				3(1)#		p		- 37613.0	1.0
33 Na	x		25510	1490	Т	x		9100#	250#	v v	u v		- 23850#	9.0 80#
Mg	x		5200	150		~		5100#	2004	Cr	x		-13540#	130#
AÎ	x		-8500	70	39 AI	x		20400#	600#	Mn	x		6400#	500#
Si	+n2p		-20492	16	Si	x		2140#	400#				0-1001	500#
Р	+		-26337.7	1.1	P	x		-12650	150	45 P	x		14100#	800#
S			-26586.24	0.11	s	2p-n		-23160	50	s	x		-4830#	600#
Cl	-p		-21003.5	0.5	CI	-r ·		-29800.7	1.7	Či	x		18910	650
Ar	+3n		-9380	30	Ar	+		-33242	5	Ar	+n2p		- 29720	60
к	х		6760#	200#	к			-33806.84	0.28	ĸ	+p		36608	10
					Ca			-27276.3	1,8	Ca			-40812.5	0.9
34 Na	x		32510#	1050#	Sc	2n-p		- 14168	24	Sc			-41069.3	1.1
Mg	x		8450	260	Π T	_		1230#	100#	Ti	_		-39006.9	1.2
Al	x		- 2860	90						l v	p4n		-31874	17
Si	+pp		- 19957	14	40 Si	x		5400#	500#	Cr	x		19410#	100#
Р	+pn		-24558	5] Р	x		-8340	200	Mn	х		5110#	300#
S			-29931.85	0.10	S	x		-22850	230	Fe	x		13560#	400#
CI	—р		-24440.57	0.12	CI	+		-27560	30					
Ar	+nn		-18378	3	Ar			-35039,890	0.004	46 P	x		22200#	900#
к	x		1480#	300#	К (-33535.02	0.27	S	x		- 400#	700#
Ca	x		13150#	300#	Ca			- 34846.11	0.29	CI	х		14790#	500#
					Sc	-		- 20526	4	Ar	+pp		- 29720	40
35 Na	х		41150#	1550#	Ti				160	К	+pn		-35419	16
Mg	x	•	16290#	440#	v	x		10330#	500#	Ca			-43134.9	2.4
Al	x		-60	140						Sc	— n		-41758.6	1.1
Si	2pn		-14360	40	41 Si	x		11830#	600#	Ti			-44125.3	1.1
Р	+p		-24857.6	1.9	Р	х		- 4840	470	v	_		-37073.9	1.5
S			-28846.37	0.09	S	x		- 18600	210	Cr	-		- 29471	20
Cl			-29013.51	0.04	CI	x		-27340	60	Mn	х		12370#	110#
Ar	-		-23048.2	0,8	Ar			-33067.3	0.7	Fc	x		760#	350#
к	p4n		-11167	20	к			-35558,87	0.26					
Ca	x		4440#	70#	Ca			-35137.5	0.4					
					Sc			-28642.2	0.3					
					Ti	х		- 15710#	40#					
					v	x		-240#	250#	Ì				

G. Audi, A.H. Wapstra / Nuclear Physics A 595 (1995) 409-480

A Elt.	Orig.	S	Mass ex (keV	cess)	A Elt.	Orig.	s	Mass cx (keV	cess)	A Elt.	Orig.	s	Mass ex (keV	cess)
47.5			7100#	800#	52 Ar			_ 1710#	000#	57.0			7120#	1000#
- CI	x			600#	ĸ	Ŷ		16200#	700#	Sc	Ŷ			700#
Ar	2nn		-25910	100		Ŷ		- 32510	470	- 30 Т	÷		-21390#	030#
ĸ	4p n 4n		- 35697	8	Sc	Ŷ		- 40380	230		~	•	34300#	950#
Ca	ΥP		-42339 7	23	т			- 49464	230	Ċ.	×		- 44,380	250
C.a S.o			-44331.6	2	v	-10		- 51437 4	13	Mo	+		- 32390	90
Ti			- 44931.7	1.0	, CT	-11		-55412.8	1.0	Eo	- 10		37463	
v	- 0		-42003.9	1.0	Mn	⊥ on		- 50701-1	2.4				50220 7	1.4
, Cr	⊥3n		- 34552	1.1	Eo	, bu		- 48320	10		1.0			1.4
Mn	1.00		- 22260#	160#		-			70#		20 0		- 30073.5	4.9
Fo	~ ~		-6620#	260#	Ni	<u>`</u>		- 22650#	20#	7.	21-p		47505	10
r.	^			200#	Cu	x		-2630# 	260#	Ga	x			260#
48 S	х		12100#	900#										
Cl	x		- 4800#	700#	53 Ar	х		5800#	1000#	58 Sc	x		- 15770#	800#
Ar	x		23220#	300#	к	x		~ 12000#	700#	Ti	х			700#
к	+		32124	24	Ca	x		-27900#	5(X)#	v	x		-40380	260
Ca			-44215	4	Sc	х	٠	- 37970#	300#	Cr	x		51930	240
Sc			44493	5	Ti	+		-46820	100	Mn	+		- 55900	30
Ti			48487.0	1.0	v	+p		-51845	3	Fe			-62148.8	1.4
v	~		-44474.7	2.6	Cr	-		~55280.6	1.4	Co			- 59841.4	1.7
Cr			-42815	7	Mn			-54683.6	1.4	Ni			-60223.0	1.4
Mn	х		29000#	70#	Fe	+n		-50941.3	2.1	Cu	_		-51660.0	2.5
Fe	х		18110#	100#	Co	p4n		- 42639	18	Zn			-42290	50
Co	x		1640#	400#	Ni	·x		29380#	160#	Ga	x		- 23990#	210#
					Cu	x			260#	Ge	x		- 8370#	320#
49 S	x		20500#	1000#										
CI	x		100#	800#	54 K	x		- 5600#	900#	59 Sc	x		-11140#	900#
Ar	x		16600#	500#	Ca	x		-23590#	700#	Ті	x		26120#	700#
к	+		-30320	70	Sc	x		34470	470	l v	x		-37910	330
Ca	—n		-41290	4	Т	x		45760	230	Cr	x		-47850	250
Sc			46552	4	l v	+		49887	15	Mn	+		- 55473	29
Ti			48558.0	1.0	Cr			-56928.3	1.4	Fe	—n		-60658.4	1.4
v	_		-47956.2	1.3	Mn	-p		55551.3	1.7	Co			-62223.6	1.4
Cr	+n		-45325.4	2,6	Fe	•		56248.4	1.3	Ni			-61151.1	1.4
Mn	p4n		37611	24	Co			-48005.3	1.3	Cu	p		56351.5	1.7
Fe	· x		- 24580#	160#	Ni	4n		-39210	50	Zn			47260	40
Co	х		-9580#	260#	Cu	x		21690#	210#	Ga	x		- 34120#	170#
					Zn	x		6570#	400#	Ge	x		17000#	280#
50 Cl	x		7200#	900#]									
Ar	x		-13100#	700#	55 K	x		570#	1000#	60 Ti	x		-22690#	800#
к	+		-25350	280	Ca	x		18120#	700#	l v	x		-33070	560
Ca	nn		- 39571	9	Sc	x	٠	30340#	1030#	Cr	x		-46830	260
Sc	— pn		- 44538	16	Ti	х		-41810	240	Mn	IT		-52910	270
Ti	•		-51425.8	1.0	v	+		49150	100	Fe	—nn		-61407	4
v	+n		-49217.5	1.3	Cr	—n		-55103.3	1.4	Co			-61644.2	1.4
Cr			- 50254.5	1.3	Mn			57706.4	1.3	Ni			64468.1	1.4
Mn			-42621.5	1.4	Fc			-57475.0	1.3	Cu			-58341.2	2.5
Fe	4n		-34470	60	Co			-54023.7	1.4	Zn	- pp		-54183	11
Co	x		17200#	170#	Ni	+3n		-45330	11	Ga	гг х		-40000#	110#
Ni	x		- 3790#	260#	Cu	x		-31620#	300#	Ge	x		-27770#	230#
					Zn	x		14920#	250#	As	x		-6400#	600#
51 CI	x		12600#	1000#										000/1
Ar	x		-6300#	700#	56 Ca	x		13240#	900#	61 Ti	x		16750#	900#
к	x		-22000#	500#	Sc	x		- 25470#	700#	v	x		- 30360#	700#
Ca			- 35890	90	Τ	x		39130	280	Cr	x		-42760	280
Sc	p2n		-43219	20	v	x		-4624()	240	Mn	× ×		-51740	260
TÎ	-n		- 49726.9	1.3	Cr	— nn		- 55289	10	Fe	+n2n		58917	20
v			- 52197.5	1.3	Mn	— n		- 56905 6	14	Co.	n2n		62895 0	1.6
Cr			-51444.8	1.3	Fe			-60601.0	1.4	Ni Ni	pen		64216.8	1.0
Mn			-48237.0	13		_		- 56035 0	7. 4	6	n?n		-61979 6	1.4
Fe	+ 3n		40217	15	Ni	- 00		- 530(1)	2.4 [1	Cu 7n	µ∠n ⊥3n		56342	1.0
Co	Y N		-27270#	150#	C	. Ph		- 386(1)#	140#		न-मा र		47350#	200#
Ni	x		-11440#	260#	7n	x			2641#		Ŷ			3(1).#
	~			- 30/1	Ga	n x		-4740#	260#	Δe	~ ~			600#
						^			2001π		^			~~~~
					I					1				

429

A Elt. (Orig.	s	Mass ex (keV	cess)	A Elt.	Orig.	S	Mass exe (keV	cess)	A Elt.	Orig.	S	Mass ex (keV	cess)
			25020 #	7/10 #	(0 E			44240#	700#	74 NI			49520#	7/00#
62 V	x			270		X			330	74 NI Cu	×		- 46320#	400#
UT Ma	*		-41170	260	NG NG	~		- 63486	17	- Cu 7n	^^		-65710	50
MII	X		46470	15		.1.		-65540	50	Ga	τµγ ⊥		-68050	20 70
re Co	+pp		-61428	20	7n	т		-70004 0	16	Ge	Ŧ		-73422 ()	15
NG	Ŧ		-66742 7	1.4	Ga	_			2.0	As			-70859.6	2.2
Co	_		-62795	4	Ge			-66977	6	Se			-72212.6	1.5
Zn			-61167	10	As	_		- 58880	100	Br			65306	15
Ga	- Tun		-51996	28	Se	x		-54150#	300#	Kr	4n		-62170	60
Ge	x		-42240#	140#	Br	-n		38890#	540#	Rb			-51730	720
As	x		-24960#	300#	(0 E-	, r		20400.4	0004	Sr	x		-40700#	500#
(2.5)			21660#	0004	69 FC	x		- 3940)# \$1050	370	1				
63 V	x		-21000#	700#		20.0		51050	370	75 Ni	x		43810#	800#
Ur Ma	X		- 35550#	100#	Cu	2p=1		- 00380	140	Cu	х		-54310#	500#
IVID Ex	X		-40750	100	70	÷μ		-68414.9	17	Zn	+		-62470	70
FC Co	×		-61837	20	Ga			-69321	3	Ga	+p		-68464	7
Ni	тр		-65509.2	14	Ge			-67094	3	Ge	-n		-71855.9	1.5
Cu			-65576.2	1.4	As				30	As			-73032.5	1.6
Zn			62209.3	2.1	Se			- 56300	30	Sc			72168.8	1.5
Ga	_		- 56690	100	Br	- p		-46410#	310#	Br			69139	14
Ge	x		-46910#	200#	Kr	x		-32300#	500#	Kr	+3n		-64242	15
As	x		-33820#	500#	70.0			1/3C0 #	700 #	Rb			- 57222	8
4.0			222504	700#	10 Co	x		-46/50#	700#	Sr	x		46650#	300#
64 Cr	x			700#		x		- 59490	330	74 11			41410#	0004
Min	x		- 45100	280	7n	+		-02900	3	76 NI	x		-41610#	900#
re Ca	X			200				- 09339	3	- Cu 7-	x		-~ 50310#	600#
NG	+		67005 0	20	Ga			- 70560 3	17	Zn	+		-62040	120
Cu				1.4	As	_		-64340	50	Ga	Ŧ		- 002(0)	90
Zn			65999.5	1.4	Se	_		-61940#	210#	40			73212.9	1.5
Ga	_		58835	4	Br	_	٠	-51590#	360#	50			-75251.6	1.0
Ge	_		- 54420	250	Kr	x	•	-40980#	400#	Br	_		-70289	9
As	-p		- 39520#	360#	71.0			110(0#	000.0	Kr	+nn		-68979	ú
<i>(</i> 6 <i>C</i> -			17600#	000#		x		- 44960#	270	Rb			-60481	8
65 Cr	x		- 27000#	900# 560		x 20		- 53890	370	Sr	х		- 54390#	300#
Min	x		- 40690	280	70	p 2n		-67322	40					
re Co	3020		- 59164	13				-70136.8	18	77 Ni	x		- 36490#	1000#
Ni			-65122.6	15	Ge			-69904.9	17	Cu	x		- 48480#	700#
Cu			-67259 7	1.5	As			-67892	4	Zn	+		- 58600	130
Zn			-65907.8	1.7	Sc	_	٠	63090#	200#	Ga	+		-65870	60
Ga	-p		-62652.9	1.8	Br		•	- 56590#	300#	Ge	-n		-71214.1	1.8
Ge	€P		-56410	100	Kr	x		-46100#	300#	As			-73916.2	2.2
As	-p		47060#	390#	Rb	x		-32300#	500#	Se			-74599.0	1.5
Se	x		-32920#	600#	72 60	v		_ 40600.#	800#	Br			-73234	3
66 Mn	×		- 36500#	700#	Ni Ni	×		- 54680	470	Kr			-70171	9
Ee	×		- 50320	330		x			200#	RD S-			-64826	150
Co	Ŷ		- 56050	270	Zn	+		-68128	6	ST V	εp		-57970	300#
Ni	ň		- 66029	16	Ga			-68586.5	2.0	1 1	^		-40950#	500#
Cu			-66254.3	1.7	Ge			-72585.6	1.5	78 Ni			-3372()#	1100#
Zn			68896.3	1.5	As	_		-68229	4		Ŷ		-43960#	800#
Ga	_		63721	3	Se	+nn		-67894	12	Zn	+		-57220	160
Ge	_		-61620	30	Br	+n		- 59150	260	Ga	+		-63660	80
As		•	-51820#	200#	Kr	-		- 54110	270	Ge	-nn		-71862	4
Se	x		-41720#	300#	Rb	x		-38120#	500#	As	+pn		-72816	10
67 Mn	x		33700#	800#	73 Ni	x		- 50230#	600#	Se	•		-77025.7	1.5
Fe	x		- 46570	470	Cu	x		- 59160#	300#	Br	_		-73452	4
Co	x		-55320	280	Zn	+n2p		65410	40	Kr			- 74160	7
Ni	+n2p		-63742	19	Ga	+p		- 69704	6	Rb			-66936	8
Cu	+		-67300	8	Ge	• P		-71297.1	1.5	Sr	х		-63175	8
Zn			-67877.2	1.6	As			70956	4	Y	x		5263()#	400#
Ga			-66876.7	1.8	Sc			68216	11	1				
Ge	-n2p		62654	5	Br			-63530	130					
As			- 56640	100	Kr	€p		- 56890	140					
Sc	x		-46490#	200#	Rb	—p		- 46230#	480#					
Br	x		-32800#	500#	Sr	x		-31700#	600#					
										•				

A Elt. (Orig.	S	Mass exe (keV)	cess	A Elt.	Orig.	s	Mass exe (keV)	cess)	A Elt.	Orig.	S	Mass ex (keV	cess)
			41660#		84 Ga			#	600#	80 4 5				600#
79 Cu 7n	*		- 41000#	270#	64 Ua Go	×		- 444(0)# - 584(Y)#	400#	07 A5 Se	×			300#
C»	, +	•	-62490	120	As	x		66080#	300#	Br	÷		-68570	500# 60
Ga	т 		-69490	<u>a</u> n	Se	^		- 75950	15	Kr			76720	50
Ac	- T		73636	6	Br			_73736	25	Rh	'			50
6.	τp		75016 0	1.5	ы К.			82431	2.7	Sr.			-86207.0	2.2
Dr.	-0		76068 0	1.0	RI Ph			- 79750	3	v v			-87702.1	2.2
BI Ka			- 70,08.0	1.5	К0 Ст				3	7r				2.0
				7	31 V			74140		Zi Nb	-2-		- 64609	
R0			10191	0	7-	_		74100	2014	Mo	µ211		~ 30,580	40
ar V	x		-03477	9		*		- /1490#	2(10)#	To	+50		- 73003	15
1			- 38300	450	Mo			-01000#	400#				50510#	500#
Zr	x		-47500#	40,07	MO	*			40.74	Rh	x		-47150#	500#
80 Cu	x		-35500#	900#	85 Ge	x		- 53380#	500#	90 Se			- 5643()#	400#
Zn	+		-51780	170	As	х		- 63520#	300#	2/3C Br	,		- 50450# 64610	80
Ga	+		- 59070	120	Se	+		-72429	30		+		-04010	10
Ge			- 69448	23	Br	+		78611	19		Ŧ		-70355	19
As			-72118	21	Kr			-81480.6	3.0	r.				, , , , , , , , , , , , , , , , , , , ,
Sc			-77759.4	1.9	Rb			-82167.7	2.3					2.1
Br			-75888.8	1.9	Sr			-81103	3				- 00401.9	2.5
Kr			-77893	4	Y	_		77848	25					2.2
Rb			-72173	7	Zr	-		-73150	100	IND	••••		- 82637	5
Sr	х		70305	8	Nb	_		-67150	220	MO To	-		- 50105	240
Y	-	•	-61170#	400#	Mo	x		59070#	400#		_		-/1210	24()
Zr	x		-55380#	300#	Тс	x		47560#	500#	Ru	x			400#
¥1 7n	v		- 46130#	400#	86 Go	×		- 50050#	600#	91.50	x		50890#	5(11)#
Cu	×		- 57080	100	Ac 10	,		- 594(Y)#	400#	Br				70
Ga	-		-66300	120	Se	+		-70541	16	Kr	+		-71310	60
4 0	+n		- 72533	6	Br	+		-75640	10	Rb			77748	8
Se			-76389 1	20	Kr			-83265.9		Sr			83639	6
Br			-77974 4	2.8	Rb			- 82747 3	2.3	Y			-86346.3	2.8
Kr			-77693.6	2.9	Sr			-84521.6	2.2	71			-87891.1	2.2
Rb			75456	6	Y Y	_		-79282	14	Nb	-		86638	3
Sr	x		71527	8	Zr	4n		- 77810	30	Mo	+n		- 82204	11
Y Y	_		-66020	60	Nb	_		- 69830	90	Тс	-		- 75980	200
7r	_		- 58860	300	Mo	_		- 64560	440	Ru	€D		- 68580	500
Nb	x		-47460#	400#	Тс	x		~ 53210#	300#	Rh	x		- 59100#	400#
					l					Pd	x		~47060#	600#
82 Zn	x		-42070#	400#	87 As	x		- 56280#	500#	92 Sc	x		-47200#	600#
Ga	x		52950#	300#	Se	+		66580	40	Br	+		-56580	50
Ge	+		65620	240	Br	+		- 13857	18	Kr	+		68788	12
As	+		- 70320	200	Kr			-80/10.0	1.3	Rb			74775	7
Sc			-77593.4	2.1	Rb			-84595.0	2.5	Sr			- 82875	7
Br			-77495.9	2.8	Sr			-848/8.4	2.2	Y			-84815	9
Kr			-80588.6	2.6	r a.			- 83016.8	2.6	Zr			- 88454.6	2.1
Rb			- /6189		Zr	+.9N		- 79348		Nb			-86449.0	2.7
Sr			/6009	100	ND	-		- 74180	220	Mo			-86805	4
Y	-		-08190	510	MO	_		-67690	220	Tc	-		-78935	26
Zr	_		- 64190	2004	10	X		- 39120#	200#	Ru	x		74410#	300#
ind	X		- 32970#	3(1)#	Ku I	*		-47540#	6.0#	Rh	x		-63360#	400#
83 Ga	x		49490#	500#	88 As	х		-51640#	600#	Pd	х		55500#	500#
Ge	x		-61000#	300#	Se	+		-63880	50	93 Br	х		-53000#	300#
As	+		- 69880	220	Br	+		-70730	4()	Kr	+		64030	100
Se	— n		- 75340	4	Kr				13	Rb			72626	8
Br			- 79009	4	Rb				4	Sr			-80088	8
Kr			- 79982	3	Sr			-87919.7	2.2	Y			84224	11
Rb			- 79073	6	Y	~			2.7	Zr			-87117.4	2.
Sr			- 76797	9	Zr	+nn		83624	10	Nb			-87208.7	2.2
Y	_		-72330	40	Nb	-	•	76420#	200#	Mo			- 86804	4
Zr	-		-66460	100	Mo	4n		-72701	20	Тс	p		-83603	4
Nb	-		- 58960	310	Tc	x		62570#	300#	Ru	_		77270	90
			-47750#	500#	Ru.	x		555(Y)#	500#	Rb	x		-69170#	400#
Мо	x		477200	2000	1 10	~		555664	0000	1 101			071701	1000

A Elt.	Orig.	S	Mass exe (keV)	cess)	A Elt.	Orig.	s	Mass ex (keV	cess	A Elt.	Orig.	S	Mass ex (kcV	cess)
			479004	400#	00.05			50840	150	102.57			47550#	5(1)#
94 BT	× +		-47800# -61140#	4K/0# 3(Y)#	99 KU Sr			- 50640	140	105 SI Y	×		47550#	300#
Rh.	т		-68551	9	v v			-70202	24	, 7r				110
Sr			-78842	7	Zr			-77769	20	Nb	+		-75320	70
Ŷ			-82350	8	Nb			-82327	13	Мо	+		- 80850	60
Zr			-87266.3	2.3	Мо			-85966.1	1.8	Тс	+p		84599	10
Nb			-86364.9	2.2	Тс			-87323.3	1.9	Ru	•		-87258.9	2.0
Мо			-88410.3	1.8	Ru			-87617.0	2.0	Rh			88022.3	2.8
Tc	-		- 84155	4	Rh			-85574	7	Pd			-87479.2	2.9
Ru	+nn		-82568	13	Pd			-82188	15	Ag			84792	17
Rh	IT		72940#	450#	Ag	-		76760	150	Cd			80650	15
Pd	х		-66350#	400#	Cd	x		-69850#	210#	In	-		74600	25
Ag	x		-53300#	500#	In	х		-60910#	500#	Sn	x		66950#	300#
95 Kr	x		- 56040#	400#						Sb	x		55780#	500#
Rh			-65839	19	100 Rb	x		- 46700#	300#					
Sr			-75117	8	Sr	+		-60220	130	104 Sr	x		44400#	700#
Y			-81204	8	Y	+		-67290	80	Ŷ	х		54540#	400#
Zr			-85657.6	2.3	Zr	+		- 76600	40		x		66340#	40.0#
Nb			-86782.5	1.9	ND	+		- 19939	26	ND M-	+		/2230	110
Мо			-87708.1	1.8	М0 Т.			-80184	0		+		80330	60 60
Тс			-86017	5		-"		40010.4	2.2	P ₁₁	+		- 82490	50
Ru			- 83450	12	Ru Rh	_			2.0	n Ku Rh	_n		~ 86950 0	28
Rh	-		- 78340	150	Pd			-85227	11	Pd	-11			5
Pd	х		- 70150#	400#	Ao			-78180	80	Ap	_		85112	6
Ag	x		-60100#	400#	Ca			-74310	100	Cď	+nn		- 83976	10
96 Kr	x		- 53030#	500#	In			-64130	380	In			76070	140
Rb			-61214	26	Sn	_		56860#	430#	Sn			-71550	150
Sr			-72954	25						Sb	$+\alpha$		59350#	360#
Y			-78341	22	101 Rb	+		-43600	170					
Zr			-85441	3	Sr	+		-55410	120	105 Y	x		51150#	500#
Nb	+		- 85604	4	Y	+		-64910	100	Zr	x		-62360#	400#
Мо				1.8	Zr	+		-73460	30	Nb	+		70850	100
Tc	-		-85818	5	Nb	+		- 78943	19	Mo	+		77340	70
Ru			-86072	8	Мо			-83512	6	Tc	+			60
Rh	-		-79626	13	Тс			- 86336	24	Ru				4
Pd	-		76180	150	Ru				2.0	Rh Rh				2
Ag	x		-64570#	400#	Kn Ri	+nn		-8/408	10	Pa			- 88414	5
Ca	x		- 36100#	500#	Pu	-		- 63426	100	Ag Cu			- 67006	11
97 Kr	x		-47920#	500#	Ag Ca			75750	150				- 64350	17
Rb			- 58365	28	in Cu			- 68410#	300#	Sn	+0		- 73220	- an
Sr			-68792	19	Sn	x		59560#	500#	Sb	-n		-63780	150
Y			-76260	12	011	~		575001	5001		۲		00,000	100
Zr			82949	3	102 Rb	x		38000#	500#	106 Y	x		-46370#	700#
Nb				2.6	Sr	+		-53080	110	Zr	x		59700#	500#
Mo			-87540.8	1.8	Y	+		-61890	90	Nb	x		66890#	300#
TC D			-87221	2	Zr	+		-71740	50	Mo	+		-76257	22
RU Dh	-1		~~ 60112 82500	40	Nb	+		-76350	40	Тс	+		-79777	14
RI DJ			- 62390	40 200	Mo	— nn		-83558	21	Ru	+		86324	8
Fu Ao	~		-70790#	400#	Tc			- 84568	9	Rh	+		- 86364	8
Cd	×			400#	Ru			89097.9	2.0	Pd			89905	5
cu	~			π ,λ/π	Rh			- 86775	5	Ag			86940	5
98 Rb			-54300	30) Pd			-87926	_3	Cd			-87134	6
Sr			-66629	26	Ag	-		-81970	70	ln				14
Y			- 72452	24	Cd	-		-79380	70	Sn			- 77430	210#
Zr			81276	20	In	_		- /0130	390	SD To	$+\alpha$	•	00300#	310#
ND	—pn		83526	6	Sn	x		-64/50#	400#	l ie	$-\alpha$		58050#	40.0#
MO To			- 86412.0	1.8	1					1				
1C P.u				4	1					1				
Rh			-83167	12						1				
Pd	- 00		-81300	21]									
Ag	PP ~~		-72880	150										
Cd	~		-67460#	210#										
In	x		-53800#	500#										
					1									

		_												
A Elt.	Orig.	S	Mass exe (keV)	cess)	A Elt.	Orig.	s	Mass exc (keV)	cess	A Elt.	Orig.	S	Mass ex (keV	cess)
107 75			55000#	600#	111 Mo	×		-61000#	500#	115 Te	v		_ 57490#	700#
107 Z.I Nib	×		- 55050#	400#		Ŷ			400#	Pu Pu	Ŷ		- 57450#	600#
Mo	,		72040	160	D.,	÷.		05820#	300#	Dh	^ _			500
MO	+		72940	100		×		- 70790# 82200#	210#	RII Dal	- T			40
	+		- 79100	100	Rn DJ	x		- 62290#	210#	Pu	+		- 80400	20
Ru	+		83920	120	Pa	+		-80030	40	Ag	+		- 84990	30
Kn			-80801	12	Ag	+		-88217	3	. Ca			- 88090.9	2.8
Pa			-88372	0	Ca			89254.2	3.0	In			- 89537	4
Ag			- 88405	6	In			- 88389	2	Sn			~ 90032.6	3.0
Cd	-		- 86988	/	Sn	+n		85944		Sb	-		-87003	20
In	-		-83562	13	Sb	-	•	80840#	200#	Te	n .		82360	110
Sn			-78560	90	Te	εp		- 73480	70	I	2pn	•	- 76460#	470#
Sb	Х		-70650#	300#	1	$-\alpha$		64950#	300#	Xe	€p	•	-68430#	240#
Te	$-\alpha$		-60510#	300#	Xe	$-\alpha$		54370#	300#	Cs	<i>a</i>		- 59670#	430#
108 71	x		51900#	700#	112 Mo	×		58830#	600#	ва	X		-48710#	00.0#
Nb	ĉ		- 60540#	500#	Te	Ŷ		65910#	500#	116 Ru	x		-65060#	700#
Mo				200#	Pu Pu	Â		75870#	540#	D N D N			-71060#	5(¥)#
To	+	•	/ 1190#	130		+		-79540#	5(Y)#	Dd	т	•	- 70060	60
10 D.,	+		-73940	120		Ŧ	•		19	Fu	т +		- 82570	50
RU	+		- 65000	110	ru Aa				17	ng Ca	Ŧ		- 82770	2
KA DJ	+		- 83020	110					17	Lu In				3
Pa			- 89522	4				-90581.0	2.0				- 66230	4
Ag	—n		-87604	o ć	IN 6-			-87995	3	50 CL			-91524.7	5.0
Ca			-89255	10	511			00039	4					0
In			-84100	4()	50	_		81004	25	le le			- 63510	90
Sn			82000	40	le			- //260	170	1	-	•	- 77560	140
Sb	x		-72510#	210#	1	$-\alpha$		-6/100#	210#	Xe	-	•	- 72900#	250#
10	$-\alpha$		-65680	260#	XC Ca	$-\alpha$		~ 59930	150	US Do	v		- 62490	300 500#
1	р		- 52620#	300#	CS .	p			.7,6/#	Ба	^		- 54.5.0#	500#
109 Nb	x		-58100#	500#	113 Mo	x		54000#	600#	117 Ru	x		60740#	800#
Мо	х		-67250#	300#	Тс	x		63970#	600#	Rh	x		-69540#	600#
Τc	+	•	-74870#	210#	Ru	х		- 72150#	500#	Pd	x		76530#	300#
Ru	+		- 80850	70	Rh	x		78790#	400#	Ag	+			50
Rh	+p		-85012	12	Pd	+		- 83690	40	Cd	<u>-</u> n		86426	3
Pd			-87604	4	Ag	+		- 87033	17	In			88943	6
Ag			-88720	3	Cd			- 89049.9	2.8	Sn			90398.0	2.9
Cd			- 88505	4	In			- 89366	3	Sb			- 88641	9
In			86485	6	Sn			-88330	4	Te			-85107	19
Sn	+3n		-82636	10	Sb	-p		-84414	22	1			- 8()44()	70
Sb	_		-76256	19	Te	-	•	78310#	200#	Xe			73990	180
Те			-67570	70	1	$-\alpha$		-71120	50	Cs	IT		66470	50
1	P		- 57570	150	Xe			-62050	90	Ba	€p	•	56950#	650#
					Cs	-p		-51660	150	La	x		46570#	890#
110 Nb	x		- 53390#	600#										
Мо	x		-65460#	400#	114 Tc	x		- 59730#	600#	118 Ru	х		58660#	900#
Tc	х		-71360#	400#	Ru	+	•	- 70790#	360#	Rh	Х		65740#	700#
Ru	+		-80140	230	Rh	+	•		300#	Pd	+			210
Rh	IT		- 82950	220	Pd			-83494	25	Ag	+		- 79570	60
Pd			- 88350	11	Ag			- 84945	26	Cd	nn		86709	20
Ag			87458	3	Cd			~90021.3	2.8	In				8
Cd			-90349.7	3.0	In			- 88569	3	Sn			-91653.1	2.9
In			86472	12	Sn			90558	3	Sb			87996	4
Sn	+nn		-85835	16	Sb	-			200	Te			87723	16
Sb	-	•	77540#	200#	Te	-εα	•	- 81920#	200#] [80
Te	$-\alpha$		-72280	50	1	x		-72800#	300#	Xe	+		-77710	1000
I	$+\alpha$	•	-60350#	310#	Xc	$-\alpha$		66930#	210#	Cs	IT		- 68414	13
Xe	$-\alpha$		-51720#	400#	Cs	εp	•	54570#	310#	Ba	х		62000#	500#
					Ba	x		-45700#	450#	La	x		49770#	8(X)#

A Elt.	Orig,	S	Mass ex (keV	(cess ')	A Eit.	Orig.	s	Mass ex (keV	cess)	A Elt.	Orig.	s	Mass cx (keV	cess)
110 Bh			(20.40.#	8004	122 D.4			(1240#	(00#	102.4			50000 H	
119 Kn	x			300#	125 PG	x			200#		x		- 58800#	500#
ru Ag	X		- 72020#			×		-09900#	40		+			40
Cd	+		- 83910	90 80	In	+ +		- 83426	24	Sn Sn	+		- 83508	25
In	т		-87704	8	Sn	т		- 87819 5	24	Sh Sh	т +		-85308	23
Sn			-90067.2	28	Sh			-80222 5	2.7	30 To	Ŧ			2
Sh			- 80473	¥.0	Te			- 80160 2	1.8				- 88250	3
- 50 Te			-87180	8				-87935	1.0	X0			- 88325	4
I			-83670	60	Xe	_			15				-86240	4
Xe			78660	120	Cs			-81049	12	Ba	_			100
Cs			-72311	14	Ba	x			300#	11	x		-78100#	220#
Ba	€D		-64220	1020	La	x		68710#	400#	Ce	x		-71960#	300#
La	-р х		54970#	700#	Ce	x		-60070#	500#	Pr	x		-64430#	400#
Ce	x		- 44000#	900#	Pr	x		50340#	700#	Nd	x		-55420#	600#
120 Rh	x		59820#	8(X)#	124 Ag	x		-66570#	400#	128 Cd	+		67290	290
Pd	x		- 7077 0#	400#	Cd	+		-76710	60	In	+		-74360	50
Ag	+		-75650	70	In	+		- 80880	50	Sn	+		-83336	27
Cd	$+\alpha$		-83973	19	Sn			-88236.1	1.4	Sb	IT		-84610	25
In	+		-85730	40	Sb			-87618.6	2.0	Te			- 88993.6	1.8
Sn			-91103.3	2.5	Te			-90523.1	1.5	I			-87742	4
Sb			88423	8	1	_		-87363.5	2.4	Xe			- 89860.8	1.4
Te			- 89405	10	Xc			-87657.5	2.0	Cs			- 85932	6
I	-		-83790	18	Cs			-81743	12	Ba			-85410	11
Xe	-		-81830	40	Ba	х		- 79095	14	La			-78760	400
Cs			73888	10	[La	х		70300#	300#	Ce	х			300#
Ba	-		- 68890	300	Ce	х		64720#	500#	Pr	x		-66320#	400#
La	x		- 57690#	600#	Pr	х		53130#	600#	Nd	x		-60180#	600#
Ce	x		-49710#	800#						Pm	x		-48200#	900#
					125 Ag	x		- 64700#	400#					
121 Rh	x		- 57680#	900#	Cd	+		-73360	70	129 Cd	х		-63100#	400#
Pd	x		-66900#	500#	In	+		80480	30	In	+		-72980	130
Ag	+		74660	150	Sn	n		-85897.8	1.5	Sn	+		- 80630	120
Cd	+		-81060	80	Sb	+		-88261.1	2.8	Sb	+			21
In	+p		-85838	27	le			-89027.8	1.9	Te			87006	3
Sn			-89202.8	2.5		-		-88842.0	1.9	I			- 88504	3
SD To			- 89592.9	2.3	Xe			-87189.5	2.0	Xe			- 88697.4	0.8
ie I				25	Cs D			-84091	8	Cs			-87501	3
I Va			- 80288	24	Ва	_		- 79530	250	Ва			-85070	11
AU Co	+ IT		- 82343	24		x		- /3900#	300#		-			50
D _n			70240	200		×		-00370#	400# 500#	D-	_	•	~ /6300)#	210#
Da La	ep		- 62400#	500#		*		-37910#	500#	I PT	×		09999()#	300#
Ce	Ŷ		- 52470#	700#	126 4.0	~		-61010#	400#	- Dm	εþ	•		200#
Pr	0			800#	120 Ag	^ _		-72330	50	1 111	^		-52950#	000#
	-P		-41500#	0000	In	- T		-77810	40	130 Cd	×		-61500#	A(Y)#
122 Pd	x		-65390#	500#	Sn			- 86020	11	In	, +		-70000	50
Aø	x		-71430#	210#	Sh	_		864(0)	30	Sn	, +		80246	20
Cd	x		-80570#	210#	Te			-90070 3	19	Sh	+			25
In	+		-83580	50	1			-87915	4	Te			-87352.9	19
Sn			-89944.9	2.7	Xe	_		-89173	6				-86933	3
Sb			-88328.5	2,2	Cs			84349	12	xe			-89881.8	0.9
Te			-90311.1	1.9	Ba	x		82676	14	Cs			- 86903	8
1			- 86077	5	La	x		75110#	300#	Ba			-87271	7
Xe	+		-85190	90	Ce	x		70700#	400#	La	х		-81670#	210#
Cs			-78132	16	Pr	x		60260#	500#	Ce	2p-n	٠	- 79460#	610#
Ba	x		-74280#	300#	Nd	x		-53030#	700#	Pr	, х	•	-71370#	300#
La	х		-64540#	500#]					Nd	x		6634()#	500#
Ce	x		- 57740#	600#						Pm	x		55470#	700#
Pr	x		-45040#	800#						Sm	x		-47850#	900#

.

A Elt.	Orig.	S	Mass exe (keV)	cess)	A Elt.	Orig.	S	Mass ex (keV	cess)	A Elt.	Orig.	s	Mass ex (keV	wess /)
131 In	1.			80	135 Sp			- 608(0)#	400#	120.55			60570#	
Sn	+		77390	70	Sh			-69710	110	1.59 SU	×		- 50570# 60800#	A(X)#
Sh	+		- 82020	70	- Te	+		-77830	- 110 - 00				-00800#	40.04
Te	n		-85211 3	2.0	1	Ŧ			23	Yo	+			.30 21
1	+		87444 8	1.1	Xc				10		Ŧ		~~ 75050	21
Xe	,		-88415.6	1.0					3	D _n			- 80107	4
C.				5	Ba			-87855 9	3.0	1 Da			- 64919.3	3.0
Ra Ba			- 86603	7				-87855.9 86656	10	La			-67230	3
Da La	_		- 83730	um (Co	_		- 600.00	10	De CC	_			8
Ca	_			410	Dr.	-		- 64030	150	PT NA			84829	8
- C¢	-		- 79/10	410		_		- 0.910	210#	ING Du	_		- 82040	50
FI NU	_		- 74400	440	Bm	17		- 70100#	210#	Pin Sm			~~ //340	60
Dwo	_		-079(k) 509(V)#	400	Fin Sm			- 70220#	520#	Sm E.	x		- 12313	15
r	*			000#	511	*		63020#	200#	Eu	-	•		150#
211	х		- 3(14(1)#	9.0#		x		- 54290#	000#		x		-57680#	500#
122 1-			624(X)	70	176 8-			ECENT #	500.4	10	x		-48410#	/00#
1.52 m	+		-62490	70	136 50	x		- 565(0)#	500#	. 40 . 77				
Sn	+		- 70021	26	50	x		-64590#	300#	140 16	х		-5/100#	500#
50	+		- /9/24	25				- 74420	50		x		-64080#	210#
IC	+		-85210	11				- 79500	50	Xe	+		-73000	60
I	+		- 85703		Xe			-86424	/	Cs			- 77056	9
Xc			89279.5	1.1	Cs	+		86344	4	Ba			-83276	8
Cs				3	Ва			- 88892.4	3.0	La			-84326	3
ва			8844()	3		_		86020	70	Ce				3
La	-		-83730	4()	Ce	+nn			50	Pr	-		-84700	7
Ce	х		-82450#	200#	Pr	-		-81370	50	Nd	+nn		- 84477	19
Pr	х		- 75340#	200#	Nd	-		-79160	60	Pm			-78430	30
Nd	x		-71610#	300#	Pm	-		-71310	210	Sm	x		- 75459	15
Pm	x		61/10#	500#	Sm	x		-66790#	400#	Eu	-		66990	50
Sm	х		- 55130#	700#	Eu	x		56360#	500#	Gd	-	•	-61530#	400#
Eu	X		-42700#	900#	Gđ	х		- 49300#	700#	ТЪ	-	•	-50730#	900#
122 1-			57440#	400.4	127 6-			E0500#	(0)#	Dy	х		- 43040#	900#
155 m	x .		~ 37440#	48,0,#	157 50	x		- 50500#	400#	141 7-			C10/V)#	500.0
511	+		- 70970	00					40.0	14110	*		~ 516(0)#	200#
50 T:	+		- 78960	80	10	- 2-		09500	120		x		-60/10#	300#
le	+		- 62900	20		p— 20		/0301	20		+		- 68330	90
I V	+		- 63678	26		n		- 82379	2.0				/44/9	10
ле С.	+		- 67046	3.0				- 100001.1	3.0	Ба			- 19750	6
CS D			- 00/3,/	3.0	Ба			-8/120.8	5.0	La			-82943	2
ва			-67556	200		+		-87150	50					3
La	_		- 85550	200#				-85900	50				- 86026	3
CC Du	x		- 62390#	2(1)#	PT	-		-83200	50	ING D			-84203	4
PT	x		- 78060#	200#	Des	-		- 79510	140#	Pm				27
nu	x		- 12400#	500#	Pm	11		- /3800#	140#	Sm			75946	12
Pm	x		- 63470#	200#	510			-67960	110	Eu	_		- 69968	28
500	*		- 37070#	000#		*			200#		x		-65150#	300#
Eu	x		470(X)#	90.0#	, Ou	X		31300#	000#		x		- 34810#	000#
124 1-			515504	500#	170 65			EE000.4	500 H	Dy	x		- 45470#	/00#
134 III C	×.		- 313304	300#	1.56 50	X		- 55000#	300#	140 75			170704	(00)
50	+		- 00040	100		X			210#	142 10	х			600#
50 T:	+			50	1	+		- 72300	80		x		- 55720#	400#
ic	+		-8240	30	Ac Co	+		80120	40	XC	+		-65480	100
I V	+		- 63949	15				-82893	10				70521	11
XC C			- 88124,4	0.8	ва			- 88267.2	3.0	Ва			- / /828	6
Cs D				3,0	La	+n		86529	4	La			-80039	6
ва				3.0				-8/5/4	11	Ce				3
La	-		- 85241	26	Pr			-83137	15	Pr			-83/9/	3
Ce	-		- 84/40	2(X)	Nd	-	•		200#	Nd			- 85959.5	2.8
Pr	11		- 78000#	300#	Pm Pm	-	•	/5040#	320#	Pm o	-			40
Nd	-		~ /5/80#	330# 300#	Sm	x		/1220#	.300#	Sm _			- 78997	11
Pm	_		-66610#	390#	Eu	x		-61990#	400#	Eu	-		-71350	30
Sm	x		-61460#	500#	Gd	х		- 55920#	500#	Gd	-	•	-66850#	300#
-	λ		— DUXX0#	/(X)#	I Tb	x		- 43900#	800#	ТЪ		•	- 56950#	760#
Eu										-				
Eu										Dy	-	•	- 50050#	790#

								- <u></u>						
A Elt.	Orig.	S	Mass exe (keV	cess)	A Eit.	Orig.	S	Mass ex (keV	cess)	A Elt.	Orig.	8	Mass ex (kcV	cess)
143 I	x		52100#	400#	147 Xc	X		- 43770#	500#	151 Cs	x		- 35400#	700#
Xe	x		-60650#	220#	Cs			-52290	150	Ba	x		- 45920#	600#
Cs			-67691	22	Ba	+		-61490	90	La	x		- 54440#	500#
Ba			-73945	13	La	+		67240	80	Ce	x		-61440#	300#
La			78191	15	Ce	+		-72180	50	Pr	+		- 66860	40
Ce			-81616	3	Pr	+		-75470	40	Nd	n		- 70957	4
Pr			-83078	3	Nd			-78156.3	2.8	Pm			- 73399	6
Nd			-84011.8	2.8	Pm			-79052.3	2.9	Sm			-74586.2	2.9
Pm			-82970	4	Sm			- 79276.4	2.9	Eu			-74662.9	2.9
Sm			-79528	4	Eu			-77555	4	Gd			74199	4
Eu			-74253	13	Gd			-75368	4	Тъ			-71634	5
Gd	_		-68240	200	Тъ			-70759	12	Dy	$-\alpha$		68763	4
ТЪ	x		60780#	400#	Dy	-		64390	50	Но			63639	12
Dy	x		-52320#	500#	Но	x		- 56040#	400#	Er	x		58260#	300#
Ho	x		-42210#	700#	Er	x		-4722()#	500#	Tm	IT	٠	50830#	140#
				600 U	j Tm	—p		- 36250#	600#	Yb	€p	•	41690#	320#
144 I V.	x		-46940#	500#	148 Cs			- 47600	590	Lu	IT		30600#	600#
Ae Co	x		-5/540#	320#	Ba	+		-58050	140	152 Ba	x		42700#	7(X)#
CS P.			-03310	28	La	+		-63160	130	La	х		50200#	600#
يە تر د ا			-74900	60	Ce	+		-70430	120	Ce	х		59260#	400#
Co			- 80441	4	Pr	+			90	Pr	х		63710#	300#
Pr				4	Nd			-77418	3	Nd	nn		70160	30
Nd			-83757.5	2.8	Pm	+p		-76878	7	Pm	+		71270	70
Pm			-81426	4	Sm			- 79346.6	2.9	Sm			-74772.6	2.9
Sm				3	Eu	-		- 76239	18	Eu			-72898.3	2.9
Eu	-		-75661	18	1 0a			- 76280	3	i Ga			- /4/1/.1	3,0
Gd	-	•	-71920#	200#		_		- 70520	30	ID Du			- 70730	40
Tb	x		-62850#	300#	Ho	- IT			270#	Uy No	a		- 70129	20
Dy	x		- 56760#	400#	Er	x		51750#	270# 400#	Fr	$-\alpha$		-60470	30
Ho	x		-45050#	600#	Tm	x		- 39540#	700#	Tm	-u x		51880#	300#
Er	x		-36710#	800#	Yb	x		-30960#	800#	Yb	_		46420#	360#
					140 C			44040#	200#	Lu	x		-33900#	700#
145 Xe	х		- 52470#	400#	149 CS	x		- 44040#	300#	162 0.			27620#	0004
Cs			-60190	50		~			200#	155 84	X		- 37620#	900#
Ba			-68070	60				-66800	80		×		-47090#	500#
La			- 72990	10	Pr	+n		-70988	11	Pr	x		-61810#	300#
CC Du			- //100	40	Nd	1 P		-74385	3	Nd	+		-67352	27
FF Nd			- 79030	ົ້າບ	Рт			-76076	4	Pm			-70688	11
Dm.			- 81270	4.0	Sm			-77146.8	2.9	Sm			-72569.0	2.9
Sm				4	Eu			76451	5	Eu			-73377.3	2.9
Eu			- 78002	4	Gd			-75138	4	Gd			-72892.9	3.0
Gd	_		- 72950	40	Тъ			-71500	5	тъ			-71324	5
Tb	IT		-66250#	230#	Dy	-		-67688	11	Dy			-69153	5
Dy	_	•	- 58730#	300#	Но	-		-61674	22	Но	$-\alpha$		-65023	6
Ho	x	·	49480#	600#	Er	€p	٠	- 53860#	470#	Er	$-\alpha$		-60460	11
Er	x		39630#	700#	Tm	x			600#	Tm	$-\alpha$		54001	22
					Yb	х		-34020#	700#	Yb	x		-47310#	300#
146 Xc	x		49090#	4(X)#	150 Cs	х		-39150#	500#	Lu	x		- 38480#	600#
Cs			55740	80	Ba	х		50660#	500#	154 La	x		- 4248()#	800#
Ba			-65110	80	La	x		- 5722()#	400#	Ce	х		- 52800#	600#
La			-69210	70	Ce	+		-64990)	120	Pr	x		- 58320#	4()()#
Ce				70	Pr	+		- 68000	80	Nd	+		-65690	110
Pr			76770	60	Nd			- 73694	4	Pm	+		-68420	70
Nd			80935.5	2.8	Pm	+		-73607	20	Sm			-72465.3	3.(
Pm Sm	+		19464	2	Sm			-77061.1	2.9	Eu			-71748.0	2.9
Sm E				4	Eu			-74801	7	Gd			-73716.3	2.9
Eu				1	Gd			75772	7	Тъ	-		- 70150	50
- G0 75	+nn		- 10098	3 50	Tb			-71116	8	Dy	$-\alpha$		70400	9
Dv	_			110	Dy Dy	$-\alpha$		- 69322	3	Но	$-\alpha$		-04049	<i>y</i>
Ho.	- x		52070#	500#	H0	-		- 02080#	100#	Er T	$-\alpha$		- 54540#	0
Er	x		- 44600#	600#	Er Tm	-	•	-3/9/0#	100#	1m vr	-α . ~		- 34360# - 50090#	1/10#
Tm	-p		-31210#	700#	yh III	x x		- 30130#	600#	10	-a x	•	- 39960#	500#
	r				10 10	_n		-25460#	7(1)#	Hf	x		-33300#	700#
					F Lu	-p		2.740.7#	1007	1	^			~~/#

A Elt.	Orig.	s	Mass ex (keV)	A Eh.	Orig.	s	Mass ex (keV)	A Elt.	Orig.	S	Mass ex (keV	(cess ')
155 La	x		- 39000#	900#	159 Pr	x	_	-41700#	900#	163 Pm	x			900#
Ce	X		- 48400#	700#	Nd	x		- 49940#	700#	Sm	x		- 50900#	700#
Pr	х		- 55900#	500#	Pm	х		- 56700#	500#	Eu	x		56630#	500#
Nd	+		62760	150) Sm	x		-62220#	300#	Gd	x		-61490#	300#
Pm	+		- 66980	30	Eu			-66057	8	Тъ	+p		-64605	5
Sm	n		70201.2	3.0	Gd			-68571.9	3.0	Dy			66390	3
Eu			-71828.0	2.9	Tb			-69542.4	3.0	Ho			-66387	3
Gd			72080.1	2.9	Dy			-69177	3	Er			-65177	5
10	+		- /1259	12	Но			-67339	4	Tm	-		-62738	6
Dy Ho	+n		- 69164	12	Er			64570	5	Yb			- 59370	100
Er	_		- 60.02	25				-60730	70	Lu	-		- 54770	220
Tm			-02220	30	10			- 55 / 50	90	Hf T	$+\alpha$		- 49320#	320#
Yb	0		- 50490#	3(V)#	116			- 49730	200		$-\alpha$		- 42550	70
Lu Lu	u +		- 42630#	13()#		- <i>a</i>		-42850#	300#	l w	$-\alpha$		- 34900#	310#
Hr	x	•	34690#	600#	w	$-\alpha$	•	-25820#	600#	Os No	+α α	•	- 26110# - 16720#	110# 600#
156 Cc	x		-45400#	800#	160 Nd	x		-47140#	800#	164.5m			401004	00016
Pr	x		-52050#	600#	Pm	х		-53100#	600#	104 Sm	x		-48180#	800#
Nd	х		60360#	400#	Sm	х		-60420#	400#		x		33100#	400#
Pm	+		-64220	40	Eu	+	•	-63370#	200#				59750#	400#
Sm			- 69372	10	Gd			-67951.9	3.0	Dv	т		-62090	100
Eu			70094	6	Тъ			67846.3	3.0	Но				3
- Cd Th			72545.2	2.9	Dy			69682	3	Er			-65953	3
10 Du			- 70101	2	Но	_		-66392	15	Tm			-61990	19
Ho	_		- 70334 - 65470#	200#	Er Tm	+nn		-66060	50	Yb	x			100#
Fr	+	•	-64260	7()	Yh III			- 60460	210#	Lu			- 54760#	130#
Tm	- 0		-56810	60	10			- 50280#	210#	Hf	$+\alpha$		-51770#	2(X)#
Yb	α		- 53240	30	Hť	-0	•	-45910	30	Та	x		-43250#	400#
Lu	$-\alpha$		- 43870#	300#	Ta	a		- 36000#	310#	w	$-\alpha$		- 38210	30
Hf	$-\alpha$		- 37960#	360#	w	a		-29460#	360#	Rc	-α		- 27650#	310#
Та	-p		26370#	600#	Rc	$-\alpha$		- 17250#	600#	Os	$-\alpha$		-20560#	360#
157 Ce	x		 4067 0#	900#	161 Nd	x		-42540#	900#	165 Sm	x		43800#	900#
Pr	x		49210#	700#	Pm Pm	x		- 50430#	700#	Eu	x		50560#	700#
Nd	х		- 56570#	500#	Sm	х		- 56980#	500#	Gd	x		- 56470#	500#
Pm	x		-62220#	300#	Eu	х		-61780#	300#	Тъ	x		- 60660#	200#
Sm	+		-66740	50	Gd	n		-65516	3	Dy	— n		-63621	3
Eu			-69471	6	Тъ			-67472	3	Ho			-64907.3	3,0
Ga			-70833.9	3,0	Dy			- 68065	3	Er			-64531	3
10			-70773.8	3.0	Но			-67206	4	Tm			-62939	4
Uy Ho			- 694.12	50	Er	+n		-65203	10	Yb	~		-60177	20
Fr			-63390	30 80	1 111 V 5	_		- 62()4()	90	Lu	_		- 56260	80
Tm			- 58910	110	10	_		- 57590#	220#		+ 0		-51000#	370#
Yb	$-\alpha$		-53410	50	Hf	- 0	•	- 46270	240# 70	12	+α		45810#	220#
Lu	IT		- 46480	22	Ta	-0		- 38780	50	Ro			- 30600	90 70
Hf	$-\alpha$		39000#	300#	w	a		-30660#	310#	Os				310#
Ta	$-\alpha$		- 29670#	600#	Re	a		20810#	6(X)#	lr	x		-11570#	400#
158 Pr	x		- 44920#	800#	162 Pm	X		-46310#	800#	166 Eu	v		166(1)#	V(Y)#
Nd	x		- 54150#	600#	Sm	x		-54750#	600#	Gd	ŝ			6(1)#
Pm	x		58970#	400#	Eu	x		58650#	400#	ТЪ	Ŷ		57710#	3(¥)#
Sm	+		-65220	80	Gd	— nn		-64291	5	Dv.	_n		-62593	
Eu	+		-67210	80	ТЪ	+		-65680	40	Ho	.,		-63079.6	30
- Cid The			- /0699.9	3.0	Dy			-68190	3	Er			-64934 5	2.9
10				3.0	Ho			-66050	4	Tm			-61895	11
Ho	_		- 70417	30	- Ег т			-00346	4	Yb	+nn		-61591	8
Fr	_		-65200#	100#	1 m V 5	-		-01310	30	Lu			-56110	160
Tm	_		- 58600#	120#	10	x			210#	Hf	x		- 53790#	300#
Yb	- 0		- 56022	10	LU 114	_^		- J2890# A0190	220#	Ta	x		-46140#	300#
Lu	$-\alpha$	٠	-47350#	120#	Та	- u - 0			130#	w	$-\alpha$		-41899	12
Hr	$-\alpha$	•	-42250#	100#	W	-0	¥.	- 34150#	100#	Re	$-\alpha$	•	31860#	140#
Та	-α	•	-31330#	510#	Re	- a	•	-22630#	510#	Os	$-\alpha$	•	- 25590#	100#
w	$-\alpha$		-24280#	700#	Os	a		15070#	700#	lr	$-\alpha$		-13500#	510#
					0,	ч		1.0011117	//a/m					

				_										
A Elt.	Orig.	s	Mass exe (keV)	cess)	A Elt.	Orig.	s	Mass ex (keV	cess)	A Elt.	Orig.	S	Mass ex (keV	cess)
167 Eu	v				171 Th	×			8(Y)#	175 Ho	v			600#
Gul	Ŷ		- 50700#	600#		Ŷ		-49850#	5(1)#	Fr	Ŷ		-485(0)#	400#
ТЪ	Ŷ		55840#	400#	Но			- 54530	500# 600	Tm	Ŷ		- 52320	50
Dv	, +		- 59940	60	Fr	.1		- 57729	3	Yh	т		- 54704 3	
Но	n?n		- 62293	6	Tm			-50210.0	20	t n			-55174.3	2.0
П0 Бе	pzn		62200.2	20	Vh			- 39219.0	2.7	114			- 55174.5	2.0
El T.m			-03299.2	2.9	10			= 39313.4	2.0	 			- 34490	
1 III Vie			-02551	,) E				- 37837	2 2/V)#		x		- 32490#	100#
YD			60597	5	HI	x		- 55430#	200#	w	x		- 49580#	200#
Lu	-		-5/4/0	100	Ja	x		51/40#	210#	кс	$+\alpha$		-45280#	450#
HI	x		53470#	210#	w	х		-4/080#	280#	Os	$+\alpha$		39980#	.5(X)#
Ta	+	•	48460#	4.50#	Re			-41410#	340#	Ir	$-\alpha$		33270#	34()#
w	$+\alpha$		-42220#	310#	Os	$+\alpha$		- 34430#	310#	Pt	$+\alpha$		-25830#	310#
Re	IT		- 34870#	130#	lr	α		- 26290#	130#	Au	IT		17190#	240#
Os	α		-26500#	310#	Pt	$-\alpha$		- 17470#	310#	Hg	$-\alpha$		- 8000#	320#
Ir	-p	•	- 17190#	100#	Au	IT	•	7660#	250#					
					i i					176 Er	х		- 46310#	400#
168 Gd	x		-48100#	700#	172 Dy	x		-47400#	600#	Tm	+		49380	100
Tb	x		- 52500#	500#	Ho	х		-51400#	400#	Yb			- 53497.2	2.9
Dy	х		58470#	300#	Er			- 56493	5	Lu			- 53391.0	2.6
Но	+		-60085	29	Tm			-57384	6	Hſ			-54583.8	2.7
Er			-62999.0	2.9	Yb			-59263.8	2.8	Ta			-51470	100
Tm			-61320	3	Lu			- 56745	3	w	х		- 50680#	200#
Yb			-61577	4	Hf	-		- 56390	50	Rc	x		45110#	200#
Lu			-57100	80	Ta			-51470	190	Os	$+\alpha$	٠	-41960#	200#
Hf	х		- 55300#	100#	w	-	•	48980#	270#	ĺr	$+\alpha$		- 33990#	300#
Та	$+\alpha$		- 48640#	370#	Rc	$+\alpha$		-41650#	310#	Pt	x		- 28880#	200#
w	$+\alpha$		- 44840#	200#	Os	$+\alpha$		-37190#	200#	Au	α		- 18380#	400#
Re	$-\alpha$		- 35760#	400#	lr	$-\alpha$		27350#	400#	Нg	$-\alpha$		-11720	4()
Os	$-\alpha$		29960	30	Pt	$-\alpha$		-21070	30					
Ir	$-\alpha$		- 18660#	330#	Au	-α		-9210#	330#	177 Er	x		-42500#	600#
Pt	$-\alpha$		-11150#	360#						Tm	x		-47470#	300#
					173 Dv	x		- 43370#	700#	Yb	—n		- 50993	3
169 Gd	x		-43900#	800#	Но	x		- 49100#	400#	Lu			- 52391.9	2.6
ТЪ	x		-50100#	600#	Er	x		53650#	200#	Hf			52890.2	2.5
Dy	+		-55610	300	Tm	p2n		56262	5	Ta	_		-51724	4
Ho	+p		- 58807	20	Yb	r.		- 57560.0	2.8	w	x		-49720#	300#
Er			-60930.8	2.9	Lu			-56889.2	2.8	Rc	x		-46320#	200#
Tm			-61281.9	2.9	Hf	x		- 55280#	100#	Os	$+\alpha$		-41880#	280#
Yb			-60373	4	Та	-	٠	- 52590#	230#	Ir	$+\alpha$		-36170#	450#
Lu			- 58080	5	w		•	- 48590#	380#	Pt	$+\alpha$		-29390#	310#
Hf	_		- 54810	80	Rc	$+\alpha$	•	-43720#	450#	Au	a		-21220#	230#
Ta	х		- 50380#	210#	Os	$+\alpha$		- 37450#	310#	Hg	$-\alpha$		-12730	110
w	$+\alpha$		- 4494()#	320#	Ir	α		- 30080#	230#	TI	$-\alpha$		-2910#	230#
Re	x		38350#	210#	Pt	$-\alpha$		-21890	100					
Os	- 0		~ 30670	90	Au	$-\alpha$		12670	100	178 Tm	x		-44120#	400#
lr	0		-21990	90	,	u		12070		Yh	n		- 49701	10
Pt	a		- 12650#	310#	174 Ho	x		-45500#	500#	Lu			50346	3
	u				Fr	×			300#	Цf			- 52445 2	25
170 75			-46340#	700#	Tm			53870	40		IT		- 50530	100
Dv	~		- 40340# - 534(¥)#	400#	Vh	Ŧ		- 55870	40 1 V		11		- 50550	100
Dy Us			- 334K0#	40.0#	10			- 50955.5	2.0	- W	_			210
Er.	+		- 56250	30				- 33379.0	2.8	кс			-43780	210
Tm			50802.0	20	- П Т.			-33632 52010	2		+a		- 43400	2(0)
101				2.9	18	-		- 52010	aU 200#		$+\alpha$		21040#	200# 470#
10			~00//1.9	2.9	w Da	X			3(K)# 410#		+α	•	- 21940#	4/0#
1.0			-0/010	19	ке	$+\alpha$		-43580#	410#	AU	$+\alpha$		- 22580#	400#
HI	x		- 56220#	200#	Os	$+\alpha$	•	- 39940#	470#	Hg	$-\alpha$		- 16323	15
Ta	x		- 50220#	2(3)#	lr	$+\alpha$		- 30920#	40,0#	11	$-\alpha$	•	4450#	210#
w	$+\alpha$	•	-4/240#	470#	Pt .	α		-25326	13					
Re	$+\alpha$		- 38970#	4()()#	Au	$-\alpha$	•		150#					
Os	$-\alpha$		- 33935	13										
lr O	$-\alpha$	•	-23260#	150#	1									
Pt	$-\alpha$	•	16460#	100#	1									

A Elt.	Orig.	S	Mass exc (keV)	cess	A Elt.	Orig.	S	Mass exe (keV)	cess)	A Elt.	Orig.	s	Mass exe (keV)	ess
170 7			41/2004	500#	194 (36170#	A(Y)#	180 11/			35490	2(1)
1/9 IM	x		-41000#	3(0)#	164 LU UF	×		-30170#	40	109 W	+ n		- 33460	2007
10	x		-40420# 40067	-50#	Ta Ta	- -		-42840	26		τp			7 7 X
Lu			- 49007	2.5	W	Ŧ		-45706.0	27	lr .			38455	13
Та	+nn		-50362	6	Rc			44223	5	Pt			- 36485	11
w	+n		- 49302	16	Os			-44254.5	3.0	Au	-	٠		200#
Re	_		- 46590	50	lr	_		- 39690	270	Hg			29690#	280#
Os	$+\alpha$		- 42890#	230#	Pt	$+\alpha$	٠	- 37360#	180#	Ti	$+\alpha$		-24510#	350#
lr	$+\alpha$		- 38050#	400#	Au	_	÷.	- 30300#	190#	Pb	x	•	17810#	27()#
Pt	$+\alpha$			300#	Hg	_	•	-26180#	200#	Bi	$-\alpha$		- 9780#	400#
Au	$-\alpha$			340#	T	x		- 16990#	300#					
Hg	$+\alpha$		- 16970#	310#	РЬ	-α		- 10990#	200#	190 W	+		- 34300	22()
TĪ	$-\alpha$		- 7950#	140#						Rc	+		- 35570	210
					185 Hf	x		-38400#	300#	Os			- 38708.0	2.8
180 Yb	х		-44400#	400#	Та	+		-41396	14	Ir	-		-36710	200
Lu	+		- 46690	70	w			-43388.4	2.8	Pt			-37325	6
Hſ			- 49789.5	2.5	Re			-43821.4	2.8	Au	-		- 32883	16
Та			-48935	3	Os			-42808.6	2.8	Hg	—	•	-31410#	150#
w			- 49643	5	lr	x		40440#	200#	TI	-	•	-24410#	430#
Re	-		-45840	30	Pt	$-\alpha$		~ 36560	210	Pb	$-\alpha$		- 20330	200
Os	$+\alpha$	•	-44390#	180#	Au	_		-31850	210	BI	$-\alpha$		-10/00#	370#
lr D:	$+\alpha$		- 37960#	190#	Hg	$+\alpha$			280#	PO	$-\alpha$	•		470#
Pt	$+\alpha$	•	-34270#	2(0)#		x		- 19470#	4KA/# 31()#	101 Ba	L D		34350	5.1
Au	$+\alpha$		-25710#	200#	PU 10;	х IT		- 11370#	230#		ΨÞ		- 36395 A	28
ng Ti	- <i>a</i>		-20190#	450#	Di			- 21-07	2.00	lr Us			- 36709.1	2.0
11	-a			450#	186 Hf	x			3(1)#	Pt			35691	5
181 Yb	×		-40850#	400#	Та	+		-38610	60	Au	_		-33860	50
Lu	x		-44740#	300#	w			-42511.3	2.9	Hg	_		30680	90
Hf			-47413.9	2.6	Re			-41929.8	2.8	TĨ	$+\alpha$	•	26190#	220#
Та			-48441.1	2.9	Os			- 42999.3	2.9	Pb	x		-20310#	210#
w			-48253	5	lr	_		- 39168	20	Bi	$-\alpha$		- 12990#	400#
Re	4n		-46515	14	Pt			- 37790	30	Ро	$-\alpha$		498()#	300#
Os	-		-43520	2(X)	Au			-31670	140					
lr	$+\alpha$		39460	210	Hg			-28450	200	192 Rc	х		31710#	200#
Pt	$+\alpha$		34300#	280#	T1	$-\alpha$	•	19980#	370#	Os			- 35882	3
Au	$+\alpha$		-27990#	450#	Pb	-α	•		470#	Ir			-34835.8	2.9
Hg	$+\alpha$		-20670#	310#	Bi	~α		-3280#	450#	Pt			- 36296	3
11	$-\alpha$		-12200#	380#	107 7.			16000#	2/11#	Au	_			280#
PD	11		-3060#	160#	187 Ia	x			300#	нд т	+		- 32070#	200#
192.1.5				300#	Ro Ro			39900.7	2.9	Ph			-23930#	180#
162 LU Hf			-41720#	300# 7				-41217.9	2.8	Bi	$-\alpha$	•	-13630#	220#
ть Тъ	1111		-46432 7	29	Ir	_		39718	7	Po	- 0	٠	-7900#	200#
W			-48246.2	2.9	Pr	+	٠	36740#	180#			•		
Re	п		-45450	100	Au	$-\alpha$	•	-33010#	150#	193 Os			- 33396	4
Os			-44538	25	Hg	IT		28150#	240#	Ir			-34536.3	2.9
Ir			-39000	140	T	x		22200#	400#	Pt			-34479.7	2.9
Pt			-36080	200	Pb	x		14880#	300#	Au	4n		33411	9
Au	-	•	-28300#	360#	Bi	-α		-6090#	380#	Hg			-31071	19
Hg	-	•	-23520#	470#						TI	$+\alpha$		-27430#	250#
Tl	x		-13400#	400#	188 Ta	x		33800#	300#	Pb	x		-22280#	190#
Pb	$-\alpha$		-6822	17	W	+		38669	4	Bi	$-\alpha$	•		350#
					Re	n		-39018.1	2.8	Po	$-\alpha$			280#
183 Lu	х		- 39520#	300#	Os			-41138.5	2.8	At	α		180#	400#
Hf	+		-43290	30	l Ir			38329	7	101.0			22.425	
Ta	—n		45295.6	2.9	Pt 1		•	- 3/823	6	194 Os	+		- 32435	4
W			-40303.0	2.1		-		- 32320#	100#	IT D.			32331.9	2.9
Re			-43810	8	Hg	_	•		180#	Pt				2.9
Os 1-	x		- 43580#	100#	 Di-	x		- 22430#	220#	Au Li-			- 32207	12
lt Di	_		- 402.90#	140# 230#	р 1 р	a	•		200#	рана При Правила Прави Правила Прави Пра Правил Прави Пра Прави Прави Пра Прави Прави	 + ~		26060#	2.5 21∩#
P1 4.0	+α T		-30160#	2,00# 4(Y)#		<i>u</i>		- 12501#		РЬ	$-\alpha$	•	- 2425()#	150#
He	+0		-23700#	300#	}					Bi	- <i>a</i>		16070#	430#
тı	+0		-16120#	390#	1					Po	α	•	- 10910	200
Pb	x		-7520#	310#						At	IT	٠	960#	4(X)#
TI Pb	$+\alpha x$		- 16120# - 7520#	390# 310#						Po At	-α IT	٠	- 10910 - 960#	

A Elt.	Orig.	s	Mass ex (keV	cess)	A Elt.	Orig.	s	Mass ex (keV	cess)	A Elt.	Orig.	s	Mass ex (keV	cess)
195 Us	+		29690	500	201 Pt	+		-23760	50	207 Hg	+		-16230	150
IT Di	—n		- 31692.4	2.9	Au			- 26416	4				-21044	6
P1			- 32812.4	2.9	нд			- 27679.1	2.9	Pb			22467.1	2.9
Au U.	-		- 32380	50		+nn		-27196	15	Ві			- 20069	4
нg	-		-31080	50	PD	$+\alpha$		- 25290	30	Po			17160	7
11	$+\alpha$		28270#	130#	BI	$+\alpha$		-21450	30	At			-13250	21
Pb	+		- 23780#	410#	Po	$-\alpha$			100#	Rn			- 8640	70
BI	$-\alpha$	•	-17930#	220#	At	$+\alpha$		- 10720	240	Fr			- 2930	120
Po	$-\alpha$		-11140#	220#	Rn	$-\alpha$		-4160#	200#	Ra	$-\alpha$	•	3470#	420#
Al	-α		3210#	400#	Fr	$-\alpha$	•	3710#	350#	Ac	$-\alpha$	•	11270#	230#
196 Os	+pp		- 28300	40	202 Pt	x		-22600#	300#	208 Hg	x		13100#	300#
lr	+		- 29450	40	Au	+		- 24420	170	Tl	$+\alpha$		- 16762.6	2.9
Pt			-32662.9	2.9	Hg			-27362.1	2.9	Pb			21763.6	2.9
Au			-31157	4	TI TI				15	Bi	+n		-18884	4
Hg			-31843	4	Pb			- 25948	10	Ро	α		-17483	3
Tl	$+\alpha$		- 27470#	140#	Bi	$+\alpha$		-20800	50	At	$+\alpha$		12498	26
Рb	x		- 25420#	140#	Po	α			90#	Rл	$-\alpha$		- 9658	13
Bi	$-\alpha$	•	- 18060#	210#	At	$+\alpha$		10760	180	Fr			- 2670	80
Po	$-\alpha$	•	13500#	180#	Rn	$-\alpha$	•	-6320#	150#	Ra	$-\alpha$		1650#	14()#
At	$-\alpha$		- 4000#	230#	Fr	α	•	3060#	430#	Ac	α	•	10700#	210#
Rn	$-\alpha$	•	2150#	200#										
					203 Au			-23159	4	209 TI	$+\alpha$		-13647	10
197 Ir	+p		-28283	20	Hg			- 25283	3	Pb			-17629	3
Pt			-30438.1	2.9	TI			-25775.3	2.9	Bi			-18272.9	3.0
Au			-31157.0	2.9	Pb			-24801	7	Po	$-\alpha$		-16380	3
Hg			-30557	4	Bi			-21547	21	At			-12893	8
Tì	$+\alpha$		-28380	30	Po			-17310	70	Rn	-		- 8964	29
РЬ	x		-24800#	100#	At			-12250	120	Fr			-3800	30
Bi	+α		-19620	240	Rn	$-\alpha$	•	-6230#	410#	Ra	$-\alpha$		1810#	130#
Po	-α		- 13450#	190#	Fr	$-\alpha$	•	980#	230#	Ac	$-\alpha$		8910	240
At	$-\alpha$	•	6250#	350#	Ra	$-\alpha$		8580#	230#					
Rn	$-\alpha$		1550#	280#						210 TI	$+\alpha$		-9254	11
					204 Au	+		- 20770#	200#	Pb			- 14743	3
198 Ir	x		-25820#	200#	Hg			-24707	3	Bi			-14806.1	3.0
Pt	n		- 29923	4	ļ Π			-24359.8	2.9	Po			-15968.2	2.9
Au			- 29598.0	2.9	Pb			-25123.5	2.9	At	$-\alpha$		-11987	8
Hg			30970.5	2.9	Bi	$+\alpha$		- 20674	26	Rn	$-\alpha$		-9613	10
TI	-		-27510	80	Po	$-\alpha$		- 18344	13	Fr			-3355	22
Рb	x		-26100#	90#	At	$+\alpha$		-11870	90	Ra	$-\alpha$		420#	90#
Bi	$+\alpha$		- 19540	180	Rn	-α		- 8040#	140#	Ac	$-\alpha$		8620	190
Po	-α	•	-15520#	150#	Fr	$-\alpha$	•	550#	210#	Th	$-\alpha$	•	14000#	150#
At	$-\alpha$	•	-6750#	430#	Ra	$-\alpha$	•	6030#	180#					
Rn	$-\alpha$		-1140	200						211 Pb			-10496.6	3.0
					205 Au	x		18990#	300#	Bi			-11869	6
199 lr	p2n		-24420	40	Hg			-22304	5	. Po	$-\alpha$		-12447.7	3.0
Pt	n		-27408	4	TI			-23834.8	3.0	At	$-\alpha$		-11662	4
Au			-29111.0	2.9	Pb			-23783.7	2.9	Rn	$-\alpha$		-8770	7
Hg			-29563.3	2.9	Bi			-21075	8	Fr			4164	21
TI			-28120	100	Po	$+\alpha$		- 17544	29	Ra	$-\alpha$		830	70
Pb			- 25230	70	At	$+\alpha$		-13010	30	Ac	$-\alpha$		7120	130
Bi	$+\alpha$		- 20890	120	Rn	$-\alpha$		7760#	110#	Th	$-\alpha$	•	13840#	420#
Po	$-\alpha$	•		410#	Fr			-1240	240					
At	$-\alpha$	•	8730#	220#	Ra	$-\alpha$		5760#	210#	212 Pb			-7556.7	2.7
Rn	$-\alpha$			230#						Bi			-8130.5	2.9
000 5					206 Hg	$+\alpha$		20960	21	Ро			10384.5	2.9
200 Pt	—nn		- 26618	20				-22267.1	3.0	At	α		-8631	4
Au	+		27280	50	Pb			-23800.6	2.9	Rn	α		-8673	4
Hg			-29520.2	2.9	Bi	-		- 20043	8	Fr			-3544	26
T1	-		- 27()64	6	Po			18197	10	Ra	$-\alpha$		- 202	14
Pb	4n		-26254	13	At			-12480	50	Ac	α		7280	90
Bi	$+\alpha$		- 20360	90	Rn	$-\alpha$		9170#	90#	Th	$-\alpha$		12030#	140#
Po	-α		-17010#	140#	Fr	IT		-1410	180					
At	$-\alpha$	•	-9040#	210#	Ra	$-\alpha$	•	3520#	150#					
Rn	$-\alpha$	•	- 4030#	180#	1									
Fr	$-\alpha$		6050#	240#	1									

A Elt.	Orig.	s	Mass ex (keV	cess)	A Elt.	Orig.	S	Mass e: (ke)	kcess 7)	A Elt.	Orig.	S	Mass e: (keV	ccess /)
213 Pb	+	•	- 3260#	100#	220 At	-~α		14250#	110#	227 Rn	+α		32980#	420#
DI Di			3240	2				10004,3	2.7	rr D-			29050	100
Po			6667	4	PT Pr			10260	3	ка			2/1/2.3	2.5
At	$-\alpha$		6594	0	ка	~α		10260	10	AC			25846.1	2.7
Rn	$-\alpha$		- 5712	7	Ac	a		13/40	50	Th			25801.3	2.8
Fr			- 3563	8	[Th	~a		14655	22	Ра	α		26821	8
Ra	$-\alpha$		322	30	Pa	α		20380	60	U	-α		29007	17
Ac	$-\alpha$		6120	60	U	-α		23020#	200#	Np	-α		32560	70
Th	$-\alpha$		12070#	130#	1									
Pa	$-\alpha$		19730	250	221 At	x		16900#	300#	228 Rn	$+\alpha$		35480#	470#
214 Ph			-188.0	25	Rn	$-\alpha$		14400#	100#	Fr	+	•	33280#	200#
Ri			- 1212	11	Fr			13270	8	Ra	$+\alpha$		28936.0	2.5
Po			- 1212	3	Ra	-α		12955	7	Ac	-		28890.1	2.6
10			.3304	5	Ac	$-\alpha$		14510	50	Th			26763.1	2.7
Pa	- <i>u</i>		- 3335	10	ի 11հ	α		16927	10	Pa	$-\alpha$		28911	5
Kii Er	- <i>a</i>			0	, Pa	α		20370	50	U	$-\alpha$		29218	16
ГI Da	a		- 9/4	11	U	α		24550#	110#	Np	x		33700#	200#
Ka Au	-α		6430	50]					Pu	$-\alpha$		36070	30
AC	$-\alpha$		6420	20	222 At	x		20800#	300#					
מנ	$-\alpha$		106/0#	90#	Rn			16366.8	2.5	229 Fr	$+\alpha$		35790#	360#
Ра	$-\alpha$		19320	190	Fr			16342	21	Ra	+		32430	60
215 Bi	$+\alpha$		1710	100	Ra			14309	5	Ac	+		30670	50
Po			545.3	2.9	Ac	$-\alpha$		16607	6	Th			29579.9	2.9
At	$-\alpha$		1266	7	1 711	$-\alpha$		17190	13	Pa	-a		29890	9
Rn	-a		-1184	8	Pa	$-\alpha$		22100#	70#	υ	$-\alpha$		31201	8
Fr	- 0		304	8	U	a		24280#	100#	ND	-α		33760	90
Ra	-0		2519	8						Pu	$-\alpha$		37390	70
Ac	-0		6010	50	223 At	x		23600#	400#					
Th	- 0		10920	70	Rn	x		20300#	300#	230 Fr	$+\alpha$		39600#	450#
Pa	-0		17790	140	Fr	~		18379 0	27	Ra	4n		34540	30
4 a	- 4		11100		Ra			17230.0	2 8	Ac	 .+		33560	100
216 Bi	+		5780#	100#	Ac	- 7		17816	7	I Th	,		30857.2	20
Ро			1774.7	2.7	Th	- <i>u</i> - <i>a</i>		19371	10	Pa			32167	3
At			2244	4	Pa	-u -a		22320	70		$-\alpha$		31603	5
Rn	$-\alpha$		240	8		- ~		25820	70	Nn	- 0		35220	50
Fr	-α		2969	13		-u		20020	10	np Du	-u - a		36030	74
Ra	$-\alpha$		3277	9	224 Bn			22440#	300#	ru ru			50350	24
Ac	-α		8124	27	224 Ki	*		22440#	50	221 6-	١٣		42300#	52()#
Th	$-\alpha$		10294	16				19919.0		231 FI Bo	τu		42.500# 28400#	200#
Pa	-α		17800	110	A a	-		20221	2.1 6	Ka An	×		35010	100
A17 D			5930 #	100#	, n	-α		20221	12		+		22910 5	100
217 Po	-α		5830#	100#		$-\alpha$		19989	12	1 10			33810.3	2.0
At			4387	8		$-\alpha$		25000	30				33421.0	2.0
Rn	$-\alpha$		3046	2	U U	$-\alpha$		25700	25		$-\alpha$		33803	4
Fr	-α		4300	7						Np	$-\alpha$		35610	50
Ra	$-\alpha$		5874	10	225 Rn	x		26490#	300#	Pu	$-\alpha$		38430#	100#
Ac	-α		8693	13	Hr Hr			23853	10	Am	x		42440#	300#
Th	$-\alpha$		12170	30	Ra			21987	3					
Pa	$-\alpha$		17040	80	Ac			21630	8	232 Fr	$+\alpha$		46250#	640#
218 Po			8351.6	25	, Th	α		22301	7	Ra	$+\alpha$		40700#	360#
At	-0		8087	12	Pa	-α		24330	70	Ac	+		39140	100
Ro	4		5204	3	U	-α		27370	50	(Th			35443.7	2.0
Fr	- 0		7045	5	Np	-α		31580	70	Ра	+		35939	8
л. р.,	-u		6636	ม้	1					U	- a		34601.5	2.7
Ka Ao	- <i>a</i>		10830	50	226 Rn	x		28770#	400#	Np	-		37350#	100#
AC Th	~~ a		10850	14	Fr			27330	90	Pu	~a		38358	19
IN N	$-\alpha$		12559	14	Ra			23662.3	2.5	Am	х		43400#	300#
Ра	α		18640	70	Ac			24303	4					
U	$-\alpha$		21880#	100#	Th			23186	5	233 Ra	$+\alpha$		44710#	470#
219 At	$+\alpha$		10520	80	Pa	<i>α</i>		26019	12	Ac	x		41500#	300#
Rn	,		8825 7	2 8	U	-0		27330	19	Тъ			38728.6	2 (
Fr	- 11		8608	7	Nn	-0		32770#	90#	Ря			37483.5	2
R a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		9379	9	1			/ - ////	200	1 U			36913.4	2 1
Ac	- ~		11560	50	1					Nn	-0		37940	50
716 Th	- ~		14460	50	1					р ₀	- 0		40040	50
Pa Pa	-a		18520	70	1					Δm	- a a		43290#	220#
1°.4 1 1			23210	80	}						- u v		47320#	#
U	a		2.5210	00	1]	^			-***/#

A Elt.	A Elt. Orig. S		Mass excess (keV)		A Elt.	Orig.	S	Mass excess (keV)		A Elt.	Orig.	S	Mass e: (keV	xcess /)
234 Ra	+0		47090#	540#	241 11			56200#	300#		 		70560#	200#
204 Ka Ac	, a r		45100#	400#	Nn	+		54260	70	2-10 / 100 Cm			67386	5
Th	+α		40609	4	Pu			52951.0	1.9	Bk	IT		68070#	70#
Pa	л. ГТ		40336	5	Am			52930.2	2.0	Cf	a		67233	5
U			38140.6	2.0	Cm			53697,6	2.3	Es	a		70290#	50#
Np	_		39950	9	Bk			56100#	200#	Fm	α		71897	12
Pu	$-\alpha$		40338	7	Cf	$-\alpha$		59350#	260#	Md	~α		77230#	240#
Am	$-\alpha$		44520#	210#	Es	$-\alpha$		63960#	300#	240 4-			72100#	2004
Cm	х		46800#	300#						249 Am	x		70744	500#
235 A.	+0		47600#	420#	242 U	$+\alpha$		58610#	200#		-1		608/3	3
255 AU	+a +n2n		44250	50	Np	IT		57410#	210#		0		69719 4	28
Pa	+		47320	50	Pu			54713.0	2.0	Fs.			71170*	30*
11	'		40914 1	20) Am			55464.0	2.0	Fm			73610#	140#
Nn			41037.8	2.1	Cm	$-\alpha$		54799.2	2.0	Md	a		77320#	220#
Pu	$-\alpha$		42179	21	Bk	~		57800#	200#	No	-a		81810#	340#
Am	$-\alpha$		44740#	210#	Cf	$-\alpha$		59330	40					
Cm	$-\alpha$		48060#	220#	Es	$-\alpha$		64920#	330#	250 Cm	-nn		72983	11
Bk	x		52700#	400#	rm F	x		68400#	400#	BK	$+\alpha$		72946	4
			61400#	E00#	242.24	PT-		60070	20		α		/1166.1	2.2
236 AC	+α		31407	200#	243 NP	11		59870*	3U* 2	ES	_		73270#	10
1.N D.u	X		40310#	200#	Pu			57168 2	22	i Fin Mai	-α		74008	300#
ra D	+		43340	200				57177.2	2.2	No	-α		21500# 81500#	300# 200#
Nn	IT		43370	50	Bk	-a		58686	5		- <i>a</i>		01200#	2007#
Pu	-α		42893 5	27	Cf	- a		60940#	140#	251 Cm	+		76641	23
Am	-		46170#	100#	Es	- 0		64860#	290#	Bk	+		75221	11
Cm	$-\alpha$		47880#	200#	Fm	- a		69410#	240#	Cf	-α		74128	5
Bk	x		53400#	400#						Es	-α		74504	6
007 P			60000 #	240#	244 Np	x		63200#	300#	Fm	$-\alpha$		75979	8
237 In	$+\alpha$		50200# 47K 40	360#	Pu			59800	5	ма	$-\alpha$		/9100*	200*
Pa	+		4/040	100	Am			59875.9	2.1	NO	$-\alpha$		82870#	180#
U			43380.1	2.0	Cm			58447.8	1.9		x		87900#	300#
тяр Бы			44607.3	2.0	Bk	$-\alpha$		60703	14	252 Cm	х		79060#	300#
Am	- a		46550	50	Cf	-α		61470	3	Bk	+		78530#	200#
Cm	- <i>a</i>		49270#	210#	Es	-α		66110#	180#	Cf	$-\alpha$		76028	5
Bk	-a		53210#	300#	Fm	$-\alpha$		69000#	280#	Es	-		77290	50
Cf	x		57820#	500#				(8405		Fm	$-\alpha$		76811	6
			*** ***		245 Pu	— n		63098	14	Md	x		80700#	200#
238 In	$+\alpha$		52390#	360#	Am C	$+\alpha$		61893	4	N0	$-\alpha$		82871	13
Pa	+		50760	60				60999.4	2.7	Lr	х		88800#	300#
U			47303.7	2.0	DK Cf	-a		63380#	100#	253 Bk	$-\alpha$		80930#	360#
лчр Бъ			46158 7	2.0	Ee Ee	u		66430#	200#	Cf	$-\alpha$		79295	6
Am	0		48420	50	En	- 0		70210#	280#	Es	$-\alpha$		79007	3
Ст	-a		49380	40	Md	п		75470#	380#	Fm	$-\alpha$		79341	5
Bk	-α		54270#	290#						Md	x		81300#	210#
Cf	x		57200#	400#	246 Pu			65389	15	No	$-\alpha$		84440#	250#
000 P			52220 #	200.4	Am	IT		64989	18	Lr	$-\alpha$		88730#	230#
239 Pa	x		55220#	300#	Cm			62612.7	2.2	00	$-\alpha$		95780#	450#
U	—n		20208.7 40205.2	2.0	Bk	-		63960	60	254 Bk	x		84390#	300#
nin pu			49505.5	2.1	Cf	$-\alpha$		64085.7	2.2	Cf	$-\alpha$		81335	12
ru Am	- 0		40386 /	2.0	Es	<i>α</i>		67970#	220#	Es	$-\alpha$		81986	4
Cm			51100#	100#	Fm	-α		70120	40	Fm	$-\alpha$		80898	3
Bk	$-\alpha$		54360#	290#	Md	-α		76320#	390#	Md	-		83580#	100#
Cf	- 0		58290#	230#						No	$-\alpha$		84718	18
					247 Pu	x		69000#	300#	Lr	$-\alpha$		89970#	34()#
240 Pa	X		56800#	300#	Am	+		67150#	100#	Db	$-\alpha$		93300#	290#
U	+ 0		52709	5	Cm	_		63328	4 2	255 Cf	+		84800#	200#
Np	+		52521	15	Bk	-α		65483	0	Es	$-\alpha$		84083	11
Pu A			50121,3	1.9		_		68600	8 20	Fm	$-\alpha$		83793	5
Am Cm	+13		51715 7	14	ES Em	a		71560#	150#	Md	<i>α</i>		84836	7
Cm Di	$-\alpha$		51/12./	2.7	rm Ma	-α 1T		76200#	370#	No	$-\alpha$		86845	12
DK Cf			58030#	200#	(ING	11		102(10)	.	Lr	$-\alpha$		90140*	210*
U 1			50050#	2.0.1	l					l Db	-~ a		94540#	210#
Fe	×		642(11)#	A(Y)#										

A Elt.	Orig.	S	Mass ex (keV	cess)	A Elt.	Orig.	S	Mass excess (keV)		A Elt.	Orig.	s	Mass excess (keV)	
256 Cf	x		87040#	300#	260 Md	α		96550#	320#	265 JI	$-\alpha$		110530#	280#
Es	+		87180#	100#	No	$-\alpha$		95610#	200#	Rf	$-\alpha$		112770*	140*
Fm	$-\alpha$		85480	7	Lr	$-\alpha$		98340#	120#	Bh	$-\alpha$		116620#	380#
Md	$-\alpha$		87610	50	Db	$-\alpha$		99140#	200#	Hn	IT		121100#	300#
No	$-\alpha$		87817	8	JI	$-\alpha$		103790#	230#	Mt	-α		127210#	470#
Lr	$-\alpha$		92000#	220#	Rf	$-\alpha$		106600	40	244 Df			112500#	200#
Db	<i>α</i>		94248	27	Bh	$-\alpha$		113460#	620#	200 KI Dh	a		119300#	250#
Jì	$-\alpha$		100700#	360#	261 No			08500#	3/1/14	- Dii Min	-a		121120#	330 4 410#
047 F			00400#	410#	201 N0	-4		26300#	2(1)#	L III			121130#	350#
257 ES	$-\alpha$		894(1)#	410#		$-\alpha$		99020#	200#	INIT	-α		120490#	550#
Fm	$-\alpha$		88584	0		$-\alpha$		101300*	220#	267 Bh	$-\alpha$		118990#	340#
Ma	$-\alpha$		88990	20	, Ji DF	$-\alpha$		109930#	250#	Hn	~α		122750 *	100*
NO	$-\alpha$		90220	30		$-\alpha$		108240#	200#	Mt	$-\alpha$		128110#	580#
£r	$-\alpha$		92780#	210#	Bu	$-\alpha$		113400#	248.7#	Xa	$-\alpha$		134090#	380#
D6	$-\alpha$		96010#	230#	262 No	$-\alpha$		100150#	540#	260 11-			122100#	410#
11	$-\alpha$		1004/0#	230#	Lr	$-\alpha$		102180#	300#	208 Hill	-α		123100#	410#
258 Fm	$-\alpha$		90420#	200#	Db	$-\alpha$		102390#	280#	MI	$-\alpha$		129310#	520#
Md	$-\alpha$		91683	5	II JI	$-\alpha$		106330#	180#	Ха	$-\alpha$		133700#	500#
No	$-\alpha$		91470#	200#	Rf	$-\alpha$		108500#	280#	269 Hn	α		124930#	420#
Lr	-α		94900#	100#	Bh	$-\alpha$		114580#	380#	Mt	$-\alpha$		129580#	550#
Db	$-\alpha$		96470#	200#				1027/0#	2004	Xa	$-\alpha$		135200#	290#
л	α		101940#	340#	263 Lr	α		103760#	300#	270 14			121000#	£10#
Rf	$-\alpha$		105400#	410#	00	$-\alpha$		104830#	190#	270 ML	$-\alpha$		131080#	610#
				4 00.0	1	$-\alpha$		10/190*	170*	1 73	$-\alpha$		134720#	030#
259 Fm	$-\alpha$		93700#	280#	RI DI	11		110210*	120*	271 Mt	$-\alpha$		131550#	610#
Md	$-\alpha$		93620#	200#	E BN	$-\alpha$		114/10#	420#	Xa	$-\alpha$		136070#	180#
No	$-\alpha$		94100*	100*	Hu	$-\alpha$		119890#	370#	070 V			12/20/04	6504
Lr	$-\alpha$		95940*	70*	264 Db	$-\alpha$		106170#	450#	2/2 Xa	$-\alpha$		136290#	220#
Db	$-\alpha$		98390*	70*	່ມີ	$-\alpha$		109430#	230#	XD	α		142960#	550#
31	-α		102210#	290#	Rf	$-\alpha$		110780#	280#	273 Xa	$-\alpha$		139020#	440#
Rf	$-\alpha$		106800#	210#	Bh	$-\alpha$		116190#	280#					
					Hn	a		119610	50	1				

Table II. Table of isomers

EXPLANATION OF TABLE

This table gives information on cases where more than one nuclear state occur in the data entering our evaluation. Element indications with suffix "m" or "n" indicate assignments to isomeric states (defined, see text, as upper states with half-lives larger than 1 ms, see also Ref. [15]. For clear identification, half-lives, spins and parities, where known from NUBASE [15], have been added. Suffixes "p" and "q" indicate shorter-lived isomers and non-isomeric levels, e.g. those ones for which the energy was derived from Nilsson model extrapolations. Suffix "r" indicates a state from a proton resonance occurring in (p,γ) reactions. Suffixes "x" or "y" apply to mixtures of levels, e.g. occurring in spallation reactions (indicated spmix in last column) or fission (fsmix).

A Elt.	Mass number $A = N + Z$. Element symbol (for $Z > 103$ see Section 2).
Orig.	Origin of values for secondary nuclides.
	zp nn : mass of ^A Z derived from mass of ^{A+z+n} (Z+z). Special notations: IT when $z = 0, n = 0;$ + when $z = +1, n = -1;$ - when $z = -1, n = +1$:
	ϵ p when $z = -2$, $n = +1$; + α when $z = +2$, $n = +2$; x for distant connection.
Excitation energy	Energy difference between levels adopted as higher level and ground state, and its error. In cases where the furthest-left significant digit in the error was larger than 3, values and errors were rounded off, but not to more than tens of keV. # in place of decimal point: value and error estimated from systematic trends. * in place of decimal point: value and error, for nuclei beyond $A = 225$ derived from application of the Nilsson model (see Section 6.4).
	G. Audi, A.H. Wapstra / Nuclear Physics A 595 (1995) 409–480
-----------	--
Т	Half-life: s = seconds; m= minutes;
	h = hours; d = days; y = years;
	ms, μ s, ns, zs = $10^{-3,-6,-9,-21}$ seconds;
	$ky = 10^3$ years.
	For isomeric mixtures:
	R = abundance ratio upper/lower levels;
	contamination = non-isomeric mixture.
J^{π}	Reported or adopted values for spin and parity:
	() : uncertain spin and/or parity.
	# : indicates values estimated from systematic
	trends in neighboring nuclides.
	high, $low = high$, $low spin$;
	am = same J^{π} as α -decay parent;
	For isomeric mixtures: mix (spmix and fsmix if coming from
	spallation and fission respectively).

A Elt.	Orig.	Excitatio (ke	n energy V)	Т		J [#]	A Elt.	Orig.	Excit	ation energy (keV)	Т		J [#]
10 Li	—n	0		2.0	zs	(1-,2-)	98 Rb		0		114	ms	(1,0)
Li ^p	-n	220	60	1.27	25	1+	Rb‴	+	380	120	96	ms	(4,5)
Li ^q		480	40			2+	Y		0		548	ms	(0) -
							Y‴	+	410	30	2.0	\$	(5+)
13 Be	IT	0		<10	ns	$(1/2^{-})$			0		1.6		1+
Be	++	1500	500	n-unstable		(5/2+)	IOU NO	+	470	40	2.00	s	(4+ s+)
14 Bc	x	0		4 35	ms	0+	NU	Ŧ	470	40	2.99	\$	(4.,5.)
Be ^p	++	1590	120			(2^+)	102 Nb	+	0		1.3	s	1+
-50						,	Nb ^m	+	120	50	4.3	s	high
22 Na		0		2.6019	У	3+							
Na		7408.8	0.6			1*	104 Nb	+	0		4,8	s	(1+)
28 6:		0		stable		0+	ND.	+	220	120	920	ms	high
20 31	0	12541 00	0.14	stable		3+	106 Rh	+	0		29.80	s	1+
31	-Ρ	12541.00	0.14			5	Rh‴	+	136	12	131	m	$(6)^+$
41 Sc		0		596.3	ms	7/2-							, í
Sc'		2882.30	0.05			7/2-	108 Rh	+	0		16.8	s	1+
						a. t	Rh‴	+	-60	110	6.0	m	(5+)
42 Sc		0	0.00	681.3	ms	0'	110 Rh	п	0		3.2	s	1+
SC		0070.31	0.08				Rh ^m	+	õ	200	28.5	s	(> 3)
53 Co	p4n	0		240	ms	$(7/2^{-})$							
Co‴	D	3194	30	247	ms	$(19/2^{-1})$	115 Sb		0		32.1	m	5/2+
•••	F						Sb'	IT	860	100			
60 Mn	IT	0		51	s	0+	Te	r	0	-	5.8	m	7/21
Mn*	x	140	80	R = ?		mix	Ie	_	10	,	6,7	m	$(1/2)^{\prime}$
70 Cu	+	0		4.5	s	1+	116 Sb		0		15.8	m	3+
Cu ^m	IT	140	80	47	s	345-	Sb‴	_	380	40	60,3	m	8-
							Cs		0		700	ms	(1+)
78 Rb		0		17.66	m	0(*)	Cs ^m	IT	100#	60#	3.84	s	> 4+
Rb'		76	12	R = 2(.5)		spmix	Cs.*		5	4	R = ?		spmix
81 Rb		0		4.576	h	3/2-	117.00	m	0		N N		0/2+#
Rb ^x		30	22	R = ?		spmix		IT	150#	100#	6.4	5	3/2 #
Rb		38	24	R = ?		fsmix	Cs ^x	x	50	50	R = ?		somix
		0		10.1		<pre>/**</pre>				•••			
82 AS	+	250	200	19.1	S	(1')	118 In		0		5.0	s	1+
As‴	+	250	200	13.0	s	(5)	ln ^m	IT	100#	50#	4.45	m	5+
RU Ph ^x		35	10	1.273 R = 7	111	somix	Sb	-	0		3.6	m	1*
Rh		37	19	R = ?		fsmix	Sb‴	-	250	6	5,00	h	8-
RU		.,	.,			1.5441A	Cs	11	100#	204	14	s	2
84 Br		0		31.80	m	2-	Cs ^{ar}	11	100#	00#	1/ P < 1	s	(7)
Br‴	+	320	100	6.0	m	(5~,6)	C.8		5	4	1. 7 A		spinix
Rb		0		32.77	d	2-	119 Cs		0		43.0	s	9/2+
Rb ^x		280	50	R = ?		fsmix	Cs ^m	IT	50#	30#	30,4	s	3/2(+)
Y	-	0		4.6	5	17	Cs ^x		16	11	R = .5(.25)		spmix
Y‴	-	-80	190	40	m	(5)	120 In	+	0		3 ()8	c	1+
88 Nb		0		14.5	m	(8 ⁺)	In ^m	'n	70	60	46.2	5	;+
Nb ^m		390#	220#	7.8	m	(4-)	I	-	0		81.0	, m	2-
			"				I‴	_	320	150	53	m	4.5.6.7.8
90 Rb		0		158	s	0-	Cs		0		64	\$	2
Rb ^x		81	11	R = 2(1)		fsmix	Cs ^m	IT	100#	60#	57	8	(7)
Tc	-	0		8.7	5	1+	Cs ^x		5	4	R < .1		spmix
Te‴		310	390	49.2	s	4,5,6(+#)	121 C	17	0		156		$2/2(\pm)$
91 Sr		0		9.63	h	5/2+	121 US	11	16	8	133 R = 2(1)	5	snmix
Sr		39	11	R = 6		mix	Ç.5		-10		n - 2(1)		Shurr
							122 In	+	0		1.5	s	1+
94 Rb		0	40	2.702	s	3(-)	In ⁿ	+	290	140	10.8	s	8
KD.		-110	40	contamina	uon tion		Cs		0		21.0	\$	1+
Ph	IT	5U 0	40	contamiña 70.6	นOff ร	(3+)	Cs‴	x	123	19	4.5	m	8-
Rh [#]	-	3(11)#	200#	25.8	а с	(8+)	Cs ^{-r}		12	6	R = .1(.05)		spmix
				20.0		··· ·	123 Cs		0		5.94	m	1/2+
96 Y		0		5.34	s	0-	Cs*		7	4	R < .1		spmix
Y‴	+	1140	30	9.6	\$	(8)+					· ·-		+
							124 In	+	0	70	3.17	5	э. э.
							m'''	+	~ 20	70	2.4	5 6	1 ⁺
							Cs ^r		28	17	R = ?		spmix
							20						•

A	Elt.	Orig.	Excitati (k	ion energy (eV)	T		J ^π	A	Elt.	Orig.	Excitat (tion energy keV)	Т		J [#]
125	Cđ	+	0		650	ms	$(3/2)^+$	150	ть		0		3 48	ь	(2~)
	Cd ^m	+	50	70	570	ms	$(11/2^{-})$		Tb ^m		470	50	5.8	m	$(\frac{2}{8^{+}.9^{+}})$
124	T		0		1.00		3/+3		Но	_	0		72	s	2,3(-#)
120	In ^m	+	100	60	1.60	s	3(*) 8(=#)		Ho‴		120#	110#	26	\$	(9 ⁺)
	m	т	100	00	1.04	3	o(#)	151	Tm	IT	0		413		(11/2=)
127	In	+	0		1.083	s	9/2(+)	121	Tm ^m	+0	45#	15#	4.13	5	$(1/2^+)$
	In‴	+	460	70	3.76	S	(1/2-)		Lu	IT	0	100	5.2	a	$(3/2^+)#$
128	In	+	0		776	ms	$(2.3)^+$		Lu ^m	-p	0#	100#	85	ms	11/2-
	In‴	+	320	60	776	ms	$(7,8)^{-}$	163	D		0				.+
	Sb	IT	0		9.01	h	8-	152	rm Pm [#]	+	140	110	4.1	m	1
	Sb‴	+	10	7	10.4	т	5+		Tm	+	140	110	1.52	m r	4 (2)
120	In	+	0		611	me	(0/2+)		Tm ^m	- ÎT	200#	150#	52	5	(2^{+})
129	In ^m	- T	380	70	1.26	6	$(9/2^{-})$		-			100#		3	())
		•	500	70	1.20	3	(172)	154	Pm	+	0	120	1.73	m	(0,1)
130	ln	+	0		278	ms	1-		Pm No	+	50	130	2.08	m	(3,4)
	ln‴	+	50	50	550	ms	(10-)		Hom	$-\alpha$	260	50	3.10	m	2 8 ⁺
	In"	+	400	60	550	ms	(5 ⁺)		Tm	$-\alpha$	0	50	8.1	s	(2^{-})
	50 56#4	+ IT	5 10	0.20	39.5	m	$(8)^+$		Tm ^m	a	200#	120#	3.30	\$	(9 ⁺)
	Cs		0	0.20	29.21	m	1+	1.55							· · · · · · · · · · · · · · · · · · ·
	Cs.x	IT	27	15	R = .2(.1)		fsmix	155		+ \alpha	0	164	140	ms	$(1/2^+, 3/2^+)$
			0		•		() table >		1	a	1800#	50#	2.60	ma	(11/2)
131	In 1-177	+	0	40	280	ms	(9/21)		Lu	-4	1000/#	J0#	2.00	1115	(2572)
	in In″	+	350	40 80	330	ms	$\frac{1}{2}$	156	Lu	$-\alpha$	0		730	ms	(2))
			4100	00	520	1115	(19/2		Lu‴	~α	320#	170#	179	ms	(9+)
132	I	+	0		2.295	h	4+		Ht ⊾⊮₽	a	1080	50	25	ms	0 ⁺
	I‴	+	108	15	1,387	h	(8-)		Та	- <i>a</i>	1960	50	220	µs me	(2)
134	Sb	+	0		780	ms	(0^{-})		Ta‴	~p	82	18	320	ms	(2^{+})
	Sb‴	+	80	110	10.22	\$	(7-)								
	Pr	IT	0		17	m	2-	157	Lu	IT	0	• •	4.7	s	3/2+
	Pr‴		0#	200#	~11	m	(5-)		Lu	$-\alpha$	32.0	2.0	4./4	s	11/2
135	Pm	п	0		49	c	5/2+	158	W	$-\alpha$	0		900	μs	0+
155	Pm'''		100#	200#	40	s	$(11/2^{-})$		W ^p	$-\alpha$	1900	40	500	μs	8+
						.,	(159	Та	$+\alpha$	0				$(1/2^+ 3/2^+)$
136	1		0		83,4	s	(1^{-})		Ta ^m	-α	110#	50#	570	ms	$(11/2^{-1})$
	L.	+	650	120	46.9	S	(6 ⁻)	160	T.		0				
137	Pm	IT	0				(5/2+)#	160	Ta ^m	$-\alpha$	420#	180#	15	c	l0w high
	Pm‴	-	0#	100#	2.4	m	11/2-			ч	42.0#	100#	1.5		ui En
138	C.		Ο		33 41	m	3-	163	Re	$+\alpha$	0				$(1/2^+,3/2^+)$
120	Cs ^x		37	22	R = ?		fsmix		Re‴	$-\alpha$	170#	70#	260	ms	(11/2-)
	Pr	~	0		1.45	m	1+	164	Re	$-\alpha$	0		880	ms	
	Pr"		364	22	2.12	h	7-		Re ^p	IT	150#	100#			high
	Pm	-	0		3.24	m	(3+)	167	Re	IT	0		34	s	$(9/2^{-})$
	Pm‴	_	80	260	10	s	1-		Re ^m	$-\alpha$	150#	100#	6.1	s	(1/2)
140	Pm	-	0		9.2	s	1+		Ir	-р	0		33.5	ms	1/2+
	Pm‴	-	44()	70	5,95	m	8-		lr ^m	$-\alpha$	220#	90#	29.5	ms	11/2-
142	En	-	0		24	e	1+	168	i.u		0		55	m	6(-)
	Eu ^m		520	50	1.22	m	8-		Lu ^m	_	220	130	6.7	m	3+
															-
145	Tb	IT	0				$(1/2^+)$	169	Rc "	x	0		8.1	5	(9/2) #
	Tb‴	-	0#	100#	29.5	S	(11/2-)		Re ^m	IT	150#	70#	16.3	5	(1/2)#
146	Тъ	~	0		8	s	1+		KC"	11	5(10)#	IUU#			(5/2.)
	ть‴	rr	150#	100#	23	s	5-	170	Но	+	0		2.76	m	(6 ⁺)
	Tm	— p	0		235	ms	(6-)		Ho‴	+	100	80	43	8	1(*)
	Tm‴	-р	71	7	72	ms	(10+)	171	Au	IT	0				1/2+#
148	Но	ľΤ	0		2.2	s	1+		Au ^m	-α	300#	200#	~ 2	ms	$(11/2^{-})$
	Но‴	-	0#	100#	9.59	s	6								, , 1+,
1.00	п.		~				()) (a =	1/2	ır Ir ^m	-α + ~	130	10	4.4 2 I	5	(3^{+})
149	но Но ^{лі}	 IT	48.80	0.20	21.1	S c	$(11/2^{-})$		••	+u	1.77	10	2.1	3	(,)
					.0	a	(1/2)								

ΑE	lt.	Orig.	Excita	ation energy (keV)	r		j ^π	A	Elt.	Orig.	Excita (tion energy keV)	Т		J ^π
173 Ir		-a	0		9.8	s	$(5/2^+, 3/2^+)$	187	Hg	IT	0		1.9	m	3/2
lr	/n	$-\alpha$	100#	100#	2.20	s	(11/2-)		Hg ^m	$+\alpha$	100#	70#	2.4	m	13/2+
174 1-		1.00	Δ		0		(2+)		TI	x	0		~51	8	(1/2+)
1/4 II Ir	m	$-\alpha$	193	11	49	s	(7^+)		TI‴	IT	332	4	15.60	8	(9/2-)
				••		0			Pb	x	0	40.4	15.2	5	$(3/2^{-})$
175 lr	n	-α	0	20	9	s	(5/2-)		PD" D:	TT -	60#	40#	18,3	\$	(13/2')
15	r 	11	100	20			am 11/2 - #		DI Bi ^m	— <i>а</i> 1Т	150#	100#	33	ms	(9/2)
A	.u .u ^m	$-\alpha$	100#	200#	200	ms	5/2+#		ь.	••	150#	100#	0.0	mə	(1/2)
								188	TI	x	0		71	S	(2-)
1// A	.u p	$-\alpha$	400#	360#	1.18	S			T1""	IT	100#	50#	71	s	(7^{+})
н	lg	$-\alpha$	- 0	500#	130	ms			Bi	- 0	370# 0	30#	41	ms	(9)
н	g ^p	IT	120#	100#			13/2+		Bi‴	0	190#	150#	210	ms	(10^{-})
170 1			0		201	-	1(1)			-					,
1/6 L	น ^m		123.7	26	20.4	m	9(-)	189	TI	+α	0	,	2.3	m	(1/2 ⁺)
Т	à	IT	0	1.0	9.31	m	î+		11	-	283	0	1.4	m	9/2()
Т	am	_	0	100	2.36	h	(7) -		Ph ^m	ı. IT	90#	60#	51	5	13/2+
170 4		_^	0		71	c	(5/2+)		Bi	-a	0	00%	680	ms	$(9/2^{-1})$
1/9 A	u up	- <i>и</i> IT	200#	150#	7.1	3	$(11/2^{-})$		Bi ^m	-α	217	25	7.0	ms	(1/2+)
н	lg	+α	0		1.09	s	····=)	100	Da		0		2.1		(2) =
н	lg ^p	+a	160#	80#			(13/2+)	190	Re ^m	+ IT	210	50	3.1	n b	(2) (6^{-})
Т	J	$-\alpha$	0		190	ms	1/2+		т		0	50	2.6	m	$(2)^{-}$
Т	1‴	$-\alpha$	560#	210#	1.4	ms	(9/2))		T1‴	-	170	500	3.7	m	(7+)
180 T	à		0		8,152	h	ι +		Bi	$-\alpha$	0		6.3	s	3+
Т	a ^m	+n	75.2	1.3	stable		9~		Bi ^m	$-\alpha$	210#	50#	6.2	s	10~
181 P	t	+a	0		51	s	1/2-	191	TI	$+\alpha$	0				(1/2+)
Р	't ^p	+α	396	14			(13/2 ⁺)		TI‴	-	297	7	5.22	m	9/2(-)
A	.u 	$+\alpha$	0	200#	11.4	5	5/2-		P0 Pb ^m	х тт	0 90#	60#	1.33	m	(10w#) 13/2(+)
A 14	ur Ia	+α +α	440#	200#	36		(11/2)		Bi	- 9	, 0	0.7	12	s	$(9/2^{-1})$
л Н	lg Io ^p	+α +α	110#	80#	5.0	5	13/2+		Bi‴	-a	242	7	150	ms	$(1/2^+)$
т	1	- ~	0	000	3.4	s	$(1/2^+)$		_						
т	״ו	IT	600#	200#	2.7	ms	(9/2-)	192	TI TIP		200	50	9.6	m	(2^{-})
Р	b	IT	0				(1/2=#)		Bi	0	200	50	37	s	(3^{+}) $(2^{+}3^{+})$
Р	ъ ‴	-α	90#	60#	60	ms	(13/2+)		Bi‴	-a	210#	50#	39.6	s	(10^{-})
182 R	c	IT	0		64.0	h	7+				_				
R	le ^m		60	100	12.7	h	2+	193	Pb	X	0	00#	e 0		$(3/2^{})$
T	1	X	0		2.0	s	a +		PD Ri	- 0	0	80#	5.8 67	m s	$(9/2^{-1})$
1	יין. קרי	II IT	100#	100#	2.9	s	// 1)=		Bi‴	-a	308	7	3.2	5	$(1/2^+)$
1	r	п	000#	140#			11		Ро	$-\alpha$	0		360	ms	(3/2-#)
183 A	u	IT	0		42.0	\$	5/2-		Po ^m	$-\alpha$	140#	80#	260	ms	13/2+
A	.u ⁴	$+\alpha$	230.6	0.6			11/2-	194	İr		0		19.15	h	1-
. H น	lg 1m	+α +α	240#	40#	8.8	5	1/2		ir"	+	350	70	171	d	10,11
T T	1 <u>8</u> 1	+α	0	4011	6.9	5	$(1/2^+)$		Bi	$-\alpha$	0		106	s	(2+,3+)
Ť	יייך	- 0	460#	100#	60	ms	$(9/2^{-})$		Bi"	-α	270	500	125	s	(10-)
Р	ъ	x	0		300	ms	$(1/2^{-})$		At	IT	0	1.50.1	100		3*#
Р	ъ ″	IT	70#	40#	6	s	13/2+		At."	→α	250#	150#	180	ms	10 #
184 T	٦	x	0				(2 ⁺)#	195	lr	n	0		2.5	h	3/2+
т	״מ	IT	100#	100#	11	S	7+		lr‴	+	110	20	3.8	h	11/2-
Т	1p	IT	500#	140#			11-		P0 P5 ^{///}	+ 1T	202.0	07	~15	m	3/2
185 T	٦	x	0		19.5	s	(1/2 ⁺)		Bi	_α	0	0.7	183	s	$(9/2^{-1})$
т] <i>m</i>	IT	452.8	2.0	1.83	s	(9/2-)		Bi‴	-a	399	6	87	s	(1/2+)
Р	ъ	x	0		4.1	s	1/2 #		Ро	$-\alpha$	0		4.64	8	(3/2-)
P -	'b″'	IT T	60#	40#	6.1	S	13/2+#		Po‴	$-\alpha$	190#	80#	1.92	s	(13/2 ⁺)
E	ы цР	-n -n	0 100#	100#	45		(9/2)		At	$-\alpha$	0	40	140	ms	9/2 #
E .		-р	100#	1.1.1		μ5	(1/2)		AI	$-\alpha$	-20	60	/10	ms	1/2.#
186 T	1	$-\alpha$	0	£0#	27.5	S	2+	196	lr	+	0		52	5	(0-)
Т т	ויי קוי	IT IT	100#	50# 50#	4,5	5	10-		۱r ^m	+	42()	110	1.40	h	(10,11 -)
E	Bi	-α		J/m	2.9		10		Bi n;‴	$-\alpha$	0	3	5.1	m	(3^{+})
E	Si ^m	$-\alpha$	250#	250#	10	ms	10-		Bi ⁿ	+α +α	270	4	.0 4.00	m	(10^{-1})
										,	÷	-			/

_															
A	Elt.	Orig.	Excitat	ion energy keV)	Т		j#	A	Elt.	Orig.	Excitatio (k	on energy eV)		Т	j [#]
197	Рb	x	0		8	m	3/2-	213	Ra	a	0		2.74		1/2-
	Pb ^m	IT	319.3	0.7	43	m	13/2+		Ra ^m	-α	1768	6	2.1	ms	17/2-
	Bi	$+\alpha$	0		9.3	m	(9/2)	214		- 0	0		658		1-
	Bi‴	IT	510#	50#	5.2	m	$(1/2^{+})$	414	At ^P	a	59	9	268	ns	1
	Po De ^m	$-\alpha$	0	00#	56	s	$(3/2^{-})$		At ⁴	-α	234	6	760	ns	9-
	P0	α	250#	90#	25.6	S	$(13/2^{-1})$		Fr	a	0		5.0	ms	(1^{-})
	At ^m	$-\alpha$	50	70	350	s s	$(1/2^+)$		Fr‴	a	123	6	3.35	ms	(9-)
	Rn	a	0	10	66	ms	$(3/2^{-} \#)$						- • •		
	Rn‴	$-\alpha$	240#	90#	21	ms	$(13/2^+ \#)$	216	Ac	-α	0		330	μs	(1-)
									Ac ^r	α	37	10	330	μs	(9°)
198	Bi	$+\alpha$	0	60.U	10.3	m	$(2^+, 3^+)$		ThP		2030	20	180	ms	0' 0+
	BI	+ α	150#	50#	11.0	m	(7^{+})		110	- u	2000	20	100	μ	0
	BI.	rr	390#	50#	1.1	s	(10)	217	Ac	$-\alpha$	0		69	ns	9/2-
	Αι Δ+ ^m	-α - ~	370	500	4.2	5	(3)		Ac ^p	$-\alpha$	2012	20	740	ns	29/2+
	~1	- <i>a</i>	570	500	1.0		(10)		Ра	-α	0		3.4	ms	(9/2-#)
199	Bi	$+\alpha$	0		27	m	9/2-		Pa‴	-α	1860	70	1.5	ms	
	Bi ^m	IT	640#	50#	24.70	m	(1/2+)	218	Fr	-0	0		1.0	ms	(1^{-})
	Ро	$-\alpha$	0		5.48	m	(3/2-)		Fr‴	α	86	5	22.0	ms	,
	Po ^m	$-\alpha$	311.9	2.8	4.17	m	13/2+		Fr	IT	200#	150#	-		high
	Rn	$-\alpha$	0		620	ms	(3/2-)		Ac	$-\alpha$	0		1.12	μs	$(1)^{-}$
	Rn‴	-α	250#	110#	320	ms	(13/2*)		Ac ^p	IT	150#	50#			(9) -
200	Au	+	0		48,4	m	1(-)	222	Ac	a	0		5.0	s	(1^{-})
	Au ^m	+	960	70	18.7	h	12-		Ac ^m	$-\alpha$	200#	150#	1.05	m	high
	At	$-\alpha$	0		43	S	(5 ⁺)		_				0		
	At‴	$-\alpha$	113	3	47	s	(7 ⁺)	224	Fr		0	100	3,30	m min - si su	1(-)
	At″	IT	344	3	3.5	5	(10-)		FT.		- 440	100	conta	mination	
201	Ро	-α	0		15.3	m	3/2-	229	Pa	$-\alpha$	0		1.50	d	(5/2+)
	Po ^m	IT	424.2	2.5	8.9	m	13/2+		Pa ^p	+nn	15	9	420	ns	3/2-
	Rn	$-\alpha$	0		7.0	5	(3/2-)	230	Np	$-\alpha$	0		46	m	
	Rn ^m	$-\alpha$	280#	110#	3.8	s	(13/2 ⁺)	250	Np ^p	IT	300#	200#	-1,0		am
202	At	$+\alpha$	0		184	5	(2,3)+	234	Pa	ıт	0		670	h	4+
	At ^m	IT	50#	50#	182	s	(7 ⁺)	2007	Pa ^m		78.0	3.0	1 17	m	(0^{-})
	At"	IT	440#	50#	460	ms	(10-)				70.0	5.0	1.17		(0)
	Fr	$-\alpha$	0		300	ms	(3+)	235	Cm	$-\alpha$	0				
	Fr‴	$-\alpha$	360	500	340	ms	(10 ⁻)		Cm ^p	11	50*	50*			am
203	Rn	$-\alpha$	0		45	s	$(3/2,5/2)^{-}$	236	Np	IT	0		154	ky	(6-)
	Rn‴	$-\alpha$	363	4	28	s	$13/2(^+)$		Np‴	+	60	50	22.5	h	1
	Ra	$-\alpha$	0		3.3	ms	(3/2-#)		Np ^p	$+\alpha$	240	50			3-
	Ra ^m	$-\alpha$	290#	120#	39	ms	(13/2+)	127	Cm	- 0	0				
20.4	E.,		Δ		17		(2+)	207	Cm ^p	rT	200#	150#			7/2-
204	г: Б- ^{лі}	-a	54	6	26	\$	(7^+)		Bk	a	0	1000			7/2+#
	Er ⁿ		330	6	1.6	3 6	(10^{-})		Bk ^p	IT	70+	30*			(3/2-)
	••	u	200	Ū			(10))								. ,
205	Ra	$-\alpha$	0		220	лıs	(3/2 #)	238	Bk	$-\alpha$	200#	1504			
	Ra‴	$-\alpha$	290#	120#	200	ms	(13/2+#)		BK	11	200#	150#			am
206	Fr	П	0		15.9	s	$(2,3)^+$	239	Cm	-	0		~2.9	h	(7/2-)
	Fr"	IT	50#	50#	15.9	s	(7 ⁺)		Cm ^p	IT	150*	100*			1/2+
	Fr"	$-\alpha$	580#	50#	700	ms	(10-)		Bk	$-\alpha$	0				(7/2+)
	Fr		100	100	R = ?		sprnix		Bk ^p	+α	41	11			(3/2-)
207	Ra	<i>-α</i>	0		1.3	s	$(5/2^{-}, 3/2^{-})$	240	Np	+	0		61.9	m	(5+)
	Ra ^m	$-\alpha$	560	50	55	ms	(13/2+)		Np‴	IT	20	15	7,22	m	l(†)
200	۸	-	0		00				Bk	-	0	100#	4.8	m	
208	AC 4,//	-a	510	22	99 17	ms			Bk₽	IT	330#	100#			am
	AC	$-\alpha$	510	**	21	ins		241	Cm		0		32.8	d	1/2+
211	Ро	<i>~ α</i>	0		516	ms	9/2+		Cm ^p	rr	0#	100#			(5/2+)
	Po"	$-\alpha$	1462	5	25.2	s	(25/2+)		Bk	-	0				(7/2+)
212	р:		Δ		60.55	-	1(-)		Bk ^p	$+\alpha$	51	3			3/2-
212	DI Di		250	30	25.00	m	1() (0)		Cf	$-\alpha$	0		3,78	m	7/2-
	Po	a	2.50		20.0	11) P 6	0+		Cf ^p	IT	150*	100*			(1/2+)
	Po ^m	-a	2911	12	45.1	5	(18+)		Es	-a	0		10	8	/a /a+ \
	At	-a	0		314	ms	(1^{-})		Es ^p	IT	400*	200*			(7/2')
	At ^m	a	222	7	119	ms	(9-)								

A	Elt.	Orig.	Exci	tation energy (keV)	7		J [#]	A	Elt.	Orig.	Excita	ation energy (keV)	7	r	J [#]
242	Np	IT	0		5.5	m	(6)(+#)	254	Es	α	0		275.7	d	(7 ⁺)
	Np ^m	+	0#	50#	2.2	m	(1+)		Es ^m	+	83.8	2.5	39.3	ĥ	2+
	Bk	_	0		7.0	m	2-		Lr	$-\alpha$	0		13	s	
	Bk ^p	IT	250#	100#			4		Lr^{p}	IT	100#	70#			
	Es	$-\alpha$	0		50	\$		255	Em	-	0		20.07		7 (0+
	Es ^p	IT	300#	200#				255	riii EmP	- <i>a</i>	250	100	20.07	n	//2·
243	Mo	IT	0		1.9		(5/2-)		rur Ma		250*	100*			(9/2)
240	No	11	50	30	1.0	m	(5/2)		MulP	- <i>a</i> 1T	100-	20+	27	m	(7/2)
	Cm	тр	.0*	J0¥	20.1	••	(3/2)		No	- 2	1004	/U#	21		am (1/2+)
	Cm ^p	-a +a	127	0	29.1	у	7/2+		Nop	—а IT	100*	70+	5.1	m	$(1/2^+)$
	Bk				45	•	(3/2-)				1004	704			(112)
	Bk ^p	<u>–</u> а IT	50+	30.*	4.5	"	(3/2)	256	Md	$-\alpha$	0		78.1	m	(0~,1~)
	Fe		0	204	21		$(3/2^{-})$		Ma ^p	IT	150#	100#			am
	Es ^p	<u>-</u> ц іт	400*	200.*	21	3	(372)		Lr	$-\alpha$	0		28	8	
	2	••	1001	2004			un		Lr	IT	100	70			
244	Am		0		10.1	h	(6-)	257	No	$-\alpha$	0		25	e	$(7/2^{+})$
	Am‴		85.8	0.9	~ 26	m	1+	207	Nop	п	250*	100*	25		(772) am
	Bk	$-\alpha$	0		4.35	h	(1-)		Lr	$-\alpha$	0		646	ms	$(9/2^+)$
	Bk ^p	IT	140#	50#			am		Lr ^p	IT	150#	100#	0.0	,	am
	Es	$-\alpha$	0		37	s			Db	$-\alpha$	0		4.7	s	$(1/2^+)$
	Esp	IT	200#	150#			am		Db ^p	IT	100*	70 *			$(7/2^+)$
245	Bk	$-\alpha$	0		4.94	đ	3/2-	0.50							,
	Bk ^p	ш	50*	30*		•	$(7/2^{-})$	258		α	0	1504	3,92	S	
	Cf	$-\alpha$	0		45.0	m	$(5/2^+)$		LF 11	11	200#	150#			am
	Cf ^p	IT	150*	100*			7/2+		וג קון	- <i>a</i> IT	0#	150#	4.0	s	
	Es	-a	0		1.1	m	$(3/2^{-})$		21		017	1.50/1			am
	Es ^p	IT	300#	100#			am	259	No	$-\alpha$	0		58	m	(9/2+)
	Md	IT	0		900	μs	(1/2)		No ^p	IT	280#	150#			
	Md ^m	-α	100#	100#	390	ms	$(7/2^+)$		Lr	$-\alpha$	0		6.34	s	
246	•		0						Lr	IT	350*	150*			
240	Am	11	20	10	39	m	(7)			$-\alpha$	0	20	3.1	s	(7/2+#)
	Am		30	10	25.0	m	2()		D0 Db4	11	100*	/0*			(3/2')
	ES EcP	-α rr	350#	200#	7.7	m	(4,6')		00.	$+\alpha$	210*	110*			(9/21)
	ES' M/I	-~	330# 0	200#	10	e	am	260	JI	$-\alpha$	0		1,52	s	
	Md ^m	-a	210	70	1.0	а с			11 ^p	IT	200#	150#			
		-				.,		161	DL		0				(a) (at o) (at)
247	Es	$-\alpha$	0		4,55	m	(7/2+)	201	D6/2	- <i>a</i> IT	100+	70.+	00	5	(3/2, 9/2)
	Es ^p	IT	400*	200*	25		am		Rf	- 0	1007	70*	230	me	$(7/2^{+})$
	rm r9	- <i>α</i>	150	100	35	5	(2 (2+)		R f ^p	m	100*	70*	4	ms	$(3/2^+)$
	rm Md	11 17	150*	100*	270	-	(7/2)		Rf ⁴	+α	-60#	130#			$(9/2^+)$
	Ma ⁿⁱ	0	50#	100#	1.12	ms	(7/2+)								(),2)
	ivid	-u	50#	100#	1.12	3	(112^{-1})	262	Bh	$-\alpha$	0		102	ms	
248	Bk	IT	0		> 9	у	(6+)		Bh‴	$-\alpha$	320#	160#	8.0	ms	
	Bk‴	+	30#	70#	23.7	h	1(-)	263	Rf	п	0		800	ms	(9/2+)
	Bk ^p	$+\alpha$	50#	50#			(5-)		Rf‴	$-\alpha$	100*	70*	350	ms	$(3/2^+ \#)$
249	Fm	- 0	0		26	m	$(7/2^{+})$		Hn	$-\alpha$	0		1.8	ms	(
247	Emp	-u IT	260#	200#	2.0	m	(1/2)		Hn ^p	IT	0#	100#			am
	Md	- a		2007	24	e	(9/2)	264	D.	-	0		7(2)		
	MdP	IT	50*	30*		.,	am	204	ы вър	- <i>a</i>	300#	150#	ΛŪ	ms	
									Dil		500#	130#			am
250	Bk	$+\alpha$	0		3.217	h	2	265	Hn	IT	0		1.6	ms	(9/2+#)
	Bk ^p	+α	84.1	2.1	213	μs	7+		Hn‴	$-\alpha$	400#	100#	1.2	ms	(3/2+#)
	MO	-α IT	2504	1504	52	\$		267	11		0		50		(a lat II)
	NUC ²	11	200#	150#			am	207	пп 11-2	$-\alpha$	0	160#	50	ms	(3/2'#)
251	Md	$-\alpha$	0		4.0	m			110° Un ⁴	11	0# 52/14	130#			(11/2=#)
	Mdp	IT	50*	30*			am			τa	550#	J40#			dill
	No	$-\alpha$	0		800	ms	(7/2+)	268	Mt	$-\alpha$	0		110	ms	
	No ^p	IT	400*	100*			(9/2+)		Mt ^p	IT	250#	100#			
252	Md	x	0		23	m		260	Hn	_ ~	0				
	Mdp	Ĥ	100#	100#	2.5		am	209	Hn ^p	-α μτ	150#	100#			
											1.50				
253	Md	x	0	10	~ 10	m		271	Xa	$-\alpha$	0		1.2	ms	(1)/2-#)
	IVIOF No	EL.	50 *	30*			am		Xa ^m	IT	500#	300#	180	ms	
	NoP	-α IT	400#	1(Y)#	1.7	m	(9/2)								
	Lr		-10.7#	NA)#	15	e	$(1/2^{+})$								
	Lr ^p	т	190#	50#	1.5										

Table III. Input data compared with adjusted values

(an update of the table given in ref. [IV])

EXPLANATION OF TABLE

The ordering is in groups according to highest occurring relevant mass number.

Item	In ma	ass-doublet equation:	: In mass-triplet equation:	In nuclear reaction:									
	H =1]	H, N = 14 N,	Rb ^x , Rb ^y : different	K^m , Cs^m , Cs^n :									
	D = 2	H, O = 16 O,	mixtures of two	upper isomers,									
	C = 12	² C	isomers, see table II.	see table II.									
Input value	Mass Triple	doublet: value and et: value and its stan	its standard error in μ u. dard error in keV.										
	React	ion: value and its st	andard error in keV.										
	The	value is the combine	nation of mass excesses	$\Delta(M-A)$									
	given	under 'item'. It is	the author's experimental	result and									
	the au	thor's stated uncerta	ainty, except in a few case	s for which									
	comm	nents are given and	for some α -reactions wher	e the errors									
	have been increased to 50 keV (see [IV], Section 10).												
Adjusted value	Output of calculation. For secondary data $(Dg = 2-20)$ the												
5	adjus	ted value is the sam	ne as the input value and	not given;									
	also,	the adjusted value	is only given once for	a group of									
	result	s for the same reaction	on or doublet. Values and	errors were									
	rounded off, but not to more than tens of keV.												
	# Value and error derived not from purely experimental data,												
	but at least partly from systematic trends.												
v/s	Devia	ation between input	and adjusted value, given	as their dif-									
	feren	ce divided by the in	put error.										
Dg (see [IV],	1	Primary data.											
Section 3)	2–20	Secondary data of	different degrees.										
	В	Well-documented d	lata which disagree with ot	her well-									
		documented values											
	С	Data from incomp	lete reports, at variance w	ith other									
		data.											
	D	Data not checked l	by other ones and at varia	nce with									
	systematics, replaced by a recommended value (see												
		Section 9).											
	F	Study of paper rai	ises doubts about validity	of data									
		within the reported	error.										
	R	Item replaced for c	computational reasons by a	n equiv-									
		alent one giving sa	me result.										
	U	Data with much les	s weight than that of a com	bination									
		of other data.											

452	G. Audi, A.H. Wapstra / Nuclear Physics A 595 (1995) 409–480
Sig	Significance $(\times 100)$ of primary data only (see [IV], Section 4).
Main flux	Largest <i>influence</i> $(\times 100)$ and nucleus to which the data contributes the most (see [IV], Section 4).
Lab	Identifies group which measured the corresponding item. Ex- ample of Lab key: MA3 Penning Trap data of Mainz-Isolde group. The numbers refer to different papers or even to groups of data within one paper.
CF	Consistency factor. The standard error given in the Input value column has been multiplied by this factor before being used in the least-squares adjustment.
Reference	 Reference keys: 89Sh10 Results derived from regular journal. These keys are copied from Nuclear Data Sheets. Where not yet available, the style 95Me.1 has been used. 84Sc.A Result from abstract, preprint, private communication, conference, thesis or annual report. * A remark on the corresponding item is given below the block of data corresponding to the same (highest) A. Z recalibrations of 91Ry01 for α particles, 90Wa22
	for γ in (n,γ) and (p,γ) reactions and 91Wa.A for protons and γ in (p,γ) reactions (see [IV], Section 2).

Remarks. For data indicated with a star in the reference column, remarks have been added. They are collected in groups at the end of each block of data in which the highest occurring relevant mass number is the same. They give:

- (i) Information explaining how the values in column 'Input value' have been derived for papers not mentioning e.g. the mass differences as derived from measured ratios of voltages or frequencies - a bad practice - or the reaction energies or values for transitions to excited states in the final nuclei (for which better values of the excitation energies are now known).
- (ii) Reasons for changing values (e.g. recalibrations) or errors as given by the authors or for rejecting them (i.e. for labelling them B, C or F).
- (iii) Value suggested by systematical trends and recommended in this evaluation as best estimate (see Section 9).
- (iv) Separate values for capture ratios (see [IV], Section 6).

ltem		Input va	lue	Adjusted	value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
π ⁺		140080.95	.35	140080.9	0.4	.0	1	100	100 π^+			94PaDG
H2-D		1548.302	.012	1548.2863	0.0007	5	U			OHI	2.5	93Go37
3 H(β^{-}) 3 He		18.597	.014	18.5906	0.0009	5	U					95Hi.1
⁴ H(γ,n) ³ H		2300	300	2910	110	2.0	2					95AI.A
5 H(γ ,2n) 3 H		5200 4200	400 400	5740	950	1.4 3.9	2 C					95Al.A 95Se.A
7 Li(n, γ) ⁸ Li	avc.	2032.78 2032.84 2032.80	.15 .2 0.12	2032.80	0.12	.1 2 .0	- - 1	100	100 ⁸ Li	ORn		74Ju.A * 91Ly01 Z average
$*^7$ Li(n, γ) ⁸ Li	PrvCom to	ref.										74AjLa **
10 He(γ ,2n) ⁸ He 10 Li(γ ,n) ⁹ Li		1200 150 25	300 150 15	1070 25	70 15	4 8	U U 2					94Ko16 90Am05 * 95Zi.1 *
${}^{10}\text{Li}^{p}(\gamma,n)^{9}\text{Li}$ ${}^{9}\text{Be}({}^{9}\text{Be},{}^{8}\text{B})^{10}\text{Li}$ ${}^{9}\text{Be}({}^{13}\text{C},{}^{12}\text{N})^{10}\text{Li}^{q}$ ${}^{10}\text{Be}({}^{14}\text{C},{}^{14}\text{O})^{10}\text{He}$		240 34060 36370 41190	60 250 50 70		15 40	3.1 5	2 F 1 2	61	61 ¹⁰ Li ^g	Brk Ber Ber		95Bo.A * 75Wi26 * 93Bo03 * 94Os04
* ¹⁰ Li(γ ,n) ⁹ Li * ¹⁰ Li(γ ,n) ⁹ Li * * ¹⁰ Li ^p (γ ,n) ⁹ Li * ⁹ Be(⁹ Be, ⁸ B) ¹⁰ Li * ⁹ Be(¹³ C, ¹² N) ¹⁰ Li ⁹	From ¹¹ B Resonance could als From ¹⁰ B F: definitiv Revised w	$(\pi^-,p)^{10}$ Li less than 50 ab to be final state $c({}^{12}C,{}^{12}N)^{10}$ Li vely to a higher ith Breit-Wign	ove the one interaction; $P(1^+$ level level er line shap	ncutron threshol then ¹⁰ Li would) c (probably 2 ⁺	ld, but be 200 high level)	er						GAu ** 95Zi.1 ** 95Bo.A ** GAu ** GAu ** 95Bo.A **
¹¹ B(⁷ Li, ⁸ B) ¹⁰ Li ¹¹ B(⁷ Li, ⁸ B) ¹⁰ Li ^q ¹¹ B(¹⁴ C, ¹⁴ O) ¹¹ Li ¹¹ B(π^{-}, π^{+}) ¹¹ Li * ¹¹ B(⁷ Li, ⁸ B) ¹⁰ Li	avc. Original (Existence	32431 32908 37120 33144 >32471) re-	80 62 35 29 evaluated	32396 32870 37114 33150	15 40 27 27	.4 .6 .2 2	U 1 - 1	39 89	39 ¹⁰ Li ⁹ 89 ¹¹ Li	MSU MSU MSU		94Yo01 * 94Yo01 93Yo07 average GAu ** 94Yo01 **
$^{10}B({}^{3}He,p){}^{12}C$ $^{10}B(\alpha,d){}^{12}C$ $^{12}O(2p){}^{10}C$ $*{}^{10}B({}^{3}He,p){}^{12}C$	ave. Original (to 4438,	19692.86 1339.9 1770 2 = 15305.45(.3 91(.31) level	.44 0.4 20) revised by	19693.0 1340.0 1771 authors to 1525	0.4 0.4 18 33.95(31)	.3 .1 .1	- 1 3	92	92 ¹⁰ B	Mun		83Ch08 * avcragc 95Kr()3 83Vo.A ** 90AjSc **
С D ¹³ С Н		2921.9086 2921.9074	.0012 .0015	2921.9080	0.0009	5 .4	1	57 37	56 ¹³ C 36 ¹³ C	MII MII	1.0 1.0	94Di.A 94Di.A
13 Be ^p (IT) ¹³ Be 13 C(14 C, 14 O) ¹³ Be ^p		1500 - 37020	500 50				3 2			Всг		94Dc32 92Os04
$C H_2 - N$ ${}^{14}C({}^{14}C, {}^{14}O){}^{14}Bc^p$		12576.0598 	.0008 60	12576.0590	0.0006	9	1 2	62	51 ¹⁴ N	MI1 Ber	1.0	94Di.A 95Bo10
С D H— ¹⁵ N С H3 ¹⁵ N ¹⁴ N(п,γ) ¹⁵ N		21817.9119 23366.1979 10833.315	.0008 .0017 .021	21817.9117 23366.1980 10833.3016	0.0007 0.0009 0.0023	3 .1 6	1 1 U	75 27	75 ¹⁵ N 18 ¹ H	MII MII	1.0 1.0	94Di.A 94Di.A 94Ju.A
С Н4-О		36385.5073	.0019 (022	36385.5065	0.0009	4	1	21	16 ¹⁶ 0	MII	1.0	94Di.A 94Di.A
$N_2 - C O$ ${}^{14}C({}^{14}C, {}^{12}N){}^{16}B$		11233.3909 	.0022	11233.3884	0.0014	-1.1	, 1 2	38	26 ¹⁴ N	MI1 Ber	1.0	94Di.A 95Bo10

ltem		Input va	alue	Adjusted	value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
¹⁶ O(³ He,n) ¹⁸ Ne		-3183.9	1,5				2					94Ma14
$C D_{4} = \frac{20}{N_{c}}$		63966 9329	0026	63966 9361	0.0017	12	,	44	35 20 No	мп	1.0	
$O D_2 - {}^{20}Nc$		30677.497	.067	30678.0022	0.0021	3.0	в	44	55 NC	OH	2.5	93Go38
²² Ne- ²⁰ Ne		1056.415	.290	- 1054.67	0.23	2.4	в			OH1	2.5	93Go38
²⁶ Mg(p,n) ²⁶ Al		-4786.25	.12	4786.49	0.06	-2.0	_			Auc		94Br11 *
26 14-()26 41	ave.	-4786.14	0.09	205		-3.8	l	39	29 ²⁶ Al			average
* Mg(p,n) Al	1 = 5205	7.40(.12) to - A	Al ^m at 228.	305								90Endt **
27 Al(p,n) 27 Si		- 5594.76	.10				2			Auc		94Br37
²⁸ Si-C _{2.333}		-23073.43	.30	-23073,4673	0.0020	1	U			STI	1.0	93Jc06
		-23073.00	.27			7	U			OHI	2.5	94Go.A
$C_2 D_2 - \frac{28}{5} Si$		51277.0224	.0024	51277.0232	0.0018	.4	1	58	58 ²⁸ Si	MII	1.0	94Di.A
$^{15}N_2 - ^{28}SiH_2$		7641.2007	.0024	7641,1999	0.0018	4	1	58	42 ²⁸ Si	MII	1.0	94Di.A
27 Al(p, γ) ²⁸ Si'		-956.035	.020	-956.06	0.06	-2.0	2			Auc		94Br37
$^{33}S(p,\gamma)^{34}Cl$		5143.30	.05				2			Auc		94Li20
³⁴ S(p,n) ³⁴ Cl		-6273.11	.25	-6273.64	0.07	-2.3	в			Anc		92Ba A *
$*^{34}S(n.n)^{34}Cl$	Provision	al: not yet corre	cted for at	omic excitation	Drocesses		-					07Ba A ++
*	disturbe	ed by resonance;	at least .5	uncertain	processies							94Li20 **
34S(px) ³⁵ Cl		6370 30	20	6370 63	0.00	1.2	в			0.1		020-04
$35_{\rm E}(a=)^{35}_{\rm C}(a=)^{35}_{\rm C}(a=)^{35}_{$		0370.39	.20	0370.03	0.09	1.2	ĸ			Oak		83Ka04
$S(\beta)^{-1}C(\beta)$		167.35	.10	167.14	0.08	-2.1	в					93Ab11 *
		167.23	.10			9	в					93Be21 *
		167.222	.095			9	-					Averag *
	ave.	167.15	0,09			1	1	97	96 ^{.35} S			average
$*^{35}S(\beta^{-})^{35}Cl$	Adopted:	simple average	and disper-	sion of 9 data								GAu **
⁴⁰ Ar(d, ³ He) ³⁹ Cl- ³⁶ Ar() ³⁵ Cl		-4024.1	2.4	-4022,3	1.7	.7	1	52	52 ³⁹ Cł	Hei		93Ma5()
⁵⁰ V(n n) ⁵⁰ Ti		2084	10	2000 7		7	T I					0434-17
51		2304	10	2770,7	1.1	.,	0			ILL		94 Wall/
$^{51}Ca - C_{4.25}$	D: "the n	-38800	350	— 38530	100 23 urbani Tr	.8	В			TO3	1.0	90Tu01 *
+ Ca=C4.25	Б. ше п	ew uata set is ii	ie superior	: do not use T	JS where Iv	J5 CXIS						948612 **
55 Fe $(\epsilon)^{55}$ Mn		231.0	1.0	231.38	0.10	.4	U		55			93Wi05 *
$*^{55}$ Fc(ϵ) ⁵⁵ Mn	Error esti	Z31.37 imate by compile	. 10 cr			.1	I	99	72 ⁵⁵ Mn			95Da14 AHW **
<i>(</i>)												
60 Ni $(n,\gamma)^{61}$ Ni		7820.07	.20	7820.00	0.13	4	-			IL.n		93Ha05
	ave.	7819.92	0.13			.6	1	98	74 ⁶¹ Ni			average
63 Ni $(\beta^-)^{63}$ Cu		66.9459	.0054	66.945	0.005	1	I	100	82 ⁶³ Ni			93Oh02
65 Cure a) 65 7a		3134 0	A B	2124.2	0.2	-						(0.0.0)
	ave.	-2134.8	0.8	-2134.3	0.5	-1.2	1	84	61 ⁶⁵ Cu	rai		average
70 70												
~~Cu‴(IT) ~~Cu		140	80				3					75Rc09
10 Cu ^m (β^-) 10 Zn		6360	110	6740	80	3.4	В					75Re09
71 Co(c) ⁷¹ Co		222.0	F	221.0	0.2							0.411. 4
UC(e) Ua		255.0	.>	201.9	0.5	-2.2	-			Hei		84Ha.A
		232.1	.5			4	-		un 71 m			30103 ×
710-(-)710-	avc.	232.2	0.3			8	I	89	×0 °Ga			average
* 'Ge(<i>e</i>)'' Ga	Original o	error 0.1 increas	ed for calib	pration uncertain	ity							GAu **

ltem		Input va	alue	Adjusted	value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
7_{3} Br(β^{+}) 7_{3} Se		4688	140	4680	130	0	3					87Hc21 *
$*^{73} \text{Br}(\beta^+)^{73} \text{Se}$	$E^+ = 3640(140)$	to ⁷³ Se	^m at 25.71	1000	100		5					NDS **
74 Br $(\beta^+)^{74}$ Sc		6857	100	6907	15	.5	U					69La15 *
$*^{74}Br(\beta^{+})^{74}Se$	$E^+ = 5200(100)$, 4500(1	00) to 634.	76, 1363.21 k	evels							69La15 **
*	from ⁷⁴ Br ^m at	13.8(,5)										93Do05**
78 Sc(n, γ) 79 Sc		6962.6	.3	6962.58	0.28	1	2					79Br.A *
$*^{78}$ Sc(n, γ) ⁷⁹ Sc	From y's to 95.7	7, 527.93	, 1088.65 k	evels (,Z)								NDS **
82 As $(\beta^-)^{82}$ Sc		7270	200				2					70Va31
82 As ^m $(\beta^{-})^{82}$ Sc		6600	200	7519	25	4.6	F					70Ka04
82 Se(t, {}^{3}He) 82 As ^m	-	- 7500	25				2			LAI		79Aj02
84 As(β^-) 84 Se		7195	200	9870#	300#	13.4	F			Trs		94Gi07 *
84 Br ^{**} (β^{-}) 84 Kr		4970	100				2					70Ha21
84 Y(β^+) 84 Sr		6499	135	6490	90	1	2			BNL		81Li12
		6475	124			.1	2					82De36
84 Y ^m (β^+) 84 Sr		6409	170				2			BNL		81Li12
$*^{84}$ As $(\beta^{-})^{84}$ Sc	Observed (β ^{−−} n) decay i	mplies $Q\beta$	> 8681(15)								93Ru01 **
⁸⁶ Kr-C _{7 167}	_	89389.9	1.2	89389.7	1.2	.2	1	95	95 ⁸⁶ Kr	STI	1.0	95Ca.A
86 Mo(β^+) 86 Nb		5270	430				4					94Sh07 *
$*^{86}$ Mo(β^+) 86 Nb	$E^+ = 4000(400)$) to (0+,	1 ⁺ ,2 ⁺) leve	el at estimated	1 250(160)							94Sh07 **
87 Nb(β^+) 87 Zr		5165	60				3					82Dc43 *
87 Mo(β^+) 87 Nb		6382	308	6490	210	.3	4					82De43 *
		6589	300			3	4					91Mi15 *
$*^{87}$ Nb(β^{+}) 87 Zr	$Q^+ = 5169(60)$	from 871	Nb ^m at 3.9(.	.1)								91Ju05 **
$*^{87}$ Mo(β^+) 87 Nb	$Q^+ = 6378(308)$)) to ⁸⁷ ∱	Vb ^m at 3.9(.	1)								91Ju05 **
$*^{87}$ Mo(β^+) ⁸⁷ Nb	$E^+ = 5300(300)$) to level	262.7 abov	e ⁸⁷ Nb ^m at 3	.9(.1)							91Ju05 **
88 Rb-85 Rb1.035		2615	9	2617	4	.2	1	24	21 ⁸⁸ Rb	MA4	1.0	95Ha.1
88 Rb(β^{-}) 88 Sr		5318	9	5313	4	5	-			Gsn		80Dc02 *
	ave.	5314	4			2	1	78	77 ⁸⁸ Rb			average
* ⁸⁸ Rb(<i>β</i>) ⁸⁸ Sr	Original error 4	corrected	by ref									94Ha.A **
⁸⁹ Rb- ⁸⁵ Rb _{1.047}		4628	9	4636	6	.9	1	43	41 ⁸⁹ Rb	MA4	1.0	95Ha.1
89 Rb(β^{-}) 89 Sr		4510	9	4496	5	-1.5	-		00	Gsn		80De02 *
$*^{89}$ Rb(β^{-}) ⁸⁹ Sr	ave. Original error 8	4501 corrected	7 by ref			7	1	57	57 ⁸⁹ Rb			average 94Ha A **
······································	onginar error o		0, 10.									,
⁹⁰ Rb- ⁸³ Rb _{1.059}		8211	14	8224	8	.9	1	37	35 [%] Rb	MA4	1.0	95Ha.1 *
90 Y(β^{-}) 90 Zr		2273	5	2280.1	1.6	1.4	-		(2)			64La13
00 1 00	ave.	2279.2	2.0			.4	1	62	40 ⁹⁰ Y			average
90 Tc(β^+) 90 Mo		9130	410	8960	240	4	4					74 1 a01 *
90 Tc ^m (β^+) 90 Mo		9270	300				4					81Ox01
* ⁹⁰ Rb- ⁸⁵ Rb _{1.059}	From original 83	326(9) fr	om ⁹⁰ Rb ^m a	at 106.90 M -	-A = -7	9257(9)						NDS **
* * ⁹⁰ Τc(β ⁺) ⁹⁰ Mo	original error (E ⁺ ~7900(400)	(9) + 10) to groui	for possible nd-state (22	weak ground %) and 948.1	l-state mix (77%)	ture level						GAu ** NDS **
ui 85									01			
"Rb-"Rb _{1.071}		11003	10	11008	8	.5	I	71	70 ⁹¹ Rb	MA4	1.0	95Ha.1
'Sr-"Rb1.071		4702	9	4683	6	-2.1	1	47	44 ⁹¹ Sr	MA4	1.0	95Ha.1
$^{\prime\prime}$ Rb(β^{-}) ⁹¹ Sr ^r		5850	20	5852	8	.1	-			McG		831a02
		5860	10			8	-		7. 910 r	Gsn		92Pr03
91 c - Kom 91 c	ave.	3858	9			7	1	86	14 '' Sr'			average
Sr`(TI) Sr		/0	20	39	11	-1.5		- 32	26 ' Sr'			AHW *

Item		Input value		Adjusted	value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
91 e (em 191 e)			10				_					
$^{11}Sr(\beta^{-})^{11}Y$		2669	10	2707	6	3.8	В					53Am08
		2084	4			5.8	В			Can		73Hail 90Da02
		2704	15			.4	D			USH		80DC02 *
		2709	15			1	1	43	20 91 Sr	MCG		Averao +
91 V(B-)917		1545	5	1544.8	18	1.0	,		59 51			641 a13
$I(p) Z_i$	946	1544 1	19	1544.0	1.0	.0	1	98	05 ⁹¹ V			average
91 Mo(8+)91 Nh	470.	4435	23	4434	11		R	20	<i>))</i> 1			930:06
* ⁹¹ Sr ^T (IT) ⁹¹ Sr	A feeding in	⁹¹ Sr. < 8% (of pround-	state and 25%	of 93.628	level						NDS **
$*^{91}$ Sr(β^{-}) ⁹¹ Y	Original error	r 3 corrected	by ref									94Ha.A **
$*^{91} \operatorname{Sr}(\beta^{-})^{91} \mathrm{Y}$	Adopted: sim	iple average a	nd dispers	sion of 4 data								GAu **
⁹² Rh- ⁸⁵ Rh (wa		15176	9	15169	7	- 7	1	57	56 ⁹² Rb	MA4	1.0	95Ha.1
⁹² Sr ⁸⁵ Rb; 082		6482	9	6474	7	9	1	59	58 92 Sr	MA4	1.0	95Ha.1
1.082			-				-					
⁹³ Rb- ⁸⁵ Rb _{1 094}		18549	10	18535	8	-1.4	1	62	61 ⁹³ Rd	MA4	1.0	95Ha.1
⁹³ Sr ⁸⁵ Rb _{1.094}		10526	10	10525	8	1	1	65	64 ⁹³ Sr	MA4	1.0	95Ha.1
⁹⁴ Rb- ⁸⁵ Rb _{1.106}		23958	10	23968	9	1.0	1	78	77 ⁹⁴ Rb	MA4	1.0	95Ha. 1
⁹⁴ Sr- ⁸⁵ Rb _{1.106}		12924	10	12921	8	3	1	60	58 ⁹⁴ Sr	MA4	1.0	95Ha. 1
$^{94}Sr(\beta^{-})^{94}Y$		3512	10	3508	8	4	1	62	32 ⁹⁴ Y	Gsn		80Dc02 *
94 Y(β^{-}) 94 Zr		4920	9	4917	7	4	1	69	68 ⁹⁴ Y	Gsn		80Dc02 *
$*^{94}$ Sr(β^{-}) ⁹⁴ Y	Original error	r 6 corrected	by ref									94Ha.A **
$*^{94}$ Y(β^{-}) 94 Zr	Original error	r 5 corrected	by ref									94Ha.A **
⁹⁵ Sr- ⁸⁵ Rb _{1.118}		17987	10	17978	8	9	1	65	62 ⁹⁵ Sr	MA4	1.0	95Ha.1
$^{95}Y(\beta^{-})^{95}Zr$		4445	9	4453	7	.9	1	69	67 ⁹⁵ Y	Gsn		80De02 *
* ⁹⁵ Υ(β) ⁹⁵ Ζr	Original error	r 5 corrected	by ref									94Ha.A **
*	Q ⁻ = 4413	7(10) given t	y same g	roup, not used								84Bl.A **
96 Sr(β^{-}) 96 Y		5413	22	5387	15	-1.2	-		~	Gsn		80De02 *
	ave.	5376	15			.7	1	92	73 ⁹⁶ Sr			average
$*^{96}$ Sr(β^{-}) 96 Y	Original error	r 20 corrected	by ref									94Ha.A **
*	$Q^{-} = 5362$	2(10) given b	y same g	roup, not used								84BI.A **
⁹⁸ Rh(β ⁺) ⁹⁸ Ru		5151	50	5057	10	-1.9	U					94Ba06
99 Rh(β^+) 99 Ru		2038	10	2043	7	.5	-					52Sc11 *
		2053	10			-1.0	-					59To.A
		2110	40			-1.7	U					74An23
an (an	ave.	2045	7			4	1	95	94 ⁹⁹ Rh			average
99 Pd(β^+) 99 Rh		3410	20	3387	15	-1.2	1	57	51 ⁹⁹ Pd			69Ph01 *
$*^{99}$ Rh(β^+) 99 Ru	$E^+ = 740(10)$) from ⁹⁹ Rh	m at 64.3	to 340.73 level	1							NDS **
$*^{99}$ Pd(β^+) 99 Rh	$E^+ = 2180(2$	20), 1930(20)), 1510(2	0)								69Ph01 **
*	to 200,4, 46	54.0, 874.1 le	vels above	$1/2^{-1}$ level (now grour	id-state)						NDS **
¹⁰⁰ Cd-Ce 333		79880	240	- 7977 0	100	.5	1	19	19 ¹⁰⁰ Cd	CSI	1.0	95Lc.B
$100 \ln - C_{8,333}$		- 69010	450	68850	410	.4	1	83	83 ¹⁰⁰ In	CS1	1.0	951.c.B
100 Ag(β^+) 100 Pd		7075	90	7050	80	3	-					79Vc.A *
		7022	200			.1	-					80Ha20 *
	ave.	7070	80			2	1	89	88 ¹⁰⁰ Ag			average
$100 \ln(\beta^+)^{100} Cd$		10900	930	10170	390	8	1	18	17 ¹⁰⁰ In	Lvp		95Sz01 *
100 Sn(β^+) 100 In		5220	800	7270#	200#	2.6	С					95Hc.A
$*^{100}$ Ag(β^+) 100 Pd	From 5 ⁺ gro	und state to 2	920.4 hig	h spin level								79Vc.A **
* ¹⁰⁰ Ag(β ⁺) ¹⁰⁰ Pd	$E^+ = 5350(2)$	200) from ¹⁰⁰	'Ag‴at I	5.52 to 665.57	2 ⁺ level							NDS **
* 100 In $(\beta^{+})^{100}$ Cd	From lower a	and upper lim	its 9300-	12500								GAu ∗∗

Item	Input	value	Adjus	ted value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
102 102	-200										
Ag(B.)Pa	5800	200	5950	70	.8	F					67Ch05 *
102 at . 102 a.	4910	140			7.5	С					70Be.A *
$\log (\beta^{+}) \log Cd$	9250	380				4			Lvp		95Sz01 *
* 102 Ag(β^{+}) 102 Pd	F: $E^{+} = 2260(40) doc$	s not fit	with later do	ecay scheme	;						NDS **
$*^{102}$ Ag(β^+) 102 Pd	$Q^+ = 4920(140)$ from	¹⁰² Ag‴	at 9.3								NDS **
$*^{102}\ln(\beta^+)^{102}$ Cd	From determined upper	· 9900 an	d lower 860	0 limits							GAu **
¹⁰⁵ Sb(p) ¹⁰⁴ Sn	482.6	15.				5					94 Ti 03
$106 \operatorname{Te}(\alpha)^{102} \operatorname{Sn}$	4290.2	9.	4293	9	.3	3					94Pa11
$107 \text{ Te}(\alpha)^{103} \text{ Sn}$	3982.2	15.	4008	5	17	3					705-22
	4011.3	5.			6	3					91He21
108 1(~) 104 ph	4100	50									_
108 Mo(R -)108 Ta	4100	50	17504	150.0		5					94Pa12
$108 M_{\odot} (n - 108 m_{\odot})^{100}$	5100	. 108	4/50#	150#	-5.8	D					95Jo02 *
* ¹⁰⁰ MO(B) ¹⁰⁰ IC	Systematical trends sug	gest ····· N	40 370 more	e bound							GAu **
$^{110}I(\alpha)^{106}Sb$	3590	50	3580	50	1	7					91He21
$111 l(\alpha)^{107} Sb$	3290	50	3280	50	- 2	3					07Ho A
¹¹¹ Xe(α) ¹⁰⁷ Te	3720	50	3720	50	1	4					91He21
$112 Xe(\alpha)^{108} Te$	3335 4	7	1110	6	7	4					0.00
$^{112}Cs(p)^{111}X_{0}$	914 3	7.	3330	0	~./	6					94Pa11
Ch(p) At	614.5	7.				3					94Pa12
¹¹³ Cs(p) ¹¹² Xe	982.7	4.	973.5	2.6	-2.3	7					92Hc.A
	967.6	6.			1.0	7					94Pa12
114 Ba(γ , 12 C) 102 Sn	18110	780	19050#	200#	12	F					05(3)(01 +
$*^{114}$ Ba(γ , 12 C) 102 Sn	Most probably backgroup	und			1.2	•					930u01 * GAu **
115 m. m. (m.) 115 m.	10	-									
115 m // (10) 115 m	IU Energy and for an all stability					5					NDS *
* 10 (11) 10	From uniform distributi	on ot pro	bability ranį	ging 0-20 k	ev						GAu ∗∗
116 Sb ^m (β^+) 116 Sn	5090	40				2					601/203
¹¹⁶ Cs ^x (IT) ¹¹⁶ Cs	5	4	5	4	.0	1	100	65 116 Cs ^x			864002 *
* ¹¹⁶ Cs ^x (IT) ¹¹⁶ Cs	Original 24(19) correct	ted for ne	w estimated	IT = 100(e	50)#	•	100	us c,			GAu **
$117 Ce^{x} - 133 Ce ma$	11900	21				2				1.0	
117 Ag(B-)117 Cd	4160	50				2			MA4	1.0	9580.1
$117_{1}(R^{+})^{117}_{To}$	4610	110	4670	70	,	3			510		82A129 *
1(p) ic	4010	70	4070	10	.)	-	07	07 117.			70Bc.A *
*117 Ag(B-)117 Cd	avc. = 4000	4170(50)			.5	1	87	871			average
* $^{117}I(\beta^+)^{117}$ Te	$Q^+ = 4310(100)$ assume	ned to 27	4, 325 level	vg at 28.0							NDS ** AHW **
118 Cs $(\epsilon \alpha)^{114}$ Te	11100	500	11080#	200#	Δ	р					780.07
$118 \text{Ag}(B^{-})^{118} \text{Cd}$	7172	100	7140	200#	.0	2			c .		/8Da0/ *
(E(P)) CO	7110	470	7140	00	.2	3			Stu		82A129 *
	7155	76			.1	2			SIU		82AI29 *
$118 \ln^{m} (B^{-1})^{118} \mathrm{Sn}^{-118}$	4070	100	4520#	50#	~2	э р					95Ap.A
118 Cs ³ (IT) 118 Cs	42/0	100	4J20#	30#	2.5	в 2					64Kal0
118 Cs(en) 114 Th	Systematical transferance	4 114-m	. 410	hound		2					82Au01 *
$= \frac{118}{4} \frac{118}{6} \frac{118}{6} - $	$F^{-} = 4330(240) - 2000$	gest 10		oouna							GAu **
- Αχιρ) C0 *	to 2788 75 2004 17	1(1/U), 3	010(150)								GAu **
118 Ag(B-)118 Ca	$E^{} = 30007700 - 3010$	0200,70 K	veis, reintei	preted							95Ap.A **
- nerv j cu	= 3750(720), 391(1,000) 10(05)	2101 72 7	201 0 1							NDS **
118 Cs ¹ (IT)118 Cs	Original 24(10) agents	od for	v	JOLS KOVELS	, reinterprei	ied					95Ap.A **
	Conginal 24(17) Concel	cu tor net	w estimated		N)#						GAu ∗∗

ltem		Input v	alue	Adjusted	i value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
$119 c_{s}^{x} - \frac{133}{5} c_{s} c_{s}$		7012	13	7013	9	1	_			маа	10	95Bo 1
0.9 0.9.895	ave.	7015	9		-	2	1	97	97 ¹¹⁹ Cs ^x			average
$^{119}Cs^{x}(IT)^{119}Cs$		16	ú	16	11	.0	1	100	100 ⁻¹¹⁹ Cs			82Au01 *
$*^{119}$ Cs ^x (IT) ¹¹⁹ Cs	Original 33	(22) correct	ed for new	estimated l	IT = 50(3	30)#						GAu **
120 Cert - 133 Ce un		5083	17	5970	9	_ 7	_			ΜΔ4	10	95Bo 1
$c_3 = c_3 g_{12}$	ave	5965	10	5710		.,	1	89	89 120 CsT	11/14	1.0	average
120Cs(eq) ¹¹⁶ Tr	4.6.	9200	300	8990	90	7	1	9	9 ¹¹⁶ Te			7610 A
$^{120}A_{P}(\beta^{-})^{120}Cd$		8450	100	8330	70	-1.2	3	,	<i>,</i>			95Ap.A
$^{120}Cs^{x}(IT)^{120}Cs$		5	4	5	4	.0	1	100	100 ⁻¹²⁰ Cs			82Au01 *
$*^{120}Cs^{x}(IT)^{120}Cs$	Original 24	(19) correct	ed for new	estimated l	IT = 100	(60)#						GAu **
121 Pr(p) 120 Ce		837	50				3					908.039
$^{121}Cd(\beta^{-1})^{121}$ In		4780	80				3			Stu		82A129 *
$*^{121}$ Cd $(\beta^{-})^{121}$ In	Q = 4890	0(150); and	4960(80)	from 121 Cd	I ^m at 214	.89	e			014		NDS **
$^{122}Cs^m - ^{133}Cs_{.917}$		2955	17	2959	10	.2	2			MA4	1.0	95Bo.1
122 Te(n, γ) 123 Te		6929.1	.5	6929.4	0.5	.6	1	98	80 ¹²² Te			91Ho08
125 Ce - 133 Ce		1386	14	- 1305	8	- 7				MAA	1.0	05Bo I
Cs- Cs.940	ave	-1384	14	-1595	0	-11	1	68	66 125 Cs	101/14	1.0	average
$125 Cd(B^{-1})^{125} ln$	<i>a</i> .c.	7122	62				4		00 C.I	Stu		875n09 *
$125 \text{ Cd}^m (B^-)^{125} \text{ In}$		7172	35				4			Stu		87Sp09 *
$^{125}I(\epsilon)^{125}Te$		185.77					2			514		94Hi04
$*^{125}Cd(B^{-})^{125}In$	$E^{-} = 462^{\circ}$	5(62) to 249	7 45 level				-					NDS **
$*^{125} Cd^m (\beta^-)^{125} ln$	$E^{-} = 5009$	9(109), 4581	(126), 45	i33(39) to 2	2101.50, 2	2640.32,	2641.9	2 levels				NDS **
129 Nd(cp) 128 Co		53(1)	300	6110#	200#	27	р					78Bo A *
$*^{129}$ Nd(ϵp) ¹²⁸ Ce	Systematica	al trends sug	gest ¹²⁹ Nd	l 810 less be	ound	2.7	D					GAu **
120 12 25									120			
130 Xe – C 13 C 33 Cl ₃		-6407.63	1.21	6405.1	1.0	1.4	1	28	28 ^{1.50} Xe	H47	1.5	94Hy01
$1.00 \text{Sn}(\beta^{-1})^{1.00} \text{Sb}$		2195	35	2148	15	-1.3	3			Stu		77Lu06 *
		2080	40			1.7	3			~		77Nu01
130 av #1 cm x 130 av		2149	18			1	3			Gsn		905113 *
130 ch (a =) 130 m		5.1	.2	4050	25	4	3			C 411		94wa,A
$50(\beta)$ ic		4050	25	4939	25	0	2			Siu Gen		77Lil06
$130 \text{ sp}(\theta^{-1})^{130} \text{ sp}$	$E^{} = 1.00$	4757 11500	2.5 (35) to 70	23 104736	lovale		2			Usir		9411/2 4 + +
* 3n(p) 30	and 0	- 3055(50)	from 130 s	n ^m at 1046	88. discn	enent no	need					NDS **
$*^{130}$ Sb $(\beta^{-})^{130}$ Te	$Q^{-} = 4990$	0(70); and 4	1960(25)	from ¹³⁰ Sb"	" at 5.1	epant, no	i untu					NDS **
131 Xe $-C_2$ 35 Cl $_2$ 37 Cl		1472.65	.80	1473.9	1.0	1.0	1	75	75 ¹³¹ Xe	H47	1.5	94Hy01
131 Nd(ϵp) 130 Ce		4600	400	4270#	400#	8	D					78Bo.A *
$^{131}\ln(\beta^{-})^{131}$ Sn		9165	30	9174	22	.3	5			Stu		95Mc.1
$^{131} \ln^m (\beta^-)^{131} \operatorname{Sn}$		9480	70	9530	40	.7	5			Stu		95Me.1
131 In ⁿ (β^{-}) ¹³¹ Sn		13230	80	13270	70	.5	5			Stu		95Me.1
$*^{131}$ Nd(ϵ p) 130 Cc	Systematica	al trends sug	gest ¹³¹ No	1 330 more	bound							GAu **
132 va C 13 C 35 CL 37 CL		2002 72	1.40	1000 4				22	22 132 V-	11 47	15	040-01
$132_{12}(\rho = 1)^{132}$		2003.73	1,40 40	-2808.4	1.2	-2.2	I ¢	55	33 ··· 40	F147	1.5	940 YUI
$\sin(p) = \sin(p)$		141.55	10				0 6			ວເພ ຄະນ		9000 A
-Sn(p) $-SD-32 Sh(p-1)^{132} The -132 The$		5105	12				2			ວແ		>>>p.A 00€∽ ▲
$*^{132}$ Sb($\beta^{}$) ¹³² Te	From the 4	- 3480 ground-sta	ite 20				4			รณ		90Sp.A **
$133 \text{Sp}(A^{-1})^{133} \text{Sp}$		7000	25				6			Stu		95Mc 1
$\sin(p) = 50$		1750	23				0			3.0		221410.1

Itam		Incut y	rahua	Adjusto	d value			Sig	Main flux	Lab	CE	Pafaronca
11em					u valuc	v/ s				La0		Keleichte
¹³⁴ Xe=C ¹³ C ³⁵ Cl ³⁷ Cb		1381.76	60	1381.8	0.9	.0	ı	100	100 ⁻¹³⁴ Xe	H47	1.5	94Hv01
$134 \text{ sn}(B^{-})^{134} \text{ sh}$		7370	90	100110	0.7		5			Stu		95Me.1
$134 \text{sh}(\beta^{-1})^{134} \text{Te}$		8390	45	8390	40	1	4			Stu		95Mc 1
$134_{\text{Te}}(\beta^{-1})^{134}$		1550	30	0.00	-10		3			Stu		95Mc 1
$134_{10}\rho = 134_{10}$		4175	15				2			Stu		05Mg 1
1(p) = Ac $134 p_{eff}(a+1) = 134 C_{eff}$		4173	15				4			Dhn		95/WIC.1
$134p_{m}(q_{\pm}) 34y_{4}$		0170	2(2)				7			Dbn		9501.A *
$134 p_{m}(p^{-1}) = 134 c_{-1}$	rt (120)	9170	2(0)				'			DOI		NDC ···
$*^{134}$ PT (β^{-}) CC	$E^{+} = 41200$	(90) 10 1046. (202) 11 1046.	07 4 [±] lowel									NDS **
****Pm(<i>p</i> **)***Nu	E' = 7300	(200) 10 788	.97 4' ICVC	1								ND5 **
134 Ba(n, γ) 135 Ba		6972.17	.18	6972.7	0.5	3.0	-			MMn		90Is07 Z
		6971.78	.17			5.5	в			Ltn		93Bo01 *
		6973.24	.22			-2.4	-			BNn		93Ch21
	ave.	6972.6	0.5			.2	1	99	68 ¹³⁵ Ba			average
135 Pm ^m (β^+) 135 Nd		6040	150				3			Dbn		95Gr.A *
$*^{134}$ Ba(n, γ) ¹³⁵ Ba	B: no data	on calibration	. Discrepan	t result!								AHW **
$*^{135} Pm^m (\beta^+)^{135} Nd$	E ⁺ = 4920	(150) to mix	ture ground	state and 19	8.5 level							95Gr,A **
136 p. (n) 137 p.		4005 50	08	4005 720	0.028	1.0				1		05P ~()2
$Ba(n,\gamma)$ Ba		6905.39	00,	0905.759	0,026	1.9		100	cg 137 p.	Lui		956005
137 n. m. (at) 137 n.	ave.	6(00	120	5660	50	.0	i c	100	08 Ba	IDC		average
$m^{\prime\prime}(\beta^{\prime})^{\prime\prime\prime}$ Na		5690	130	2000	50	5	6			IKS		83AIU0 *
1370-(at)137p-11		5000	70			. 1	7			Don Db-		930I.A *
137 p = m (at > 137 p)	rt 4122	3900 (150 - 11)	70 53 137	m			1			DON		9JULA
* $Pm^{(\beta^+)}Nd$	$E^{+} = 4132$	(+150 - 11)	5) to Nu 137	m at 519.6								NDS **
*''' Pm''' (β')''' Nd	$E^{+} = 4110$	(60) to 11/2	""Nd"	at 519.6								NDS **
137 Ba(n, γ) 138 Ba		8611.5	.15	8611.72	0.04	1.5	υ			Ltn		95Bo05
138 Nd(β^+) 138 Pr		2020	100	1100#	200#	-9.2	D					61Bo.B *
138 Pm $(B^+)^{138}$ Nd		7000	250				4					81Dc38 *
138 Pm ^m (β^+) 138 Nd		7080	60	7080	50	.0	4			Dbn		95Gr.A
* ¹³⁸ Nd(8 ⁺) ¹³⁸ Pr	Systematica	d trends sugg	est 138 Nd 9	20 more bou	nd							GAu **
$*^{138}$ Pm $(\beta^+)^{138}$ Nd	E ⁺ = 3900	(200) to spir	1 5 and 6 le	vels at 1990.	5, 2134,3 a	nd 2222.	D					NDS **
¹³⁹ Sm-C _{11.583}		- 77698	16				2			MA5	1.0	95Be.A
139 Pm(β^+) 139 Nd		4470	50	4504	29	.7	5			Dbn		95Gr.A
139 Sm $(\beta^{+})^{139}$ Pm		5510	150	5160	60	-2.3	U			IRS		83A106 *
$^{139}\text{Eu}(\beta^+)^{139}\text{Sm}$		6080	50	7020#	150#	18.8	D			Dbn		95Gr.A *
$*^{139}$ Sm $(\beta^+)^{139}$ Pm	$E^+ = 4735$	(+180 - 130	 from ¹³⁹ 	Sm ^{'''} at 457,	8 to ¹³⁹ Pm	^m at 188	.7					NDS **
$*^{1.39}$ Eu(B^+) ^{1.39} Sm	$E^+ = 4600$	(50) to 139S	m" at 457.8	4								NDS **
$*^{139}$ Eu $(\beta^+)^{139}$ Sm	Systematica	d trends sugg	est ¹³⁹ Eu 9	40 less boun	d							GAu **
¹⁴⁰ Sm-C _{11,667}		-81009	16				2			MA5	1.0	95Bc.A
$^{140}Cs - ^{133}Cs_{1.053}$		16857	14	16842	9	~1.1	-			MA4	1.0	95Bo.1
	ave.	16846	10			5	1	79	78 ⁻¹⁴⁰ Cs			average
140 Cs $(\beta^{-})^{140}$ Ba		6199	25	6220	10	.8	-			Ida		93Gr17
	ave.	6207	16			.8	ł	40	21 140 Cs			average
140 Pm(β^+) 140 Nd		6020	30	6047	23		3		2. 03	Dbn		95Gr A
$140 \text{ Fu} (B^+)^{140} \text{ Sm}$		8400	400	8470	50	.,	U.			(B)		01503
Eu(p) Sm		8470	50	8470	.50	-2	3			Dbn		95Gr.A
$141 C_{S} = 133 C_{S} c_{S}$		20269	16	20270	11	1	ı	46	45 ¹⁴¹ C°	MA4	10	95Bo 1
141 Ba $-^{133}$ Csi oco		14631	14	14633				÷		MAA	10	95Bo 1
0.000	310	14628	10		.,	.1	1	64	65 141 P.		1.0	average
$141 \operatorname{Nd}(B^+)^{141} \mathrm{Dr}$	arc.	1824	2	1823.0	าย	.4	'		0. 04			76Ga A
$\operatorname{Hu}(p)$ PT	1110	1024	3 20	1643.0	2.5	~.3	-	1/25	100 14			/003LA *
141 cm (at) 141 p.	ave.	1823.0	2.8	1500	27	.0	1	100	100 ··· Nd			average
\cdots Sm(β ') ^(**) Pm		4580	50	4529	27	-1.0	-		e . 141 -			//Ke03 *
141 - (+) 41 -	ave.	4530	30			1	1	59	54 '7' Pm			average
\cdots Eu(β ⁺) ^{**} Sm		5950	40	5978	26	.7	2			IRS		83AI06
		6035	60			-1.0	2					85Af.A

Item		Input va	lue	Adjusted	value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
¹⁴¹ Eu(β^+) ¹⁴¹ Sm		5550 5980	100 40	5978	26	4.3 1	В 2			IRS Dbn		93A103 95Gr.A *
$*^{141}$ Nd(β^+) ¹⁴¹ Pr	Was erroneous	ly quoted 7	7Ga.A in	the 1993 table	s							GAu **
$*^{141}$ Sm(β^+) ¹⁴¹ Pm	$E^+ = 3180(50)$	0), 3100(50)) to 403.1	35, 438.29 leve	eis							NDS **
$*^{141}$ Eu(β^+) ¹⁴¹ Sm	$E^+ = 4960(40)$	0) to 1.58 le	evel									NDS **
147 - 133 -									- 142 -			
$^{142}Cs - ^{1.0}Cs_{1.068}$		25270	16	25275	11	.3	1	47	47 ¹⁹² Cs	MA4	1.0	95Bo.1
Ba- CS1.068		17420	14	17431	'	.8	-		an 142 m	MA4	1.0	95Bo.1
142 c	ave.	1/415	10	0.4007		1.5	1	41	37 *** Ba			average
$142 r_{\rm H} (q \pm 1) 142 r_{\rm H}$		84810	10	84807	20	0. 0	1	52	52 · ~ Sm	MAD	1.0	95BC.A
$^{142}\text{Eu}^{m}(\beta^{+})^{142}\text{Sm}$		8150	60	8160	40	.2	2			Don Don		94P026 94P026
143 p		90070	10	20072								050 . 4
143 cm C		- 89079	18	- 89072	4	.4	0			MAS	1.0	95BC.A
143 Fu Current		70703	17	- 85570	4	5	1	80	80 143 E.	MAS	1.0	95BC.A
143 cm (q + 143 pm)		- 19705	10	- 19/13	14	0	1	80	ou Eu	Dha	1.0	935C.A
$^{143}\text{Eu}(\beta^+)^{143}\text{Sm}$		5236	30	5275	14	1.3	1	21	20 ¹⁴³ Eu	Don		94P026 94Po26
144 Eu $(\beta^+)^{144}$ Sm		6287	30	6315	17	.9	2			Don		94Po26
$^{145}\text{Tb}^{m}(\beta^{+})^{145}\text{Gd}$		6700	200				3					86Vc.A *
		6400	150	6700	200	2.0	В			IRS		93A103
$*^{145}$ Tb ^m (β^+) ¹⁴⁵ Gd	$E^+ = 3300(20)$	00) to 2382.	3 9/2-	level								NDS **
¹⁴⁶ Tm(p) ¹⁴⁵ Er		1126,8	5.				3					93Li18
¹⁴⁶ Tm [#] (p) ¹⁴⁵ Er		1197.3	5.				3					93Li18
146 Tb $(\beta^+)^{146}$ Gd		8310	50	8270	50	~.9	3			Dbn		94Po26
¹⁴⁷ Tm(p) ¹⁴⁶ Er		1058.2	3.3				3					93Sc04
147 Tb $(\beta^+)^{147}$ Gd		4700	90	4609	12	-1.0	U					83Vc06 *
147 Dy $(\beta^+)^{147}$ Tb		6480	100	6370	50	-1.1	2			IRS		85A108 *
$*^{147}$ Tb $(\beta^+)^{147}$ Gd	$E^+ = 2460(80)$	0) to 1152.2	and 129	2.3 levels, rein	terpreted							AHW **
$*^{147}$ Dy $(\beta^+)^{147}$ Tb	Q ⁺ = 7180(10	00) from ¹⁴	⁷ Dy ⁿ at	750.5 to 147 Tt	o ^m at 50.6	(.9)						NDS **
148 Ce(β^{-}) 148 Pr		2060	75				3			Bwg		87Gr.A
148 Pr $(\beta^{-})^{148}$ Nd		4800	200	4930	90	.7	2					791k06
		4965	100			3	2			Bwg		87Gr.A
148 Tb $(\beta^+)^{148}$ Gd		5630	80	5760	30	1.7	F					76Cr.B *
		5835	70			- 1.0	2					83Ve06 *
140 1 140		5752	40			.3	2			GSI		95Ke05 *
146 Dy $(\beta^{+})^{146}$ Tb		2682	10				3			GSI		95Ke05 *
$*^{1+0}$ Tb $(\beta^+)^{1+0}$ Gd	$E^+ = 4610(80)$	0) assumed	to ground	-state								76Cr.B **
*	F: since	To gs 2 ⁻ , t	ransition	to '* Gd gs w	cak							AHW **
* ¹ ^{-ω} Πb(β') ¹ ^{-ω} Gd	$E^{+} = 2210(70)$	0) from ""	16" at 9	0.1 to 2693.3 h	evel							NDS **
* .148 ms/ at 148 cu	and $E^{-} = 4$	550(80) ma 0)	iniy to 74	148 m 1 48 m / m / m	repant, no	a usca						NDS **
+ 10(p) 00	Q ² = 3730(4	0); and 3644 36 E ⁺ - 104	1(10) m	41034(10) of	90.1 Tanƙ							
* Dy(p*) 10 *	to 620.24 le	vel	3(10) an	u (036(10) 0	iei.							NDS **
$^{149}\mathrm{Gd}(\epsilon)^{149}\mathrm{Eu}$		1308	6	1314	4	1.0	1	49	30 ¹⁴⁹ Eu	Got		84Sc.B
¹⁵⁰ Lu(p) ¹⁴⁹ Yb		1269.6	4.	1269.6	2.8	.0	3					93Sc04
¹⁵¹ Ho(α) ¹⁴⁷ Tb		4696.3	4.	4695.1	1.9	3	-					79Ho1() *
		4695.8	3.			2	-					82Bo04 *
		4693.8	3.			.4	-					82Dc11 *
	ave.	4695.1	1.9			.0	1	100	100 ¹⁵¹ Ho			average

Item		Input	value	Adjuste	d value	v/s	Dg	Sig	м	ain flux	Lab	CF	Reference
$^{151}Lu^m(p)^{150}$ Yb		1241 0	2.8				3						93Sc04
$^{151}Pr(B^{-1})^{151}Nd$		4082	40	4100	40	.5	3				Ida		93Gr17
$*^{151}$ Ho(α) ¹⁴⁷ Tb	E = 4523.8(5.Z) t	o ¹⁴⁷ Tb ^m at 50	.6(.9): 4	610.8(4.Z)	from 15	¹ Ho ^m at 4	н.	2)					91To08 **
$*^{151}$ Ho(α) ¹⁴⁷ Th	E = 4521.5(3.Z) t	o 147 Tb ^m at 50	.6(.9): 4	611.5(3.Z)	from 15	Ho ^m at 4	n.i.C.	$\dot{2}$					91To08 ++
$*^{151}$ Ho(α) ¹⁴⁷ Tb	E = 4521.2(3,Z) t	o 147 Tb ^m at 50.	.6(.9); 4	607.2(4,Z)	from ¹⁵	¹ Ho ^m at 4	1.1(.2	2)					91To08 **
152 Gd(n. γ) 153 Gd		6247.04	.14	6247.08	0.13	.3	_				IL n		93Sp.A
	ave.	6247.07	0.13			.1	1	100	93	¹⁵² Gd			average
153 Nd($\beta^{}$) 153 Pm		3336	25				2				Ida		93Gr17
153 Pm(β^{-}) 153 Sm		1863	15	1881	11	1.2	1	52	52	¹⁵³ Pm	lda		93Gr17
$^{154}\text{Ho}^{m}(\alpha)^{150}\text{Tb}^{m}$		3819.4	10.	3823	5	.3	3						71 To 01 Z
		3823.5	5.			2	3						74Sc19 Z
153 Gd(n, γ) 154 Gd		8894.54	.20	8894.77	0.17	1.2	-				ILn		93Sp.A
	ave.	8894.76	0.17			.1	1	100	91	¹⁵³ Gd			average
154 Nd(β^{-}) 154 Pm ^m		2687	25				3				Ida		93Gr17
¹⁵⁴ Pm ^m (IT) ¹⁵⁴ Pm		-30	20	50	130	3.9	В						90So08
154 Pm(β^{-}) 154 Sm		3900	200	4040	70	.7	2						71Da28
		4056	100			1	2				Ida		93Gr17
154 Pm ^{<i>m</i>} ($\beta^{}$) ¹⁵⁴ Sm		3910	200	4090	110	.9	2						74Ya07
154 Tm ^{<i>m</i>} (β^+) 154 Er		8232	150	8250	50	.1	U				Dbn		94Po26
155 Tm(α) ¹⁵¹ Ho		4579.3	10.	4571	5	7	-			155			71To01 *
	ave.	4572	5			1	1	100	99	¹⁵⁵ Tm			average
$^{155}Lu(\alpha)^{151}Tm^{m}$		5723.0	10.	5726	5	.3	14						89Ho12
166 161		5727.0	5.			2	14						91To08
$^{155}Lu^{m}(\alpha)^{151}Tm$		5796.9	5.	5797	4	.1	16						89Ho12
155 155		5797.9	5.			1	16						91To08
155 Nd($\beta^{}$) 155 Pm		4222	150				4				ida		93Gr17
155 Pm $(\beta^{-})^{155}$ Sm		3224	30				3				Ida		93Gr17
155 Sm $(\beta^{-1})^{155}$ Eu	,	1607	25	1626.9	1.2	.8	U				Ida		93Gr17
$*^{133}$ Tm(α) ¹³¹ Ho	First assigned to '	"Tm" but belo	ings to ¹²	²⁹ Tm gs									94To10 **
1565 ()1525		2100.0	70	140	70	47							0 6 12
$156 = m(-)^{155} = 10^{155}$		3109.9	10	3440	70	4.7	2						93Ka.A *
156 Fac of 156 H		1110.2	12.	1220#	2104	(5	3 D						931134
156 m. (at) 156 m.		10/0	70 50	1220#	210#	-6.5	в				DL.		82 V y06
$\operatorname{Im}(p^{\prime}) \cong \operatorname{Er}$		7436	100	7440	40	5	2				Don		942020
* 156 Er(a) 152 Dv	R: disagroes hadly	with other data	and with	h svetemati	os 3600#	200	5						550a.A
$* \operatorname{El}(\alpha)$ by	D. disagrees badiy	with outer data		и зузистан	CS 5000#	2(8)							AUW **
157 Sm $(\beta^{-})^{157}$ Fu		2734	50				2				Ida		93Gr17
157 Er(B^+) 157 Ho		3547	100	3500	60	_ 5	3				Dhn		94Po26
157 Tm(B^+) 157 Er		4482	100	4480	70	0	4				Dhn		94Po26
157 Yb(β^+) 157 Tm		5074	100	5500	120	4.2	в				Dbn		94Po26
$(158 \mathrm{Sm}(\beta^{-}))^{158} \mathrm{Fu}$		1999	15				3				Ida		93Gr17
158 Er(8+) 158 Ho		1710	40	900#	100#	20.3	F						821/106 +
$158 \text{Tm}(\beta^+)$ 158 Fr		6674	60	6600	50	_ 4	4				Dhn		94Po26
¹⁵⁸ Lu(e) ¹⁵⁸ Yh		8960	200	8670#	120#	-14	R				201		95Ga 4
$*^{158} \text{Er}(\beta^+)^{158} \text{Ho}$	F: $Q < 1550$ from	upper limit on	p+	00,0	• 2 -0/#	-1.4	5						75Bu.A **
$159 \text{Ta}(\alpha)^{155} \text{Ly}$		5660	50	5660	50	1	13						95Da A
14(14) 14		5660	50		50	1. 0.	13						95Pa.A
159 Ta ^m (α) 155 Lu ^m		5745.8	6.	5745	4	2	17						79Ho10
		5739.7	15.			.3	17						95Da.A
		5744.7	5.			.0	17						95Pa.A
159 Tm(β^+) 159 Er		3670	100	3850	70	1.8	-				Dbn		94Po26
	ave.	3760	70			1.2	1	85	85	¹⁵⁹ Tm			average

Item		Input	value	Adjuste	d value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
159 Yb(β^+) 159 Tm		4554	150	4980	90	2.8	-			Dbn		94Po26
150	ave.	4730	120			2.1	1	57	42 ¹⁵⁹ Yb			average
$^{159}Lu(\beta^+)^{159}Yb$		5803	150	6020	90	1.4	-			Dbn		94Po26
	ave.	5830	110			1.8	1	66	58 ¹⁵⁹ Yb			average
$160_{Ta}(\alpha)^{156}$ I II		5450	50				4					05P2 A
$^{160}Ta^{m}(\alpha)^{156}Lu^{m}$		5550	50	5550	5()	- 1	5					70Ho10 7
ia (a) La		5540	50	5550	50	.2	5					92Ha10
		5550	50			0	5					QSPa A
160 Tm $(\beta^+)^{160}$ Er		5600	300				3					75St12
161 va. (at > 161 m-		2595	2020	4150#	0004	2.0	5			D		0.00-07
$161_{10}(\beta^{-1})^{161_{10}}$ Im		3383	200	4150#	200#	2.8	D			Don		94P026 *
$*^{161}$ Yb(β^+) ¹⁶¹ Tm	Systematica	4888 al trends sugge	150 est ¹⁶¹ Yb 46	5300 60 less bound	100	2,7	в			Dbn		94Po26 GAu **
162 Tm $(\beta^+)^{162}$ Er		4892	50	4840	30	-1.1	2			Dbn		94Po26
162 Lu(B ⁺) ¹⁶² Vh		6740	270	6960	80	8	3			Don		83(5-08
$\mathcal{L}(p)$ it		6960	100	0700	00	.0	3			IRS		93A103
		7028	150			5	3			Dbn		94Po26
$163 \operatorname{Re}(\alpha)^{159} \operatorname{Ta}$		6010	50				12					95Da.A
163 Re ^m (α) ¹⁵⁹ Ta ^m		6067.2	6.	6069	6	.3	18					79Ho10
		6079.5	15.			7	18					95Da.A
¹⁶³ Ho(ε) ¹⁶³ Dy		2.56	.05	2.565	0.014	.1	-					85Ha12 *
		2.54	.03			.8	-					93Bo.A *
		2.71	.10			-1.5	U					94Ya07
167 167	ave.	2.565	0.014			0.	1	100	98 ^{16,3} Ho			average
$*^{103}$ Ho(ϵ) ¹⁰³ Dy	Orig. value	2.60(.03) cor	rected to 2.	561(.020) fo	r dynamic e	ffects						87SpO2 **
* 163	error 0.02	O is statistical	only	. 163-	(n -) 16							87Sp()2 **
$*^{100}$ Ho(ϵ) ¹⁰⁰ Dy	Original 26	16 < Q < 26	94 68% CL	from ' ^{to} ' Dy ₆	$6 + (\beta^{-})^{10}$	'Ho ₆₆ +						92Ju01 **
*	corrected	10 2311 < Q	< 23/2 08%	6 CL								93B0.A **
164 Tm(β^{+}) 164 Er		3966	50	3963	19	- 1	2			Dhn		94Po26
¹⁶⁴ Lu(<i>B</i> ⁺) ¹⁶⁴ Yh		6213	120	6240	70	2	3			Dhn		94Po26
		0210		0210			5			2011		/11 020
167 Re ^m (α) ¹⁶³ Ta		5410	50	5410	50	0.	3					82De11 *
		5400	50			.2	3					84Sc06 *
$167 \ln(\alpha)^{103} \text{Re}$		6490	50				11					95Da.A
$10^{\prime} \text{ Ir}^{\prime\prime\prime}(\alpha)^{10.5} \text{ Re}^{\prime\prime\prime}$		6543.0	10.	6547	7	.4	19					81Ho10
167		6551.1	10.			4	19					95Da.A
167 Ir(p) 160 Os		1110	10 8-				10					95Da.A
$*^{107} \text{Rc}^{m}(\alpha)^{103} \text{Ta}$	Original as:	signment to 16	^o Re change	d by ref.								92Mc10**
$*^{(\alpha)} \operatorname{Re}^{m}(\alpha)^{(\alpha)} \operatorname{Ta}$	Original as:	signment to "	"Re" chang	ged by ref.	8 - 170 -							92Me10**
*	original E	$S(\alpha) = 5250 r$	ecalibrated	using their ^{ra}	°Os—''''Os	results						GAu **
168 Os(α) 164 W		5812.7	8.	5818.0	2.9	.7	8					95Hi02
168 Ir(α) 164 Re ^p		6410	50				7					82De11
169 On (~) 165 W		5717 6	4	5717	4	n	7					820411
05(2) **		5713	8	5717	4	2 .4	7					95Hi02
170Os(a) 166 W		5533 4	8	5530	3	7	8					9511:02
$^{170}\text{Ho}^{m}(\beta^{-})^{170}\text{Er}$		3970	60	5559	2	.,	2					78Tu04
171 Os $(\alpha)^{167}$ W		5365.8	10.	5370	5	.4	6					72To06
		5365.8	10.			.4	6					78Sc26
		5393.4	15.			-1.5	6					79Ha10
		5367.9	8.			.2	6					95Hi02
171 Au ^m (α) ¹⁶⁷ Ir ^m		7180	50				20					95Da.A

Item	Inpu	t value	Adjuste	ed value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
172 Aur av 168 Im	7020	50				ų					035-00
$172_{\rm W}(a^+) 172_{\rm To}$	2250	100	2500#	200#	-75	n					74C . A
$(p^{-1})^{-1a}$	Sustamutical trands su	100 most 172 W	2,500# 750 mom bo	200#	- 1.5	D					74Ca.A *
* w(p) ta	systematical tienus su	ggest w	750 more 00	una							UAu **
$175 \text{Ir}(\alpha)^{171} \text{Rc}$	5709.0	5.	5709	4	.0	4					67Si02 *
	5709.2	5.			.0	4					92Sc16 *
175 Pt(α) 171 Os	6178.1	3.	6178.3	2.6	.1	5					82Dc11 *
175 Au ^m (α) ¹⁷¹ Ir	6780.9	10.	6778	7	3	6					75Ca06
	6775.8	10.			.3	6					84Sc.A
$*^{175} \ln(\alpha)^{171} \text{Re}$	$E(\alpha) = 5392.8(5,Z)$	to 189.8 lev	el								95Hi02 **
$*^{1/5} \ln(\alpha)^{1/1} \operatorname{Re}$	$E(\alpha) = 5393(5)$ to 1	89.8 level									95Hi02 **
$*^{1/5}$ Pt(α) ^{1/1} Os	$E(\alpha) = 5959.2(3,\mathbb{Z})$	to 76.4(.5)	level								84Sc.A **
$176 \mathrm{Tm}(\beta^{-1})^{176}\mathrm{Yb}$	4120	100				2					67Gull *
$*^{176}$ Tm(β^{-}) ¹⁷⁶ Yb	$E^- = 2000(100), 11$	50(100) to	2053.4, 3050) levels							NDS **
177 Au(α) 173 Ir	6435.9	10.	6431	7	5	5					84Sc.A
178 Pt(α) 174 Os	5568.4	13.	5573.4	2.6	.4	U					94Wa23
179 pr (~) 175 Cr	5371	2()	5305	7	12	5					665:08 *
F(a) = 0.5	5415	10	5595	'	-20	5					79Ha10 *
	5382	10			1.3	5					82Bo04 *
$*^{179}$ Pt(α) ¹⁷⁵ Os	$E(\alpha) = 5150(10)$ to	102.3 level									NDS **
*	error increased: part	of double li	nc (with 180	Pt)							AHW **
$*^{179}$ Pt(α) ¹⁷⁵ Os	$E(\alpha) = 5194(10)$ to	102.3 level									NDS **
$*^{179}$ Pt(α) ¹⁷⁵ Os	$E(\alpha) = 5161(3)$ to 1	02.3 level, n	ecalibrated a	s in ref.							91Ry01 **
*	error increased: part	of double li	ne (with 180	Pt)							AHW **
180 Pt(a) 176 OF	5257 1	20	5775	9	0	8					665i08 *
11(4) 03	5279	10	52,5		4	8					82Bo04 *
180 Au(α) ¹⁷⁶ Ir	5845	30	5851	21	.2	4					86Kc03 *
. ,	5857	30			2	4			Lvn		93Wa03 *
180 Hg(α) 176 Pt	6258.4	5.	6258	4	.0	3			Lvn		93Wa03 Z
¹⁷⁹ Hf(n,y) ¹⁸⁰ Hf	7387.7	.3	7387.90	0.24	.7	-					90Bo52
100	ave. 7387.8	0.24			.4	1	98	79 ¹⁸⁰ Hf			average
$*^{180}$ Pt(α) ¹⁷⁶ Os	$E(\alpha) = 5140(10)$ but	error increa	ased: part of	double line	(with ^{1/9})	Pt)					AHW **
$*^{100}$ Pt(α) ^{1/0} Os	$E(\alpha) = 5161(3)$ reca	librated as i	n ref.								91Ry01 **
* 180. / 176.	error increased: part	of double li	ine (with '''	Pt)							AHW **
$*^{100} A\mu(\alpha)^{100} Ir$	$E(\alpha) = 5085(10)$ to	40(30) ieve] 								93 Wa03 **
* AU(0r) IF	$E(\alpha) = 3647(10, Z)$	0 80(50) 10	vei								93 Wa()3 * *
¹⁸¹ Pt(α) ¹⁷⁷ Os	5150	50				6					95Bi01
181 Tl(α) 177 Au	6320	50	6600#	300#	5.6	F					92Bo.D *
181 Pb(α) ¹⁷⁷ Hg	7370	50	7240#	120#	-2.7	F					86Ke03 *
161 Pb ^m (α) ¹⁷⁷ Hg ^p	7224.9	20.	7211	12	7	П					95To.A
$101 Os(\beta^+)^{101} Re$	2990	200				3					67Go25 *
* 131 T1(α) 177 Au	Probably to excited le	vels in ''' A	.u 								92Bo.D **
* ¹⁰¹ Pb(α) ¹¹¹ Hg	F: α -line not found by	/ ref. in sam	e reaction	2(2.0.)1							9510.A **
* '' Us(p'')''' Ke	$E^{-} = 1730(200)$ from	n Os ^m at	. 48.9(.2) to	203.0 ievel							yjkoly **
182 Pt(α) 178 Os	4952.0	5.				2					95Bi01
182 Au(α) 178 Ir	5526.2	5.	5527	4	.1	3					95Bi01 *
182 Hg(α) 178 Pt	5990.2	13.	5997	5	.5	4					94Wa23
$*^{182}$ Au(α) ¹⁷⁸ Ir	$E(\alpha) = 5403(5), 535$	2(5) to gro	und-state and	1 55(1) leve	2						NDS **

Item	Input	value	Adjusted	i valuc	v/s	Dg	Sig	Main flux	Lab	CF	Reference
187 170											
183 Pt(α) ¹⁷⁹ Os	4820	50				6					95Bi01
183 Au $(\alpha)^{1/9}$ lr	5462.6	5.	5465.6	3.0	.6	6					68Si01 Z
	5465.7	5.			.0	6					82Bo04 Z
	5449.3	10.			1.6	С					84Br.A
184 Pt(α) 180 Os	4602.2	10.	4602	9	.0	5					95Bi01
184 Au(α) 180 Ir	5218.6	15.	5232	5	.9	6					70Ha18 *
	5233.9	5.			3	6					95Bi01 *
184 Au(β^+) 184 Pt	6450	50	7060#	60#	12.2	D					84Da.A *
$^{184}\text{Hg}(\beta^+)^{184}\text{Au}$	3660	30	4120#	60#	15.3	D					84Da.A *
$*^{184}$ Au(α) ¹⁸⁰ Ir	$E(\alpha) = 5172(15)$ from ¹⁸⁴ Au	m at 68.6	(.1)								94Ib01 **
*	transition to ground-state in 1	⁸⁰ Ir									95Bi01 **
$*^{184}$ Au(α) ¹⁸⁰ lr	$E(\alpha) = 5187(5)$ from ¹⁸⁴ Au ^m	at 68.6(.1)								94 1 b01 **
$*^{184}$ Au(β^+) ¹⁸⁴ Pt	Systematical trends suggest 184	Au 610 I	ess bound								GAu **
$*^{184}$ Hg $(\beta^+)^{184}$ Au	Systematical trends suggest 184	Hg 460 l	ess bound								GAu **
¹⁸⁵ Au(<i>a</i>) ¹⁸¹ Ir	5180.2	5.	5181	4	.1	6					68\$i01 *
	5182.9	5.			1	6					70Ha18 *
	5181.2	10.			1	6					91Bi04 *
¹⁸⁵ Bi ^p (p) ¹⁸⁴ Pb	1669	50				5					95Da.A
$*^{185}$ Au(α) ¹⁸¹ lr	Ground-state to ground-state tr	ansition (,Z)								95Bi01 **
$*^{185}$ Au(α) ¹⁸¹ Ir	Ground-state to ground-state tr	ansition c	or very low le	evel; from o	coinc.						95Bi01 **
186 Au(~) 182 Ir	4007	15	4006	15	_ 1	,	00	50 186 AV			00.41-04
$+186 A_{\rm H}(\alpha)$ 182 Jr	$F(\alpha) = 4653(15) + 0.153.3 \text{ law}$	n]	4500	15			"	.0 Au			05110.1 ***
* Au(ar) ir	$E(\alpha) = 4035(13) + 10 + 152.3 \text{ lev}$	CI									9300.3 **
187 Hg ^m (α) 183 Pt	5179.8	20.				5					70Ha18 *
187 Re($\beta^{}$) ¹⁸⁷ Os	2.70	.09	2.663	0.019	4	U					93As02
187 Au(β^+) 187 Pt	3600	40	3730#	100#	3.3	D					83Gn01 *
$*^{187}$ Hg ^m (α) ¹⁸³ Pt	$E(\alpha) = 5035(20)$ to ^{18.3} Pt ^m a	t 34.50									NDS **
$*^{187}$ Au(β^+) ¹⁸⁷ Pt	Systematical trends suggest 187	Рt 130 п	tore bound								GAu **
$188 \text{Pb}(\alpha)^{184} \text{Hg}$	6109.3	10.	6111	4	.2	7			Lvn		93Wa03 Z
188 Au(β^+) 188 Pt	5520	30	5300#	100#	-7.3	D					84Da.A *
188 Hg(β^+) 188 Au	2040	20	2300#	150#	13.0	D					84Da.A *
$*^{188}$ Au(B^+) ¹⁸⁸ Pt	Systematical trends suggest 188	Au 220 I	more bound			_					GAu **
$*^{188}$ Hg(β^+) ¹⁸⁸ Au	Systematical trends suggest 188	Hg 260 I	less bound								GAu **
189 pb ^m (a) 185 He	5958.0	10	5053	7	- 5	4					726927
	5947.7	10.			.5	4					74Lc02 *
¹⁸⁹ Bi(a) ¹⁸⁵ Ti	7266.9	10.	7267	4		3					84Sc.A *
$^{189}Bi'''(\alpha)^{185}T1$	7360	50	7484	25	2.4	c					84Sc.A
51 (u) 11	7499.0	30.	1401		5	3					93An19
	7458 2	40			6	3					95Ba B
* 189 ph ^m (a) 185 Ha	$F(\alpha) = 5730 1(10.7)$ to ¹⁸⁵ H	o ^m at 10	38(10)			·					87KiA **
$*^{189} Ph^{m}(\alpha)^{185} Hg$	$F(\alpha) = 5720(10)$ to ¹⁸⁵ Hg ^m	at 103.8(10)								87KiA **
, 189 B (,) 185 m	$E(\alpha) = 5720(10)(10) Hg$	452 8	(20)								775-03 **
* $DI(\alpha)$ II	$E(\alpha) = 0075(10,2)$ 10 11	al 402.0	(2.0)								113005 ##
190 Rem (11) 190 Re	210	5()				٦					AHW -
AC (11) AC	210	290	210	50	.0	Ű					AHW *
190 Ha(8+ 190 A.	210	80	1470#	150#		n.					74014
190 Bom (17) 190 Bo	From lower limit 110.12 and	nnor limi	1 3(Y) from o	alculated 1	73 and 7	20					NDS **
"190 p.a."(11) KC	From differences in <i>R</i> down	ipper min	1 500 HOILC	arculated 1		L U					
190 Har (11) KC	Sustamplical transfer manager 190)u. 220									GAn **
т п <u>g</u> (р) Аu	Systematical trends suggest	ו ננס אוו	more bound								074 **
$^{192}\text{TV}^{p}(\text{IT})^{192}\text{TI}$	200	50				4			Lvn		91 Va04

Item	Input va	ue	Adjusted	l value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
193 AAX - \ 189 D:	7506 3	20									061
$*^{193}$ At(α) ¹⁸⁹ Bi	Possibly mixture with	. 193 ∆ t ^m				4					95LC.A *
* A(a) Bi	Tossioly mixture with										5.LL.A ++
$^{194}At^{m}(\alpha)^{190}Bi^{m}$	7362.1	20.	7357	14	3	6					95Lc.A
194 Ir ^{<i>n</i>} (β^{-}) ¹⁹⁴ Pt	2600	70				2					68Su02
195 Po(α) 191 Pb	6760	50	6750	50	3	U					67Si09 Z
195 At(α) 191 Bi	7340	50	7360	50	.3	4					83Lc.A
	7370	50			3	4					95Lc.A
	7280	50			1.5	U					95No.A *
$^{195}\text{At}^{m}(\alpha)^{191}\text{Bi}^{m}$	7095.8	30.				4					95Lc.A
$*^{195}$ At(α) ¹⁹¹ Bi	Preliminary										95No.A **
196 Pa(a) 192 Ph	6653 1	18	6657	3	,	п					951 e()4
$196 {\rm At}(\alpha)^{192} {\rm Bi}$	7190	50	7200	50		4					951.015
$^{196}Bn(\alpha)^{192}Bo$	7623	30	1200	20	10	9					95No A *
$196_{1}\mu^{m}(B^{-})$ 196 pt	3628	100				2					681a06
$*^{196} Rn(\alpha)^{192} Po$	Preliminary	100				-					95No.A **
197 Rn(α) 193 Po	7410	50	7410	50	.0	4					95Lc.A
initial) i o	7410	50			.0	4					95No.A
197 Rn ^m (α) 193 Po ^m	7508.7	7.	7510	7	.2	5					95Lc.A
	7523	20			6	5					95No.A
198 Rn(α) 194 Po	7353.8	5.	7352	5	4	4			Lvn		95Bi.B
197 Au $(n,\gamma)^{198}$ Au	6512.35	.11	6512.34	0.11	1	1	100	51 ¹⁹⁸ Au	1Ln		79Br26 *
$*^{197}$ Au(n, γ) ¹⁹⁸ Au	Recalibrated ,Z										93Eg.A **
¹⁹⁸ Pt(¹⁸ O, ¹⁷ F) ¹⁹⁹ Ir		41				3					95Zh10
200 At ^m (α) ¹⁹⁶ Bi ^m	6542.8	5.	6542.4	1.4	1	7					67/Tr()6 2
	6542.9	2.			2	7					75Ba.B Z
200 Rn(α) ¹⁹⁶ Po	7042.1	12.	7043.5	2.6	.1	U					95Lc04
200 Fr(α) 196 At	7620	50	7630	50	.2	5					95Lc.A
	7650	50			4	5					95No.A
201 Rn(α) 197 Po	6860	50	6860	50	1	4					95Lc04
201 Rn ^m (α) ¹⁹⁷ Po ^m	6915.9	7.	6909.8	2.2	8	5					95Lc04
202 At(α) 198 Bi	6355,8	3.	6353.7	1.4	7	4					63Ho18 2
202 At ^m (α) ¹⁹⁸ Bi ^m	6259.9	2.	6258.9	1.2	5	5					63Ho18 2
	6256.8	3.			.7	5					67Tr()6 2
	6257.2	5.			.3	5					74Ho27 2
	6259.0	2.			0.	-5					75Ba.B *
202 Rn(α) ¹⁹⁸ Po	6773.4	7.	6773.6	1.9	.0	6					95Lc()4
202 Hg(d, ³ He) ²⁰¹ Au $-^{206}$ Pb() ²⁰⁵ Tl	- 979.9	3.1	980	3	0.	1	100	100 ⁻²⁰¹ Au			94Gr07
$*^{202} \operatorname{At}^{m}(\alpha)^{198} \operatorname{Bi}^{m}$	Assignment to ²⁰² At	m by ref.	Recalibra	ted ,Z							92Hu()4 * *
$203 \operatorname{At}(\alpha)^{199} \operatorname{Bi}$	6211-6	3	6210 3	U K	- 4	2					758a R
$203 \mathbf{Pn}(\alpha)^{199} \mathbf{Pn}$	6630	10	6620 8	22	+,,+ 0	∠ 11					05Eb 1
$203 Pp^{m}(\alpha)^{199} Po^{m}$	6622.0	7	6680 6	1.0	0. *	0					9500.1
$203 \mathbf{P}_{2}(\alpha)^{199} \mathbf{P}_{2}$	7720	50	0000.0	1.9	5	7 5					951.0.4
$203 \mathbf{p}_{a}^{\mu}(\alpha)$ 199 \mathbf{p}_{b}^{μ}	7768 4	20				6					95L c A
$203_{AU}(\rho -)203_{Bu}$	2040	20. 60	2124	4	1.4						0/W-07
Au(p) ng	2040	00	2124	4	1.4	υ					24 WOUZ

G. Audi, A.H. Wapstra / Nuclear Physics A 595 (1995) 409-480

Item		Input	value	Adjusted	l value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
204												
$At(\alpha)^{200}B_1$		6070.2	3.	6069.9	1.5	1	3					63Ho18 Z
		6066,1	3.			1.2	3					67Tr06 2
		6071.2	3.			4	3					75Ba.B
204 p () 200 p		6072.2	3.			8	3					81Va27 Z
$2^{\circ\circ} Rn(\alpha)^{2^{\circ\circ}} Po$		6537.4	7.	6545.6	1.9	1.2	4					95Lc04
$204 = m_{\odot} + 200$		7167.8	7.	7169.8	2.7	.3	7					95Lc04
$Fr''(\alpha)^{2N'}At''$		7108.6	5.	7111	4	.4	7			Lvn		92Hu04
204 - +		7114.7	7.			6	7					95Lc04
$204 \text{ p} (\alpha)^{2\infty} \text{ At''}$		7160.6	7.	7156	4	7	8					94Lc05
$-\kappa Ra(\alpha)^{200}Rn$		7638.1	12.	7636	8	2	7					95Lc04
204		7634.0	15.			.2	7					95Lc.A
204 Hg(d, He) ²⁰⁴ Au - ²⁰⁴ Pb() ²⁰⁵ Tl		-1582.0	3.0	-1582.0	3.0	0.	1	100	100 ⁻²⁰³ Au			94Gr07
204		4500	300	3940#	200#	-1.9	F					67Wa23 *
* ²⁰⁴ Au(β^{-}) ²⁰⁴ Hg	F: reporte	d 4 s activity	does not	t exist								NDS **
²⁰⁵ TI ³⁵ Cl- ²⁰³ TI ³⁷ Cl		5/132 88	1.01	5022.2	0.6	2						010:05
	300	5032.50	1.31	5055.5	0.0	.5	1	10	11 205 -	r142	1.3	232102
205 Fr(α) 201 At	avc.	7050	50	7050	50	0.	2	19	0 ··· 11			average
205 Ba(α) ²⁰¹ Bn		7500	50	7050	50	.0	4					95Lc04
$^{205}Ra^{m}(\alpha)^{201}Rn^{m}$		7501 7	10	7504	0	,	5					95Le15
		7522.1	25.	7504	9	.s 7	6 6					95Le04 95Le15
205 35 204 37												
PB - CI PB - CI		4371.29	.81	4370.3	0.5	8	-			H42	1.5	93\$i05
206 202 -	ave.	4371.2	1.1			8	1	17	15 ²⁰⁴ Pb			average
$2^{\alpha}Ra(\alpha)^{2\alpha}Rn$		7406	15	7416	5	.7	U					95Uu.1
²⁰⁷ Pb ³⁵ Cl- ²⁰⁵ Tl ³⁷ Cl		4417.32	1.40	4418.4	0.6	.5	1	9	8 ²⁰⁵ T	H42	15	935105
$207 \text{Ra}(\alpha)^{203} \text{Rn}$		7280	50	7270	50	1	9				1.0	951 lu 1
207 Ra ^m (α) ²⁰³ Rn ^m		7463.5	10.	7468	8	.3	10					87He10
		7473.1	15.			5	10					951 c15
207 Ac(α) 203 Fr		7860	50				8					94Lc05
²⁰⁸ Pb ³⁵ Cl - ²⁰⁶ Pb ³⁷ Cl		5136.03	41	5136.06	0.16	0		7	4 206 DL	1142	1.5	020:05
$^{208}Ac(\alpha)^{204}Fr$		7720.8	15	5150,50	0.10	.0	1	1	4 PD	H42	1.5	935105
$208 \operatorname{Ac}^{m}(\alpha)^{204} \operatorname{Fr}^{n}$		7802 1	20	7001	14	5	0			DL.		941.005
10 (d) 11		7910.4	20. 20.	75/1	14		9			Doa		94An01 94Lc05
209 Ac(α) 205 Fr		7740	50	7730	50	1	2			Dba		94An01
		7730	50			.1	2					94Lc05
210 Th $(\alpha)^{206}$ Ra		8052.7	17.				8					95Uu.1
²¹¹ Th(α) ²⁰⁷ Ra		7940	50				10					95Uu.1
207 Fr $-^{213}$ Fr $_{.324}$ 204 Fr $_{.676}$		-2540	330		240#	.5	D			P24	2.5	82Au()} *
$^{21.9}$ Ra $(\alpha)^{20.9}$ Rn		6862.4	5.	6861	4	2	3					76Ra37 *
212 Ra ^{<i>m</i>} (α) ²⁰⁹ Rn		8629.4	5.				3					76Ra37
213 Pa(α) 213 Ac		8390	50				3					95Ni05
207 Fr $-^{213}$ Fr $_{324}$ 204 Fr $_{676}$	DM = -2	470(330) fo	r ²⁰⁴ Fr ^r	at estimated	$E_{\rm exc} = 10$	0(70)						AHW **
$r_{1.3}^{207}$ Fr $-\frac{21.3}{5}$ Fr $_{.324}^{-204}$ Fr $_{.676}^{-676}$	Systematic	al trends sug	ggest ²⁰⁴ F	Fr 590 more	bound							GAu **
e^{213} Ra(α) ²⁰⁹ Rn	$E(\alpha) = 6$	731.9, 6624.9), 6523.9(5,Z) to gs,	110.1, 214	.7 levels	6					NDS **
214 Bi(α) ²¹⁰ Tl		5616.2	1.0	5616.8	0.9	.6	2					34Lc01 *
217 Pa(α) 210 Ac		8270	50				4					95Ni05
$*^{-1}$ Bi(α) $*^{-1}$ Tl	$E(\alpha)=551$	0.5, 5449.8(1.0,Z) to	ground-state	62.5 leve	el						NDS **

Item

215 Pa(α) 211 Ac		8240	50	8240	50	.0	3					79Sc09	*
$*^{215}$ Pa(α) ²¹¹ Ac	$Q(\alpha) = 8$	8240 (167.2(15) in	50 1993 ta	ble was a type	crror	.0	3			GSa		95Ho.C GAu	**
214 - 212													
210 Th ^{<i>p</i>} (α) ²¹² Ra 216 Pa(α) ²¹² Ac		10107.4 8100	4 0. 50	10101	18	2	6 3			GSa		93An07 95Ho.C	
$217 p_0(n)^{213} A_0$		9.400	50	94(9)	50	0	2			Ce.		04Ua C	
217 Pa ^m (α) ²¹³ Ac		10350	50	10350	50	- 1	3			034		79Sc09	
ru (a) / to		10350	50	10000	50	.0	3			GSa		95Ho.C	
218 n. (7265 0	e	72(2.0)	1.0							564 20	-
$-\pi Rn(\alpha) - Po$		7263,0). 10	7263.0	1.9	4	-	04	en 218 p.			56A\$38	Z
218 Pa(α) 214 Ac	ave.	9790	50	9790	50	۱. 0,	3	90	69 KI	GSa		average 95Ho.C	
210 215													
219 Ra(α) 215 Rn		8138.0	3.				4					94Sh02	
$^{219}\mathrm{U}(\alpha)^{213}\mathrm{Th}$		9860	50				4					93An07	
$^{221}\operatorname{Ac}(\alpha)^{217}\operatorname{Fr}$		7790	50	7780	50	2	4					92An.A	
$^{222}Ac(\alpha)^{218}Fr$		7137.5	2.				4					82Bo()4	z
222 Ac ^m (α) ²¹⁸ Fr ^p		7140.3	20,				5					72Es03	
222 Pa(α) ²¹⁸ Ac ^p		8696.7	15.	8697	13	.0	7			GSa		95Ho.C	
223 Pa(α) 219 Ac		8340	50	8340	50	.0	5			GSa		95Ho.C	
224 Pa(α) 220 Ac		7681	15	7694	4	.8	6			GSa		95Ho.C	
¹³³ Cs- ²²⁶ Ra sue		- 109500	13	- 109490	3	8	_			MA4	10	95Bo 1	
0.0	ave.	- 109491	7			.2	1	21	17 ⁻¹³³ Cs			average	
226 Th(α) 222 Ra		6448.5	3.0	6451.2	1.0	.9	_					56As38	*
	ave.	6451.1	1.0			.1	1	99	58 ²²⁶ Th			average	
$^{226}U(\alpha)^{222}$ Th		7747.4	30.	7715	14	-1.1	5					73Vi10	*
$*^{226}$ Th $(\alpha)^{222}$ Ra	$E(\alpha) = 6$	334.6(3,Z), 6	224.6(3	Z) to ground	-state,	111.12 le	vel					NDS	**
$*^{226} U(\alpha)^{222}$ Th	$E(\alpha) = 7$	430(30) to 2 ⁴	+ level	at 183.3(.3)								94Yc08	**
220 224													
228 Pa(α) 224 Ac		6266.7	3.	6264.5	1.5	7	3					58Hi.A	*
		6264.7	3.			1	3					93Sh07	*
228 - 224 -		6263.5	2.			.5	3					94Ah03	*
$228 \text{ pu}(\alpha)^{2-3} \text{ U}$		/949.7	20.		7		7			Dbb		94An02	
* $Pa(\alpha)^{-1} Ac$ 228 p. (1) 224 A	$E(\alpha) = 0$	119.2(3,Z), 6	106,2(3	(Z), 60/9.2(3	Z) 10	31.2, 51.9	9, 78.4	i levels	i			935h07	**
$*^{-1}$ Pa(α) - AC	$E(\alpha) = 0$	$(118(3) \ 10 \ 37.$	2 level									935007	**
* $Pa(\alpha)$ AC	$E(\alpha) = 0$	117(2) 10 57,	i lever									94An05	**
229 Pa(α) 225 Ac		5835.6	5.				2					63Su.A	*
229 Pu(α) 225 U		7590	50				7			Dbb		94An02	
$*^{229}$ Pa(α) ²²⁵ Ac	$E(\alpha) = 5$	670.2, 5630.2,	5615.2	2, 5580.2, 5536	5.2 (all	3, Z)						63Su.A	**
230 Th(p.t) 228 Th $^{-232}$ Th() 230 Th		-492.5	.5	-492.3	0.5	.3	1	99	74 ²²⁸ Th			94Lc22	
231 U(α) ²²⁷ Th		5576 0	٦				2					941 (12	-
$*^{231} U(\alpha)^{227}$ Th	$E(\alpha) = 5$	471(3), 54560	(3). 54	()4(3) to 93	24.4 7	7.7 levels	-					941.112	**
233	2(4) = 5			04(0) 10 524								746112	**
$\min_{\alpha} \operatorname{Np}(\alpha)^{22} \operatorname{Pa}$		5628,5	50.				3					50Ma14	
235 Pu(α) 231 U		5951.5	20.				3					57 m 10	
237 Pu(α) 233 U		5747	5	5749.5	2.3	.5	1	22	16 ²³³ U			93Dm02	2
237 Am(α) 233 Np		6180.6	5.				4					75Ah05	

Reference

Item		Input v	value	Adjusto	ed value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
$^{241}Cm(\alpha)^{237}$ Pu		6182.8	2.0	6184.9	0.6	1.0						67Bad? *
Cin(u) Fu	31/2	6184 8	0.6	0104.9	0.0	1.0	1	00	04 237 pu			07Ba42 *
241 Es(a) 237 BLP	avc.	8064.1	30	8250	20	61	Ċ	77	94 ru			average 9511: A
$LS(\alpha)$ DK		8750.2	20	62.50	20	0.1	10					93Ho A
$*^{241}$ Cm(α) ²³⁷ Pu	$E(\alpha) = 6080.6(2)$	Z) 5926	6(2Z) I	o ground-st	ate. 155.45	level	10					NDS **
$*^{241}$ Es(α) ²³⁷ Bk ^p	C: new data of sa	ime group	(next ite	m) is much	n safer							93Ho.A **
242 238												
2 Pu(α) 2 U		4987.3	2.0	4984.4	0.9	-1.4	-					53As.A *
		4980.8	2.0			-1.2	-	0.5	c. 238			36K06/ *
242 - ()238 - 2	ave.	4964.0	0.9	8024	17	2		95	51 . 0			average
$242 N_{\rm eff} (\rho - \lambda^{242} D_{\rm eff})$		2700	20.	6024	17	9						9500.A
$242 r_{1} (x) 238 t_{1}$	P(.) 4004.6	2/00	200		4.01 Janual		2					/9Ha20
$*^{-}$ PU(α) U 242 pu($-$) 238 U	$E(\alpha) = 4904.0, \alpha$	4800.0(Z,Z. 4860 6 (2, Z) to grou	Ind-state, 4	4.91 level							ND5 **
$*^{-1}Pu(\alpha)^{-1}0$	$E(\alpha) = 4903.7, \alpha$	4000.012,2) to grou	ind-state, 4	4.91 16761							ND3 **
$^{243}Cf(\alpha)^{239}Cm^{p}$		7178	10				5					67Fi04 *
243 Es(α) 239 Bk ^p		8027.3	20.	8031	3	.2	U					93Ho.A
$*^{243}Cf(\alpha)^{239}Cm^{p}$	Unhindered $E(\alpha)$) = 7060(1	0); there	e is a weake	$er E(\alpha) =$	7170(10)						AHW **
244 Bk(α) 240 Am		6778 3	4				3					66AhB *
244 Pu(L α) ²⁴³ Np ^p		12405	10				2					79F102
$*^{244}$ Bk(α) ²⁴⁰ Am	$E(\alpha) = 6667.5(4)$	4,Z), 6625.	5(3,Z) t	o ground-st	ate, 41 lev	el	-					NDS **
245 CK ~ 241 CmP		7255 7	20				1					675:04 7
245 Md ^m (α) ²⁴¹ Es ^p		8780	2.0 50				12					93Ho.A
246 Md(α) 242 Esp		8670	50				13					93Ho A
246 Md ^m (α) 242 Es ^p		8880	50				13					93Ho.A
$^{247}\mathrm{Md}^m(\alpha)^{243}\mathrm{Es}^p$		8567.0 8562.9	25. 20.	8564	16	1 .1	11 11					81Mu12 93Ho.A
248 put (a=)248 cs		870	20				2					780-10
$*^{248}$ Bk ^m ($\beta^{}$) ²⁴⁸ Cf	In Ame'93, 1 ⁽⁻⁾) ²⁴⁸ Bk ⁿ	zo was grou	nd-state; bu	nt (6 ⁺) ²⁴	⁸ Bk is gs.	3					NDS **
$249 \text{ Bk}(\alpha)^{245} \text{ Am}$		5520 4	20	5525 ()	23	23	4					664h 4 *
		5526.1	1.0	5515.0	2.5	-1.1	4					71BaB2 *
$*^{249}$ Bk(α) ²⁴⁵ Am	$E(\alpha) = 5431.8,$	5412.8, 53	34.8(all	2,Z) to grou	und-state,	19.20, 47.0	07 level:	\$				NDS **
* ²⁴⁹ Bk(α) ²⁴⁵ Am *	$E(\alpha) = 5437.1(1)$ rather different	I.0,Z) to g from ref	round-sta calibrated	te. Energie i with same	s of higher e ground-st	t branches ate α						71BaB2 * * 75Ba27 * *
250 CE(a) 246 Cm		6120-1	6	6129 14	0.10		'n					718-87
		0129.1	.0	0126.44	0.19	-1.1	2					TIBADZ
252 Es(α) ²⁴⁶ Bk ^p		6739.5	3.		249		4					73Fi06 *
$*^{232}$ Es $(\alpha)^{246}$ Bk ^p	$E(\alpha) = 6632.1(3)$	3,Z), 6522.	.1(3,2) (io 0, 70 .64	above 240 l	Bk ^p						NDS **
$^{253}Cf(\alpha)^{249}Cm$		6127.3	5.	6126	4	3	3					66Rg01 *
$*^{253}$ Cf(α) ²⁴⁹ Cm	$E(\alpha) = 5981(5.2$	Z) to 48,74	level									NDS **
$\frac{254}{250}$ Es (α) $\frac{250}{250}$ Bk		6615.7	1.5				6					72BaD2 *
$*^{254}$ Es $(\alpha)^{250}$ Bk	$E(\alpha) = 6415.4(1)$	1.5,Z) to 9	7.493 lev	vel								NDS **
255 Es(α) 251 Bk		6439.3	3.0	6436.3	1.3	-1.0	4					66Rg01 *
255 Fm(α) ²⁵¹ Cf		7237.0	4.	7239.7	1.8	.7	3					64As01 *
$255 \text{ No}(\alpha)^{27} \text{ Fm}$		8428.4	20.	8442	8	.7	5					95Ho.A
$Lr(\alpha)^{23}$ Md ²		8563.6	18.				9					/0BC.A *
$*^{255}$ Es(α) $*^{251}$ Bk	$E(\alpha) = 6303(3, 2)$	C) to 35.70	.3) leve	l 	04.20.3							NDS **
$*^{-1/2}$ Fm(α) ^{2/2} Cf 2551 - (-) ²⁵ 1 Mar	$E(\alpha) = 7121.5,$	7018.5(4,Z) to gro	und-state, 1	U6.30 leve	1						ND5 **
* $Lr(\alpha)$ Md ^p	$E(\alpha) = 8429(18);$	and a mo	re intens	e 8370(18)	branch							/0BC.A **

ltem	Input va	aluc	Adjus	ted value	v/s	Dg	Sig	Main flux	Lab	CF	Reference
254											
$^{256}Lr(\alpha)^{252}Md^{p}$	8761.1	25.	8777	13	.6	4					76Be.A
	8777.4	20.			.0	4					76Di.A
$^{257}L_{I}(\alpha)^{253}Md^{p}$	9001.3	12.	9007	10	4	4					76Bc A
$257 \ln(\alpha)^{253} \ln^{p}$	9122 1	20				9					854077 *
$*^{257} Jl(\alpha)^{253} Lr^{p}$	$E(\alpha) = 8970(20);$ highest	st seen !	9160(20)			,					AHW **
254 254											
238 Lr(α) 234 Md	8870	50	8900	20	.6	F					76Bc.A *
259 No(α) 255 Fm ^p	7617.8	10.	7635	4	1.7	5					73Si40 *
	7638.2	4.			7	5					93Mo18 *
259 Db(α) ²⁵⁵ No ^p	9030	20	9021	12	4	7					81Be03 *
	9034.7	20.			7	7					95Ho.A
259 Rf(α) 255 Db	9834	30				11					85Mull *
$*^{259} No(\alpha)^{255} Em^{p}$	Or $F(favored) = 7551(4)$	if Cor	iolis mixee	1							NDS **
$+259 \text{ Db}(\alpha)^{255} \text{ Mag}$	$E(\alpha) = 8870(20)$; partia		$(\alpha) = 877$	• 17(7(1) wit	h o						
259 p.() 255 p.	$E(\alpha) = 8870(20)$, parity	Sun E	$(\alpha) = 0/7$	-hour 7/2							Ariw **
259 R(α) 255 D0	$E(\alpha) = 9620(50)$ probat	ny to 9/	2 63(10)	above 772	ground-state						AHW **
$*^{-1}$ RI(α) $^{-1}$ Db	$E(\alpha) = 9030(50)$ mayoc	unnar	u to Nm -	-•Dorat	660(60)						AHW **
261 Rf(α) 257 Db ^p	9700.0	20.	9703	17	.1	11					95Ho03
263 Db(α) 259 No ^p	8077	40				7					936+6
$263 \text{ pf}(\pi)^{259} \text{ phg}$	0022	40	0190	20		, 11					74Ch04
$\mathbf{K}(\alpha) = \mathcal{D}0^{\circ}$	9200.2	40.	9160	50	4						04C-08
263 0 01 (9149.2	40	0201	10	.0	0					940106 74CE04
$\mathbf{K}(\alpha)$ DO	9395.1	40. 20.	9391	10	.0	9					95Ho.A
$264 \text{ Pb}(\infty)^{260} \text{ HP}$	9767 3	2()				Q					0514-014
264 Hn(α) 260 Rf	10590.5	20.				10					95Ho B
	1000010	107.				•••					25110.0
265 Rf(α) 261 Db ^p	8945.3	60.				8					94La22
265 Hn(α) 261 Rf ⁴	10468.3	20.	10490	16	1.1	15					95Ho03
265 Hn ^m (α) ²⁶¹ Rf ^p	10732.3	20.				13					95Ho03
266 Rf(α) 262 Db	8762.0	5 0.				6					94La22
267 Hp (α) 263 R f ^m	9980	50	10014	17	7	10					94Hu A
	10032 4	20	10014		_ 0	10					95Ho A
	9960	40			,	10					950g A
267 Xa(α) 263 Hn ^p	11776.5	5 0.			1.5	14					95Gh04
268 Mt(α) 264 Bh ^p	10395.5	20.				10					95Ho04
269 Xa(α) 265 Hn ^m	11280.1	20.				14					95Ho03
271 267 P											
221 m 267	10899.2	20.				12					95Ho.A
$2^{\prime\prime}$ Xa ^m (α) ²⁰ Hn ^q	10869.8	20.				14					95Ho.A *
$*^{2/1} Xa^{m}(\alpha)^{267} Hn^{q}$	Possibly a longer-lived is	omer									95Ho.A **
$^{272} \operatorname{Xb}(\alpha)^{268} \operatorname{Mt}^p$	10981.9	20.				12					95Ho04
273 Xa(α) 269 Hn p	11519.1	50.				11					95Og.A

References to table III

USED CODEN IDENTIFIERS

(an update of the list given in ref. [IV])

IJMPD International Journal of Mass Spectrometry and Ion Processes (Netherlands) PRVAA 1970-.. Physical Review, section A (USA)

USED NON-CODEN IDENTIFIERS

(an update of the list given in ref. [IV])

P-Arles 1995 Proc. Int. Conf. on Exotic Nuclei and Atomic Masses ENAM-95 **B**-Arles 1995 Abstracts ENAM-95 P-Boulder 1994 Proc. 14th Int. Conf. Atomic Physics (ICAP14)

LIST OF REFERENCES

Before 1966

34Lc01	PRLAA	145,	235	W.B. Lewis, B.V. Bowden
50Ma14	PHRVA	78,	363	L.B. Magnusson, S.G. Thompson, G.T. Scaborg
52Sc11	PHRVA	85,	1046	C.L. Scoville, S.C. Fultz, M.L. Pool
53Am08	PHRVA	91,	68	D.P. Ames, M.E. Bunker, L.M. Langer, B.M. Sorenson
53As.A	UCRL-2	180		F. Asaro (thesis Berkeley)
56As38	PHRVA	104,	91	F. Asaro, I. Perlman
56Ko67	ZETFA	31,	771	L.M. Kondratev, G.I. Novikova, Y.P. Sobolev, L.L. Goldin
57Th10	PHRVA	106,	1228	T.D. Thomas, R. Vandenbosch, R.A. Glass, G.T. Seaborg
58Hi.A	UCRL- 8	423		M.W. Hill (thesis Berkeley)
59To.A	BAPSA	4,	366	C.W. Townley, J.D. Kurbatov, M.H. Kurbatov
60Jc03	NUPHA	19,	654	B.S. Jensen, O.B. Nielsen, O. Skilbreit
61Bo.B	P-Dubna			N.A. Bonch-Osmolovskaya, B.S. Dzelepov, O.E. Kraft
63Ho18	JINCA	25,	1303	R.W. Hoff, F. Asaro, I. Perlman
63Su.A	UCRL-11	082		V.B. Subrahmanyam (thesis Berkeley)
64As01	PLRBA	133,	291	F. Asaro, S. Bjornholm, I. Perlman
64Ka10	PLRBA	135,	9	J. Kantele, M. Karras
64La13	PLRBA	135,	581	L.M. Langer, E.H. Spejewski, D.E. Wortman

1966

66Ah.A	UCRL-16	580 21		I. Ahmad, F. Asaro, I. Periman
66Ah.B	UCRL-16	888		I. Ahmad (thesis Berkeley)
66Rg01	PHRVA	148,	1192	Research-Group, Combined Radioactivity Group LRL-LASL-UCRL-ANL
66Si08	NUPHA	84,	385	A. Siivola

1967

67Ba42	YAFIA	5,	241	S.A. Baranov, I.G. Aliev, L.V. Chistyako
67Ch05	NUPAB	94,	417	P. Charoenkwan, J.R. Richardson

- NUPAB 94, 417 P. Charoenkwan, J.R. Richardson 67Fi04
- 24, 340 P.R. Fields, R.F. Barnes, R.K. Sjoblom, J. Milsted PYLBB 67Go25
 - 479 P.F.A. Goudsmit PHYSA 35,
- 67Gu11 IJPYA 41, 633 S.C. Gujrathi, S.K. Mukherjee 67Si02
 - NUPAB 92, 475 A. Siivola

67Si09

67Tr06

- NUPAB 101, 129 A. Siivola NUPAB 97. 405
- W. Treytl, K. Valli
- 67Wa23 PHRVA 164, 1545 T.E. Ward, H. Ihochi, M. Karras, J.L. Meason

1968

68Ja06	NUPAB	115,	321	J.F.W. Jansen,	W. Pauw,	C.J.	Touset

- 68Si01 NUPAB 109, 231 A. Siivola 68Su02
 - PRLTA 21, 237 A.W. Sunyar, G. Scharff-Goldhaber, M. McKcown

1969

69La15	PHRVA	180,	1015	I.M. Ladenbauer-Bellis, H. Bakhru
690v()1	NUIMA	68,	61	J.C. Overley, P.D. Parker, D.A. Bromley
69Ph01	NUPAB	135,	116	M.E. Phelps. D.G. Sarantes

				1970
70Be.A 70Ha18 70Ha21 70Ka04 70Va31	P-Leysin NUPAB NUPAB NUPAB NUPAB	353 148, 158, 147, 157,	249 625 120 385	E. Beck, H. Kugler, H. Schrader, R. Stippler, D. Hnatowich, A. Kjelberg, F. Münnich P.G. Hansen, H.L. Nielsen, K. Wilsky, M. Alpsten, M. Finger, A. Lindahl, R.A. Naumann T. Hattula, S. Andre, F. Schussler, A. Moussa M. Karras, T.E. Ward, H. Schoche J. Van Klinken, L.M. Täft, H.T. Dijkstra, A.H. De Haan, H. Hanson, B.K.S. Koene, U.W. Mexing, L.L. Schwarmen, F.B. Ving, State Science, Sc
				J.W. Maring, J.J. Schuurman, P.B. Fano
				1971
71BaB2	YAFIA	14,	1101	S.A. Baranov, V.M. Shatinskii, V.M. Kulakov
71Da28 71To01	NUPAB PRVCA	178, 3,	172 854	J.M. D'Auria, D. Ostrom, S.C. Gujrathi K.S. Toth, R.L. Hahn
				1972
72BaD2	ZETFA	63,	375	S.A. Baranov, V.M. Shatinskii, V.M. Kulakov, Y.F. Radionov
72Es03	PRVCA	5,	942	K. Eskola
72Ga27 72To06	PRUTA PRVCA	29, 5,	958 2060	H. Gauvin, Y. Le Beyec, M. Lefort, N.1. Porile K.S. Toth, R.L. Hahn, M.A. Ijaz, R.F. Walker, Jr.
				1973
73Fi06	NUPAB	208,	269	P.R. Fields, I. Ahmad, R.F. Barnes, R.K. Sjoblom, W.C. McHarris
73Ha11	NUPAB	203,	532	J.K. Halbig, F.K. Wohn, W.L. Talbert, Jr., J.J. Eitter
73Rc03	PRVCA	7,	1663	I. Rezanka, I.M. Ladenbauer-Bellis, T. Tamura, W.B. Jones, F.M. Bernthal
73Si40	NUPAB	216,	97	R.J. Silva, P.F. Dittner, M.L. Mallory, O.L. Keller, K. Eskola, P. Eskola, M. Nurmia, A. Ghiorso
73Vi10	NUPAB	217,	372	V.E. Viola, Jr., M.M. Minor, C.T. Roche
				1974
74An23	IANFA	38,	1748	N.M. Antoneva, A.V. Barkov, V.M. Vinogradov, A.V. Zolotavin, G.S. Katykhin, V.M. Makarov, A.G. Shablinskii
74Ca.A	ThAms	terdam		M.H. Cardoso
74Ch21	ZEPYA	267,	355	A. Charvet, R. Chery, D.P. Phuoc, R. Duffait
74Di.A	P-Amste	rdam11	4	J.S. Dionisio, C. Vieu, V. Berg, C. Bourgeois
/4Gn()4	PRLIA	<i>33</i> ,	1490	A. GITOISO, J.M. INISCIKC, J.K. ATOIISO, C.T. ATOIISO, M. NUITHIA, G.T. SEADOR, E.K. Hulet, P.W. Lougheed
74Ho27	NUPAB	230,	380	P. Homshøi, P.G. Hansen, B. Jonson
74Ia()1	CJPHA	52,	96	R. Iafigliola, S.C. Gujrathi, B.L. Tracy, J.K.P. Lee
74Ju.A	PrvCom	74AjL	3	E.T. Jumey
74Lc02	PRVCA	9,	1091	Y. Le Beyee, M. Lefort, J. Livet, N.T. Porile, A. Siivola
74Sc19 74Ya07	PRVCA	10, 37	296	W.D. Schmidt-Ott, K.S. Toth, E. Newman, C.R. Bingham H. Yamamoto, K. Kawade, H. Fukaya, T. Katoh
141407	5015/1	27,	10	
				1975
75Ah05	PRVCA	12,	541	I. Ahmad, F.T. Porter, M.S. Freedman, R.K. Sjoblom, J. Lerner, R.F. Barnes, J. Milsted, P.R. Fields
75Ba.B	AnRpt C	SN Or	say	G. Bastin, C.F. Liang
75Ba27	JETP	41,	4	S.A. Baranov, V.M. Shatinskii
75Bu.A	BAPSA	20,	241	M.E. BURKER, B.S. NICISER, J.W. Starrier, B.J. Dropesky, W.K. Daniels
7512-00		241, 270	341 166	C. Cabol, C. Doprun, H. Galivin, B. Lagarde, Y. Le Beyee, M. Lefort W. Reiter, W.H. Breunlich, P. Hillo
755:12	CZYPA	25	676	H. Strusty, H. Tytroff, F. Herrmann, G. Musiol
75Wi26	PYLBB	59,	142	K.H. Wilcox, R.B. Weisenmiller, G.J. Wozniak, N.A. Jelley, D. Ashery, J. Cerny

C.E. Bemis, Jr., P.F. Dittner, R.J. Silva, D.C. Hensley, R.L. Hahn, J.R. Tarrant,

B. Jonson, E. Hagberg, P.G. Hansen, P. Hornshøj, P. Tidemand-Petersson, ISOLDE

P.F. Dittner, R.J. Silva, D.C. Hensley, R.L. Hahn, J.R. Tarrant, L.D. Hunt,

T. Cretzu, V.V. Kuznetsov, G. Luzurej, G. Macarie, M. Finger

L.D. Hunt, and PrvCom AHW July 1981

and PrvCom AHW July 1981
 76Ga.A
 P-Baku
 M. Gasior, B.G. Kalinnikov, T. Kretsu

 76Jo.A
 P-Cargese 277
 B. Jonson, E. Hagberg, P.G. Hansen, P. Hornshøj, P. Tidemand-Peters

 76Ra37
 ZPAAD
 279, 301
 D.G. Raich, H.R. Bowman, R.E. Epply, J.O. Rasmussen, J. Rezanka

1976

76Be.A AnRpt Oak Ridge

76Di.A AnRpt Oak Ridge

76Cr.B JINRP6- 9711

1977

77Ke03	PRVCA	15,	792	G. Kennedy, J. Deslauriers, S.C. Gujrathi, S.K. Mark
77Lu06	NUPAB	286,	403	E. Lund, K. Aleklett, G. Rudstam
77Nu01	PRVCA	15,	444	L.L. Nunnely, W.D. Loveland
77Sc03	PYLBB	66,	133	A.G. Schmidt, R.L. Mlekodaj, E.L. Robinson, F.T. Avignone, J. Lin, G.M. Gowdy, J.L. Wood, R.W. Fink

1978

78Bo.A	P-Alma /	Ata 54		D.D. Bogdanov, I. Bobordzil, A.V. Demianov, L.A. Petrov
78Da07	NUPAB	301,	397	J.M. D'Auria, J.W. Grüter, E. Hagberg, P.G. Hansen, J.C. Hardy, P. Hornshøj,
				B. Jonson, S. Mattson, H.L. Ravn, P. Tidemand-Petersson
78Gr10	NUPAB	303,	265	H.C. Griffin, I. Ahmad, A.M. Friedman, L.E. Glendenin
78Sc26	ZPAAD	288,	189	U.J. Schrewe, W.D. Schmidt-Ott, R.D. von Dincklage, E. Georg, P. Lemmertz,
				H. Jungelas, D. Hirdes

78Tu04 PHSTB 18, 31 T. Tuumala, R. Katajanheimo, O. Heinonen

1979

.

79Aj02	PRVCA	19,	1742	F. Ajzenberg-Selove, E.R. Flynn, D.L. Hanson, S. Orbesen
79Br.A	ThMcMa	ster		P.M. Brewste
79Br26	ZPAAD	292,	397	F. Braumandl, T. von Egidy, D.D. Warner
79F102	PRVCA	19,	355	E.R. Flynn, D.L. Hansen, R.A. Hardekopf
79Ha10	NUPAB	318,	29	E. Hagberg, P.G. Hansen, P. Hornshøj, B. Jonson, S. Mattsson,
				P. Tidemand-Petersson, ISOLDE
79Ha26	PRVCA	19,	2332	P.E. Haustein, HC. Hseuh, R.L. Klobuchar, E.M. Franz, S. Katcoff, L.K. Peker
79Ho10	ZPAAD	291,	53	S. Hofmann, W. Faust, G. Münzenberg, W. Reisdorf, P. Armbruster, K. Güttner,
				H. Ewald
791k06	JUPSA	47,	1039	Y. Ikeda, H. Yamamoto, K. Kawade, T. Takeuchi, T. Katoh, T. Nagahara
79Sc09	NUPAB	318,	253	KH. Schmidt, W. Faust, G. Münzenberg, HG. Clerc, W. Lang, K. Pielenz,
				D. Vermeulen, H. Wohlfarth, H. Ewald, K. Güttner
79Sc22	NUPAB	326,	65	D. Schardt, R. Kirchner, O. Klepper, W. Reisdorf, E. Roeckl, P. Tidemand-Petersson
				G.T. Ewan, E. Hagberg, B. Jonson, S. Mattsson, G. Nyman
79Ve.A	P-Lansing	431		J. Verplancke, D. Vandeplassche, M. Huyse, K. Cornelis, G. Lhersonneau
	_			

_ _ _ _

- - -

1980

80De02	ZPAAD	294,	35	R. Decker, K.D	Wünsch, H. Wollnik,	E. Koglin, G. Sicgert, G. Jung
	-					

80Ha20 PRVCA 22, 247 H.I. Hayakawa, I. Hyman, J.K.P. Lee

1981

81Bc03	PRVCA	23,	555	C.E. Bemis, Jr., P.F. Dittner, R.L. Ferguson, D.C. Hensley, F. Placil, F. Pleasonton
81De38	ZPAAD	303,	151	J. Deslauriers, S.C. Gujrathi, S.K. Mark
81Ho10	ZPAAD	299,	281	S. Hofmann, G. Münzenberg, F. Heßberger, W. Reisdorf, P. Armbruster, B. Thuma
81Li12	PRVCA	24,	260	C.J. Lister, P.E. Haustein, D.E. Alburger, J.W. Olness
81Mu12	ZPAAD	302,	7	G. Münzenberg, S. Hofmann, W. Faust, F.P. Heßberger, B. Thuma, D. Vermeulen,
				W. Reisdorf, K.H. Schmidt, K. Kitihara, P. Armbruster, K. Güttner
81Ox01	ZPAAD	303,	63	K. Oxorn, S.K. Mark
81 Va27	IANFA	45.	1861	V.M. Vakhtel, N.A. Golovkov, R.B. Ivanov, M.I. Mikhailova, A.F. Novgorodov,

7 IANFA 45, 1861 V.M. Vakhtel, N.A. Golovkov, R.B. Ivanov, M.J. Mikhailova, A.F. Novgorodov, Y.V. Norseev, V.G. Chumin, Y.V. Yushkevich

1982

82A129	PRVCA	26,	1157	K. Alekleit, P. Hoff, E. Lund, G. Rudstam
82Au01	NUPAB	378,	443	G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos
82Bo04	PRVCA	25.	941	J.D. Bowman, R.E. Epply, E.K. Hyde
82De11	ANPHA	7,	149	S. Della Negra, C. Deprun, D. Jacquet, Y. Le Beyee
82De36	ZPAAD	307,	305	S. Della Negra, H. Gauvin, D. Jacquet, Y. Le Beyee
82Dc43	ZPAAD	308,	243	S. Della Negra, D. Jacquet, Y. Le Beyec
82Vy06	IANFA	46,	2066	Ts. Vylov, V.G. Kalinnikov, V.V. Kuznetsov, Z.N. Li, A.A. Solnysh

6 IANFA 46, 2066 Ts. Vylov, V.G. Kalinnikov, V.V. Kuznetsov, Z.N. Li, A.A. Solnyshkin, Y.U. Yuskevich

1983

83A106	ZPAAD	310,	247	G.D. Alkhazov, K.A. Mezilev, Yu.N. Novikov, N. Ganbaatar, K. Ya. Gromov,
				V.G. Kalinnikov, A. Potempa, E. Sieniawski, F. Tarkanyi
83Ch08	ZPAAD	310,	135	A. Chalupka, H. Vonach, E. Hueges, H.J. Scheerer
83Ge08	NIMAE	211,	89	W. Gelletly
83Gn01	NUPAB	406,	29	B.E. Gnade, R.E. Fink, J.L. Wood
831a02	JCHCA	61,	694	R. Iafigliola, M. Chatterjee, H. Dautet, J.K.P. Lee
83Lc.A	ThHelsi	nki		M. Leino (Report HU-P-D37)

83Ra04	PRVCA	27,	1188	S. Raman, E.T. Jurney, D.A. Outlaw, I.S. Towner
83Ve06	IANFA	47,	834	G.V. Veselov, N. Ganbaatar, Ya. Kormitski, Yu.N. Novikov, A. Potempa, E. Senyavski,
				V.A. Sergienko, F. Tarkani
83Vo.A	PrvCom A	HW Ju	ul	H. Vonach
				100.4
				1984
044176	14 5/174	40	024	CD Alleran N. Casharan K. Va Casaran V.K. Kulianihan K.A. Manilan
84A136	JANFA	48,	834	G.D. Alknazov, N. Gandaatar, K. Ya. Gromov, V.K. Kalinnikov, K.A. Mczlicv,
0.000				YU.N. NOVIKOV, A.M. NUTHINUKNAMEGOV, A. POLEmpa, F. Jarkani
84BI,A	P-Darmsta	dt134		F. Bionnigen, G. Bewersdorf, C. Geisse, W. Lippert, B. Pfeiffer, U. Stoniker,
040-4	1			H. WOINIK
84Br.A	Алкрі ім	N 13		F. Bragança Oll, C. Bourgeois, P. Klicher, M.O. Porquet, B. Roussiere,
0.00.4	D D	4.957		J. Sauvage, iSOCELE
84Da.A	P-Darmsta	dt257		H. Dautet, N. Campeau, J.K.P. Lee, C. Bourgeois, B. Roussiere, A. Houdayer
84Ha.A	P-Darmsta	dt 89		W. Hampel, K. Schlotz
845C.A	USI-84-3	4.202		J. SCRIBCKICF TRESSS
845C.B	P-Damisia	01205		U.J. Schrewe, P. Hochand-Petersson, H. Bennens, H. Dominolet, K. Michaelsen, E. Burte, W. D. Schwidt On, E. Verk
940.04	704 4 0	215	40	E. Ruint, WD. Stimmur-Oll, E. Your
843000	LFAAD	315,	49	U.J. Schiewe, E. Hagberg, H. Schheing, J.C. Haldy, V.I. Rosłowsky, R.S. Shanha
				1985
85Af.A	P-Leningro	11083		V.P. Afanasiev, Yu.S. Blinnikov, N. Ganbaatar, V. Dzełcznyakov, V.G. Kalinikov,
	c			Ya, Kormitski, K.A. Mczilev, Yu.N. Novikov, A.M. Nurmudzamedov, V.N. Panteleev,
				A.G. Polyakov, A. Potempa, F. Tarkani
85A108	NUPAB	438,	482	G.D. Alkhazov, A.A. Bykov, V.D. Wittmann, V.E. Starodubsky, S.Y. Orlov,
				V.N. Pantelevev, A.G. Polyakov, V.K. Tarasov
85Ha12	PRVCA	31,	1594	F.X. Hartmann, R.A. Naumann
85Hc22	ZPAAD	322,	557	F.P. Heßberger, G. Münzenberg, S. Hofmann, Y.K. Agarwal, K. Poppensieker,
				W. Reisdorf, KH. Schmidt, J.R.H. Schneider, W.F.W. Schneider, H.J. Schött,
				P. Armbruster, B. Thuma, CC. Sahm, D. Vermeulen
85Hi.A	AnRpt GS	SI 88		R. Hingmann, W. Kuchn, V. Metag, R. Novotny, A. Ruckelshausen, H. Strocher,
				F.P. Heßberger, S. Hofmann, G. Münzenberg, W. Reisdorf
85Mu11	ZPAAD	322.	227	G. Münzenberg, S. Hofmann, H. Folger, F.P. Heßberger, J. Keller,
				K. Poppensieker, B. Quint, W. Reisdorf, KH. Schmidt, H.J. Schött, P. Armbruster,
				M.E. Leino, R. Hingmann
				1007
				1980
			401	C. Andi, A. Car, M. Estarra, C. La Sarrara, C. Thibach, F. Tauchard, 1901 DE
86Au02	NUPAB	449,	491	G. Audi, A. Coc, M. Epherre, G. Le Scornet, C. Thibauit, F. Touchard, ISOLDE
86Kc03	NUPAB	452,	173	J.G. Keller, KH. Schmidt, F.P. Heisberger, G. Munzenberg, W. Kelsdorf,
		. 107		HG. Clerc, CC. Sanm and PryCom KH. Schmidt to AHW November 1992
86VC.A	P-Charkov	/ 10/		G.V. Veselov, K.A. Mezhev, Yu.N. Novikov, A.V. Lopov, V.A. Sergienko
				1987
87Gr.A	P-Rosseau	i 30		M. Graefenstedt, U. Keyser, F. Münnich, F. Schreiber
87Hc10	EULEE	3,	895	F.P. Heßberger, S. Hofmann, G. Münzenberg, A.B. Quint, K. Sümmerer,
				P. Armbnuster
87Hc21	NUPAB	474,	484	K. Heiguchi, S. Mitarai, B.J. Min, T. Kuroyanagi
87Ki.A	P-Rosscau	517		P. Kilcher, J. Sauvage, C. Bourgeois, F. Le Blanc, J. Oms, B. Roussière, J. Munsch,
				J. Obert, A. Caructte, A. Ferro, G. Boissier, J. Fournet-Fayas, M. Ducourtieux,
				G. Landois, R. Sellem, D. Sznadjderman, ISOCELE, A. Wojtasiewicz, M.C. Abreu,
				A. Ben Braham, K. Fransson, M.G. Porquet
87Sp02	PLRAA	35,	679	P.T. Springer, C.L. Bennett, P.A. Baisden
87Sp09	NUPAB	474,	359	L. Spanier, K. Aleklett, B. Ekström, B. Fogelberg
				1000
				1969
000-12	70440	224	220	M. Casefereteck, D. Jässens, H. Keuses, F. Männish, F. Cohenikes, K. Balan
890123	LPAAD	554,	239	M. Oraciclisticul, F. Jurgells, U. Keyser, F. Mullinen, F. Schleiber, K. Balog, T. Winkelmann, M.B. Smart
0011-17	704 4 0	222	107	I. WINKCIMANN, H.K. PAUSI S. Hofmann, B. Asmbautar, C. Barthar, T. Evantermunn, A. Cillitaer
8911012	ZPAAD	<i>333</i> .	107	S. Holmann, P. Armonuster, G. Bertnes, L. Pacsiermann, A. Unitizer,
				FAR. HOLDORGET, W. KURCOWICZ, C. MURZCHOERG, K. POPPERSICKER, PLJ. SCHOR, I. Zweber
				1. 270101
				1990
90AjSc	NUPAB	506,	ł	F. Ajzenberg-Selove and PrvCom AHW
90Ak04	PRVCA	42,	1130	Y.A. Akovali, K.S. Toth, C.R. Bingham, M.B. Kassim, M. Zhang, H.K. Carter,
				W.D. Hamilton, J. Kormicki
90Am05	YAFIA	52,	1231	A.I. Amelin, M.G. Gomov, Y.B. Gurov, A.L. Il'in, P.V. Morokhov, V.A. Pechkurov,
				V.I. Savelev, F.M. Sergeev, S.A. Smirnov, B.A. Chernyshev, R.R. Shafigullin,
				A.V. Shishkov

474 G. Audi, A.H. Wapstra / Nuclear Physics A 595 (1995) 409-480 90Bo39 YAFIA 358 D.D. Bogdanov, V.P. Bugrov, S.G. Kadmenskii 52. 90Bo52 IANFA 1787 S.T. Boneva, E.V. Vasileva, V.D. Kulik, L.K. Khem, Yu.P. Popov, A.M. Sukhovoi, 54. V.A. Khitrov, Yu.V. Kholnov NUPAB 90Endt 521 ١ P.M. Endt 90Is07 PRVCA 42. 207 M.A. Islam, T.J. Kennett, W.V. Prestwich 905-08 PRAMC 35. 329 P.C. Sood, R.K. Sheline PrvCom AHW Jun L. Spanier, B. Fogelberg, M. Hellström, K. Aleklett, L. Sihver 90Sp.A ZPAAD 360 U. Stöhlker, A. Blönnigen, W. Lippert, H. Wollnik 90St13 336, 90Tu01 ZPAAD 337, X.L. Tu, X.G. Zhou, D.J. Vicira, J.M. Wouters, Z.Y. Zhou, H.L. Scifert, V.G. Lind 361 1991 91Bi04 PRVCA 44. 1208 C.R. Bingham, M.B. Kassim, M. Zhang, Y.A. Akovali, K.S. Toth, W.D. Hamilton, H.K. Carter, J. Kormicki, J. von Schwarzenberg, M.M. Jarrio 91Fi03 PRVCA 43. 1066 R.B. Firestone, J. Gilat, J.M. Nitschke, P.A. Wilmarth, K.S. Vierinen 91He21 ZPAAD 340. 225 F. Heine, T. Faestermann, A. Gillitzer, J. Homolka, M. Köpf, W. Wagner, see also 92He. A 91Ho08 CZYPA 41. 525 J. Honzatko, K. Konecny, Z. Kosina 91Jo11 ZPAAD 340, 21 A. Jokinen, J. Äystö, P. Dendooven, K. Eskola, Z. Janas, P.P. Jauho, M.E. Leino, J.M. Parmonen, H. Penttilä, K. Rykaczewski, P. Taskinen 91Ju05 ZPAAD 340 125 A. Jungclaus, K.P. Lieb, C.J. Gross, J. Heese, D. Rudolph, D.J. Blumenthal, P. Chowdhury, P.J. Ennis, C.J. Lister, C. Winter, J. Eberth, S. Skoda, M.A. Bentley, W. Gelletly, B.J. Varley ZPAAD 340, H. Keller, R. Kirchner, O. Klepper, E. Roeckl, D. Schardt, R.S. Simon, 91Kc11 363 P. Kleinheinz, R. Menegazzo, C.F. Liang, P. Paris, K. Rykaczewski, J.Zylicz, and Thesis H. Keller THD report GSI-91-6 February 1991 91Ly01 PRVCA 764 44. J.E. Lynn, E.T. Jurney, S. Raman 91Mi15 NUPAB 530, 211 B.J. Min, S. Suematsu, S. Mitarai, T. Kuroyanagi, K. Heiguchi, M. Matsuzaki 91Ry01 ADNDA 47. 205 A. Rytz 911008 PRVCA 1868 K.S. Toth, K.S. Vierinen, M.O. Kortelahti, D.C. Sousa, J.M. Nitschke, P.A. Wilmarth 44. NUPAB 91Va04 529 P. Van Duppen, P. Decrock, P. Dendooven, M. Huyse, G. Reusen, J. Wauters 268 1992 92An.A P-Bernkastl759 A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, M. Florek, A.P. Kabachenko, O.N. Malyshev, S. Saro, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin 92Ba A P-Bernkast1777 P.H. Barker, S.A. Brindhaban P-Bemkastl743 V.A. Bolshakov, A.G. Dernjatin, K.A. Mezilev, Yu.N. Novikov, A.V. Popov, 92Bo.D Yu. Ya. Sergeev, V.I. Tikhonov, V.A. Sergienko, G.V. Veselov 92Gr.A P-Bemkastl 77 M. Groß, P. Jürgens, S. Kluge, M. Mehrtens, S. Müller, F. Münnich, J. Wulff, see also 87Gr18 92Ha10 PRVCA 45. 1609 E. Hagberg, X.J. Sun, V.T. Koslowsky, H. Schmeing, J.C. Hardy P-Bemkastl331 F. Heine, T. Faestermann, A. Gillitzer, H.J. Körner 92He.A M. Huyse, P. Decrock, P. Dendooven, G. Reusen, P. Van Duppen, J. Wauters PRVCA 1209 92HnO4 46. 92Ju01 PRLTA 69. 2164 M. Jung, F. Bosch, K. Beckert, H. Eickhoff, H. Folger, B. Franzke, A. Gruber, P. Kienle, O. Klepper, W. Koenig, C. Kozhuharov, R. Mann, R. Moshammer, F. Nolden, U. Schaaf, G. Soff, P. Spädtke, M. Steck, T. Stöhlker, K. Sümmerer 92Mc10 ZPAAD 343, 283 F. Meissner, H. Salewski, W.-D. Schmidt-Ott, U. Bosch-Wicke, R. Michaelsen A.N. Ostrowski, H.G. Bohlen, A.S. Demyanova, B. Gebauer, R. Kalpakchieva, 92Os04 ZPAAD 343. 489 Ch. Langner, H. Lenske, M. von Lucke-Petsch, W. von Oertzen, A.A. Ogloblin, Y.E. Penionzhkevich, M. Wilpert, Th. Wilpert 92Pr03 ZPAAD 342. 23 M. Przewloka, A. Przewloka, P. Wächter, H. Wollnik 92Sc16 NUPAB 545. 646 W.-D. Schmidt-Ott, H. Salewski, F. Meissner, U. Bosch-Wicke, P. Koschel, V. Kunze, R. Michaelsen 1993 93Ab11 PYLBB 316. 26 H. Abele, G. Helm, U. Kania, C. Schmidt, J. Last, D. Dubbers 93A103 ZPAAD 344. 425 G.D. Alkhazov, L.H. Batist, A.A. Bykov, F.V. Moroz, S. Yu. Orlov, V.K. Tarasov, V.D. Wittmann ZPAAD 345. 247 A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, 93An07 R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin 93An19 NIMAE 330, 125 A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, V.A. Gorshkov, K.V. Mikhailov, A.P. Kabachenko, G.S. Popeko, S. Daro, G.M. Ter-Akopian, A.V. Yeremin 93As02 PRVCA 47, 2954 K. Ashktorab, J.W. Jänecke, F.D. Becchetti, D.A. Roberts 93Bc21 PRVCA 48. G.E. Berman, M.L. Pitt, F.P. Calaprice, M.M. Lowry RI AnRpt GSI 65 F. Bosch, M. Jung 93Bo.A V.A. Bondarenko, I.L. Kuvaga, P.T. Prokofjev, V.A. Khitrov, Yu.V. Kholnov, 93Bo01 NUPAB 551. 54 Le Hong Khiem, Yu.P. Popov, A.M. Sukhovoj, S. Brant, V. Paar, V. Lopac 93Bo03 ZPAAD 344, 381 H.G. Bohlen, B. Gebauer, M. von Lucke-Petsch, W. von Oertzen, A.N. Ostrowski, M. Wilpert, Th. Wilpert, H. Lenske, D.V. Alexandrov, A.S. Demyanova, E. Nikolskii, A.A. Korsheninnikov, A.A. Ogloblin, R. Kalpakchieva, Y.E. Penionzhkevich, Š. Piskoř 93Ch21 PRVCA 48. 109 R.E. Chrien, B.K.S. Koene, M.L. Stelts, R.A. Meyer, S. Brant, V. Paar, V. Lopac 93Di03 PRVCA 47, 2916 D.E. DiGregorio, S. Gil, H. Huck, E.R. Batista, A.M.J. Ferrero, A.O. Gattone 93Dm02 ARISE 44. 1097 S.N. Dmitriev, Yu. Ts. Oganessian, G.V. Buklabov, Yu.P. Kharitonov, A.F. Novgorodov, L.I. Salamatin, G. Ya. Starodub, S.V. Shishkin, Yu.V. Yushkevich, D. Newton

93Do05	PRVCA	47,	2560	J. Döring, J.W. Holcomb, T.D. Johnson, M.A. Riley, S.L. Tabor, P.C. Womble, G. Winter
93Eg.A	PrvCom A	нж с	ct	T, von Egidy
93Go37	PRVAA	47.	3433	M.V. Gorshkov, G.M. Alber, L. Schweikhard, A.G. Marshall
93/6638	IIMPD	128	47	M V. Gorshkov, S. Guan, A.G. Marshall
93Gr.C	AnRpt Brk	ly 76		K.E. Gregorich, C.D. Kacher, M.F. Mohar, D.M. Lee, M.R. Lane, E.R. Sylwester, D.C. Hoffman, M. Schäeel, W. Brüchle, J.V. Kratz, R. Günther
93Gr17	NIMAE	337.	106	R.C. Greenwood, M.H. Putnam
93Ha05	724 40	345	143	A Harder S Michaelson K P Lieb A P Williams
03Ho 4	AnR nt GS	1 64	142	S Hofmann V Ninov EP Hofberger H Folger G Münzenberg H I Schött
)3110.A	Antipe 00	104		P Armhnister A N Andrevey A G Poneko A V Veremin M E Leino R Janik
				S Sara M Veselsky and PryCom AHW Sontember 1005
021-04	DUCTO	40	200	D. Jartz, D. Back, C. Bollon, J. Emmas, H. J. Klupp, E. Subark, S. Saburar, T. Saburar,
951000	PHOTO	40,	399	K. Jellz, D. Beck, G. Bohen, J. Lannes, HJ. Kluge, E. Schark, S. Schwalz, I. Schwalz,
				L. Schweikhard, P. Senne C. Carloerg, I. Bergstrom, H. Borgenstrand, G. Rouleau,
				R. Schuch, F. Soderberg
93Li18	PYLBB	312,	46	K. Livingston, P.J. Woods, T. Davinson, N.J. Davis, S. Hormann, A.N. James, R.D. Page,
				P.J. Sellin, A.C. Shotter
93Li34	PRVCA	48,	2151	K. Livingston, P.J. Woods, T. Davinson, N.J. Davis, S. Hofmann, A.N. James, R.D. Page,
				P.J. Sellin, A.C. Shotter
93Ma50	NUPAB	565,	543	G. Mairle, M. Seeger, H. Reinhardt, T. Kihm, K.T. Knöpfle, Chen Lin Wen
93Mo18	NUPAB	563,	21	K.J. Moody, R.W. Lougheed, J.F. Wilde, R.J. Dougan, E.K. Hulet, R.W. Hoff,
				C.M. Henderson, R.J. Dupzyk, R.L. Hahn, K. Sümmerer, G.D. O'Kelley, G.R. Bethune
93Oh02	PRVDA	47,	4840	T. Ohshima, H. Sakamoto, T. Sato, J. Shirai, T. Tsukamoto, Y. Sugaya, K. Takahashi,
				T. Suzuki, C. Rosenfeld, S. Wilson, K. Ueno, Y. Yonezawa, H. Kawakami, S. Kato,
				S. Shibata, K. Ukai
930-06	NIMAE	332	169	A Osa T Ikuta M Shibata M Miyachi H Yamamoto K Kawade Y Kawase
100000				S Ichikawa
0320101		53	1	G Rudstam K Aleklett I Sibver
026-04	DDVCA	47	1022	BI Sallin BI Woods T Davisson N I Davis K Livingston B D Page
953004	TRUCK	4/,	1955	A C Shottor S Hofmann A N James
028-00	704 4 0	2.46	222	PI Sellin PI Woode T Davisson NI Davis AN James K Livingston
933009	LFAAD	540,	525	D. Dava A.C. Shottar
020107	IDUCD	10	07	R.D. Fage, A.C. Shouch
9551107	JFROB	19,	105	M.R. Sichne, J. Kvash, C.F. Lidig, F. Fails
955105	NIMAE	330,	195	M.H. Sluky, J.O. Hyckawy, C.K. Dyck, K.C. Barber, K.S. Sharma, C.A. Lander,
020 1	4	- of		H.E. Duckworth
93Sp.A	Ankpiji	rL 93		A.M. Spits, P.H.M. van Assene, H.G. Bomer, W.F. Daviuson, D.D. Wamer,
				K. Schreckenbach, G.G. Colvin, K.C. Greenwood, C.W. Reich, P.O. Lipas, J. Sunonch,
				P. Sinkko, A. Backlin
93Va.A	BAPSA	38,	946	R.S. Van Dyck, Jr., D.L. Famham, P.B. Schwinberg
93Va.B	BAPSA	38,	947	R.S. Van Dyck, Jr., D.L. Famham, P.B. Schwinberg
93Wa03	ZPAAD	345,	21	J. Wauters, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, R. Kirchner, O. Klepper,
				E. Roccki
93Wa04	PRVCA	47.	1447	J. Wauters, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, P. Lievens, ISOLDE
93Wi05	PRLTA	70,	1759	F.E. Wietfeldt, Y.D. Chan, M.T.F. da Cruz, A. Garcia, RM. Larimer, K.T. Lesko,
				E.B. Norman, R.G. Stokstad, I. Žlimen
93Yo07	PRLTA	71,	4124	B.M. Young, W. Benenson, M. Fauerbach, J.H. Kelley, R. Pfaff, B.M. Sherrill,
				M. Steiner, J.S. Winfield, T. Kubo, M. Hellström, N.A. Orr, J. Stetson,
				J.A. Winger, S.J. Yennello
				1994
		-		
94Ah03	NUPAB	576,	246	I. Ahmad, J.E. Gindler, M.P. Carpenter, D.J. Henderson, E.F. Moore, R.V.F. Janssens,
				I.G. Bearden, C.C. Foster
94An01	NUPAB	568,	323	A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev,
				Yu.A. Muzychka, B.I. Pustylnik, G.M. Ter-Akopian, A.V. Yeremin
94An02	ZPAAD	347,	225	A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev,
				A.G. Popeko, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin
94Ba06	PRVCA	49,	1221	V. Banerjee, A. Banerjee, G.S.N. Murthy, R.P. Sharma, S.K. Pardha Saradhi,
				A. Chakrabarti
94Br11	PRVCA	49,	2401	S.A. Brindhaban, P.H. Barker
94Br37	NIMAE	340,	436	S.A. Brindhaban, P.H. Barker, M.J. Keeling, W.B. Wood
94Dc32	PYLBB	331,	271	P. Descouvement
94Di.A	P-Boulder	149		F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, D.E. Pritchard
94Gi07	PRVCA	50,	2612	R.L. Gili
94Go.A	PrvCom A	NHW J	ul	M.V. Gorshkov
94Gr07	PRVCA	49.	2971	P. Grabmaver, A. Mondry, G.J. Wagner, P. Woldt, G.P.A. Berg, J. Lisantti, D.W. Miller,
				H. Nann, E.J. Stephenson
94Gr08	PRLTA	72	1423	K.E. Gregorich, M.R. Lane, M.F. Mohar, D.M. Lee, C.D. Kacher, E.R. Sylwester,
2.0100		~~,		D.C. Hoffman
94H = A	Th - Mainz			H. Hartmann
94Hi04	PRVCA	40	3280	M.M. Hindi, R.I., Kozub, S.I. Robinson
94Hi A	PrvCom 4	NHW 1	UR	EK Hulet et al
OAH OU	PRVCA		1240	IG Hykawy RC Barber KS Sharma KI Aaste IN Neumala HE Duckworth
ONIPO1	72410	350	1247	F Ibrahim P Kiloher B Douscions I Summer & Consular A Circos A Knisses
2410 77		550,	У	G. Maroular, D. Barnéoud, P. Bérnud, C. Cata Durit, J. Dirachard, D. Dalanda,
				D. Duffait & Emolion D. Using A. I. Kalandi, T. J. Diacobi, I. Defoncie,
041	DayCom 4			N. Durran, A. Einsaheim, D. Hojman, A.J. Kreiner, F. Le Blanc, J. Libert, J. Oms
74JU.A	FIVCOIN P	num 1	uil	E. I. Jurney, J.E. Lynn, J.W. Stamer, S. Raman

476				0. Ruui, A.H. Wupshu / Nucleur Physics A 595 (1995) 409–460
94 K o16	PYLBB	326,	31	A.A. Korsheninnikov, K. Yoshida, D.V. Aleksandrov, N. Aoi, Y. Doki, N. Inabe, M. Fujimaki, T. Kobayashi, H. Kumagai, CB. Moon, E. Yu. Nikolskii, M.M. Obuti, A.A. Ogloblin, A. Ozawa, S. Shimoura, T. Suzuki, I. Tanihata, Y. Watanabe,
94La22	PRLTA	73,	624	M. Yanokura Yu.A. Lazarev, Yu.V. Lobanov, Yu. Ts. Oganessian, V.K. Utyonkov, F. Sh. Abdullin, G.V. Buklanov, B.N. Gikal, S. Iliev, A.N. Mczentsev, A.N. Polyakov, I.M. Sedykh, J.V. Shirokovsky, V.G. Subbotin, A.M. Sukhov, Yu.S. Tsveanov, V.F. Zhuchko,
041-05	70440	2.40		R.W. Lougheed, K.J. Moody, J.F. Wild, E.K. Hulet, J.H. McQuaid
94Le05	ZPAAD	348,	151	M. Leino, J. Uusitalo, T. Enqvist, K. Eskola, A. Jokinen, K. Loberg, W.H. Trzaska, J. Äystö
94Le22	NUPAB	576,	267	A.I. Levon, J. de Boer, G. Graw, R. Hertenberger, D. Hofer, J. Kvasil, A. Lösch, E. Müller-Zanotti, M. Würkner, H. Baltzer, V. Grafen, C. Günther
94Li12	PRVCA	49.	2230	C.F. Liang, R.K. Sheline, P. Paris, M. Hussonois, J.F. Ledu, D.B. Isabelle
94Li20	PRVCA	49	3098	S. Lin, S.A. Brindhaban, P.H. Barker
94Ma14	PRVCA	49	1755	P.V. Magnus, E.G. Adelsberger, A. Garcia
94Os04	PYLBB	338,	13	A.N. Ostrowski, H.G. Bohlen, B. Gebauer, S.M. Grimes, R. Kalpakchieva, Th. Kirchner, TN. Massay W. von Outzan, Th. Stella, M. Willout, Th. Willout
94Ot01	NUPAB	567.	281	T. Oto, G. Bollen, G. Savadi, L. Schweikhard, H. Stolzenberg, G. Audi, R.B. Moore, G. Rouleau, I. Szervey, Z. Patyk, ISOLDE
94PaDG	PRVDA	50	1173	Particle Data Group
94Pa11	PRVCA	40	3312	R D Page P1 Words R A Cunningham T Davinson N1 Davis A N James
<i>y</i>H u ()	inter	÷2,		K.D. Fage, F.J. Woods, K.H. Camingham, J. Davisson, 54.J. Davis, 74.14, Janes,
94Pa12	PRLTA	72,	1798	R. D. Page, P.J. Woods, R.A. Cunningham, T. Davinson, N.J. Davis, A.N. James,
040-06	1 A NUT A	=0	41	A V Determine C.V. Versley, V.A. Servicela, K. V., Coursey, S.V. Fasiany
942020	IANFA	38,	41	V.G. Kalinnikov, V.V. Kuznetsov, Zh. Sergienko, K. Ya. Gromov, S.V. Evilsov, V.G. Kalinnikov, V.V. Kuznetsov, Zh. Serceter, V.I. Fominykh, M.B. Yuldashev
94Sc12	ZPAAD	349,	25	H.L. Seifert, J.M. Wouters, D.J. Vieira, H. Wollnik, X.G. Zhou, X.L. Tu, Z.Y. Zhou, G.W. Butler
94Sh02	PRVCA	49,	725	R.K. Sheline, C.F. Liang, P. Paris, A. Gizon, V. Barci
94Sh07	ZPAAD	348,	25	T. Shizuma, M. Kidera, E. Ideguchi, A. Odahara, H. Tomura, S. Suematsu, T. Kuroyanagi, Y. Gono, S. Mitarai, J. Mukai, T. Komatsubara, K. Furuno, K. Heiguchi
94Ti03	PRVCA	49,	2871	R.J. Tighe, D.M. Moltz, J.C. Batchelder, T.J. Ognibene, M.W. Rowe, J. Cerny
94To10	PRVCA	50,	518	K.S. Toth
94Wa.A	B-Seyssin	ns		W.B. Walters, C.A. Stone
94Wa17	PRVCA	50,	487	C. Wagemans, S. Druvts, P. Geltenbort
94Wa23	PRVCA	50,	2768	J. Wauters, N. Bijnens, H. Folger, M. Huyse, H.Y. Hwang, R. Kirchner, L von Schwarzenberg, P. Van Dunnen
94Wc02	ZPAAD	347,	185	Ch. Wennemann, WD. Schmidt-Ott, T. Hild, K. Krumbholtz, V. Kunze, F. Meissner, H. Kaller, P. Kincher, F. Pacekl
94Ya07	PYLBB	334,	229	S. Yasumi, H. Maezawa, K. Shima, Y. Inagaki, T. Mukoyama, T. Mizogawa, K. Sera,
94Yc08	NIMAE	350,	608	S. Kishimoto, M. Fujloka, K. Ishil, I. Omori, U. Izawa, O. Kawakami A.V. Yeremin, A.N. Andreyev, D.D. Bogdanov, G.M. Ter-Akopian, V.I. Chepigin, V.A. Gorshkov, A.P. Kabachenko, O.N. Malvshev, A.G. Poneko, R.N. Sazaidak, S. Sharo,
942-01	PRVCA	40	270	E.N. Voronkov, A.V. Taranenko, A.Y. Lavrentjev B.M. Young, W. Bonenson, J.H. Kolloy, N.A. Orr, P. Pfoff, B.M. Sharrill, M. Steiner
71001	TRICA	49,	217	M. Toennessen, J.S. Winfield, J.A. Winger, S.J. Yennello, A. Zeller
				1995
95A1.A	P-Arles 3	29		D.V. Aleksandrov, E. Yu. Nikol'skii, B.G. Novatskii, D.N. Stepanov
95Ap.A	PrvCom	GAu M	lay	A. Aprahamian, D.S. Brenner, R. Gill, A. Piotrowski, R.F. Casten
95Ba.B	P-Arles 5	541		J.C. Batchelder, K.S. Toth, D.M. Moltz, T.J. Ognibene, M.W. Rowe, C.R. Bingham,
050	D	<u>.</u>		E.F. Zganjar, B.E. Zimmerman
95BC.A	PrvCom		in 105	D. Beck (Preliminary Data)
958101	PRVCA	51,	125	H.K. Carter, J. Kormicki, J. von Schwarzenberg, M.M. Jario
95Bi.B	P-Arles 5	543		N. Bijnens, G. Correia, P. Decreck, S. Franchoo, M. Gaelens, M. Huyse, H.Y. Hwang, A. Jokinen, J. Reusen, J. Szervpo, J. von Schwarzenberg, P. Van Duppen, J. Wauters,
95Bo 1	NUPAR	ia be n	h	ISOLDE G Bollon H-I Kluge Th Otto G Savard I. Schweikhard H Stolzenberg G Audi
95Ba03	NUPAR	587	- 1	R.B. Moore, G. Roulcau, J. Szerypo, Z. Patyk, ISOLDE
060-05	NUDAD	594	270	Yu. P. Popov, S. Brant, V. Par
958005	NUPAB	284,	219	V.A. Bondarenko, I.L. Kuvaga, P.I. Prokorjev, A.M. Suknovoj, V.A. Knilrov, Yu.P. Popov, S. Brant, V. Paar, Lj. Šimičie
95Bo10	NUPAB	583,	775	H.G. Bohlen, B. Gebauer, Th. Kirchner, M. von Lucke-Petsch, W. von Oertzen, A.N. Ostrowski, Ch. Seyfert, Th. Stolla, M. Wilpert, Th. Wilpert, S.M. Grimes, T.N. Massey, R. Kalpakchieva, Y.E. Penionzhkevich, D.V. Alexandrov, I. Mukha, A. Ouloblin, C. Dérez,
05Bo A	PrvCom	G <u>۵</u> ۲.	lav	H G Bohlen
95Ca.A	P-Arles 7	87	,	C. Carlberg, H. Borgenstrand, F. Söderberg, G. Rouleau, R. Schuch, I. Bergström,
050 11	704 45	251	225	L. LUJCDY, K. Jertz, J. Stein, T. Schwarz, G. Bollen, HJ. Kluge, R. Mann
95Da14		331, 162	225	M. Daszewski, Z. Janas, W. Kurcewicz, B. Szweryn
95Da.A	r-Aries 2	2003		C.N. Davids, P.J. Woods, J.C. Batchelder, C.R. Bingham, D.J. Blumenthal, L.T. Brown,
				B.C. DUSSC, L.P. CORICCIIO, I. Davinson, S.J. Freeman, M. Freer, D.J. Henderson, R.J. Irvine, R.D. Page, H.T. Penttilä, A.V. Ramayya, D. Seweryniak, K.S. Toth, W.B. Wolkers, A.H. Workman, P. E. Tammaran, J. D. Concernation, 1997.
				THE TRANSPORT AND THE TRANSPORT AND TRANSPORT AND THE TRANSPORT

476

G. Audi, A.H. Wapstra / Nuclear Physics A 595 (1995) 409-480

95Ga.A	P-Arles 595		A. Gadea, B. Rubio, J.L. Tain, J. Bea, L. Garcia-Raffi, J. Rico, L. Batist, V. Willmann, A. Burkov, F. Morry, H. Kaller, P. Kirchner, F. Boack
95Gh()4	NUPAB 583, 8	861c	V. Mithaali, A. Bydov, F. Motoz, F. Kener, K. Kitchier, E. Kocka A. Ghiorso, D. Lee, L.P. Somerville, W. Loveland, J.M. Nitschke, W. Ghiorso, G.T. Scaborg, P. Wilmarth, R. Leres, A. Wydler, M. Nurmia, K. Gregorich, R. Gaylord,
			T. Hamilton, N.J. Hannink, D.C. Hoffman, C. Jarzynski, C. Kacher, B. Kadkhodayan, S. Kreek, M. Lanc, A. Lyon, M.A. McMahan, M. Neu, T. Sikkeland, W.J. Swiatecki, A. Tautar, J. Wolton, S. Varkia
95Gr.A	PrvCom GAu Apr		A. UITEL J.I. WAILON, S. FASHITA K. Ya. Gromov, G.V. Veselov, V.G. Kalinnikov, N. Yu. Kotovski, A.V. Potempa, V.A. Scroinch, V.I. Forminvkh, M.B. Yuldashev
95Gu01	NUPAB 583, 8	867c	A. Guglielmetti, B. Blank, R. Bonetti, Z. Janas, H. Keller, R. Kirchner, O. Klepper, A. Piechaczek, A. Płochocki, G. Poli, P.B. Price, E. Rocckl, K. Schmidt,
95Ha.1	NUPAB to be pd		J. Szczypo, A.J. Westphal H. Hartmann, G. Bollen, HJ. Kluge, G. Savard, G. Audi, R.B. Moore, J. Szczypo, ISOLDE
95He.A	P-Arles 565		F. Heine, R. Schneider, T. Faestermann, J. Friese, J. Homolka, P. Kienle, H.J. Körner, J. Reinhold, K. Zeitelhack, H. Geissel, G. Münzenberg,
954302	DOVCA SI	1736	K. Summerer T Hild W-D Schmidt-Ott V Kunze F Meissner C Wennemann H Grawe
95Hi02 95Hi 1	IPHGB 21	639	K-H. Hiddemann, H. Daniel, O. Schwentker
95Ho03	ZPAAD 350,	277	 S. Hofmann, V. Ninov, F.P. Heßberger, P. Armbnuster, H. Folger, G. Münzenberg, H.J. Schött, A.G. Popeko, A.V. Yeremin, A.N. Andreyev, S. Saro, R. Janik, M. Leino
95Ho()4	ZPAAD 350,	281	S. Hofmann, V. Ninov, F.P. Helberger, P. Armbruster, H. Folger, G. Münzenberg, H.J. Schött, A.G. Popeko, A.V. Yeremin, A.N. Andreyev, S. Saro, R. Janik, M. Leino
95Ho.3	NUPAB to be pd		D. Hojman, J. Sauvage, F. Ibrahim, P. Kilcher, F. Le Blanc, J. Oms, B. Roussière, J. Libert, ISOCELE
95Ho.A	GSI-Nachr. Feb		S. Hofmann, V. Ninov, F.P. Heßberger, P. Armbruster, H. Folger, G. Münzenberg, H.J. Schött, A.G. Popeko, A.V. Yeremin, A.N. Andreyev, S. Saro, R. Janik, M. Leino
95Ho.B	PrvCom GAU Ma B-Arles PD19	r	S. Hofmann, V. Ninov, P.P. Hebberger S. Hofmann, F.P. Heßberger, H. Folger, V. Ninov, A.N. Andrevey, D.D. Bogdanov
<i>)</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D Miles 1017		V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, G.M. Ter-Akopian, A.V. Yeemin, S. Saro
95Jo02	NUPAB 584,	489	A. Jokinen, T. Enqvist, P.P. Jauho, M. Leino, J.M. Parmonen, H. Penttilä, J. Äystö, K. Eskola
95Ka.A	B-Arles PD22		V.G. Kalinnikov, B.P. Osipenko, F. Pražak, A.A. Solnyshkin, V.I. Stegailov, P. Čaloun, S.E. Zaparov
95Ke05	ZPAAD 352,	1	H. Keller, R. Kirchner, B. Rubio, J.L. Tain, Th. Dörfler, WD. Schmidt-Ott, E. Roeckl
95Kr03	PRLTA 74,	860	R.A. Kryger, A. Azhari, M. Hellström, J.H. Kelley, T. Kubo, R. Pfaff, E. Ramakrishnan, B.M. Sherrill, M. Thoennessen, S. Yokoyama, R.J. Charity, J. Dempsey, A. Kirov, N. Robertson, D.G. Sarantites, L.G. Sobotka, J.A. Winger
95Lc04	PRVCA 51,	1047	M.J. Loddy, S.J. Freeman, J.L. Durell, A.G. Smith, S.J. Warburton, D.J. Blumenthal, C.N. Davids, C.J. Lister, H.T. Penttilä
95Lo15	APOBB 26,	309	M. Leino, J. Äystö, T. Enqvist, A. Jokinen, M. Nurmia, A. Ostrowski, W.H. Trzaska, J. Uusitalo, K. Eskola, P. Armbruster, V. Ninov
95Le.A	P-Arles 505		M. Leino, T. Enqvist, W.H. Trzaska, J. Uusitalo, K. Eskola, P. Armbruster, V. Ninov and PrvCom GAu June 1995
95Lc.B	B-Arics A 10		A. Lépine-Szily, G. Auger, W. Mittig, M. Chartier, D. Bioet, J.M. Casandjian, M. Chabert, J. Ferrné, A. Gillibert, M. Lewitowicz, F. Loyer, M. Mac Cormick, M.H. Moscatello, N.A. Orr, E. Plagnoł, C. Ricault, C. Spitaels, A.C.C. Villari and De Gene, Low.
95Mc 1	PHSTR T56	272	and Procom GAU June 1993 K.A. Mezilev, Yu.N. Novikov, A.V. Ponov, B. Forelberg, I. Snanjer
95Ni05	ZPAAD 351,	125	V. Ninov, F.P. Hetberger, S. Hofmann, H. Folger, A.V. Yeremin, A.G. Popcko, A.N. Andreyev, S. Saro
95No.A	P-Arles 363		T. Nomura
950g.A	P-Arles 373		Yu. Ts. Oganessian
95Pa.A	P-Arles 583		R.D. Page, P.J. Woods, R.A. Cunningham, T. Davinson, N.J. Davis, A.N. James, K. Livingston, P.J. Sellin, A.C. Shotter
95R0()9	ZPAAD 351,	127	B. Roussier, F. Ibrahim, P. Kilcher, F. Le Blanc, J. Oms, J. Sauvage, A. Wojtasiewicz, ISOCELE
95Sc.A	B-Arles A15		K.K. Seth (and oral presentation)
95Sz01	NUPAB 584,	221	J. Szerypo, M. Huyse, G. Reusen, P. Van Duppen, Z. Janas, H. Keller, R. Kirchner,
			O. Klepper, A. Piechaczek, E. Roccki, D. Schardt, K. Schmidt, R. Grzywacz M. Pfützner, A. Piechacki, K. Rykaczewski, J.Żylicz, G.D. Alkhazov, L. Basila, A. Bickay, W. Warmare, B.A. Basila, B.A. Basila, S.A. Basila
95To A	P-Arles 607		K S. Toth J.C. Batchelder J.F. Conticchio, W.B. Walters, C.R. Binoham
95 IO.A	1-Aiks our		J.D. Richards, B.E. Zimmerman, C.N. Davids, H. Penttilä, D.J. Henderson, R. Hermann, A.H. Wuosmaa
95Uu.1	PRVCA to be pd		J. Uusitalo, T. Enqvist, M. Leino, W.H. Trzaska, K. Eskola, P. Armbruster, V. Ninov
95Zh10	NUPAB 586,	483	K. Zhao, J.S. Lilley, P.V. Drumm, D.D. Warner, R.A. Cunningham, J.N. Mo
95Zi, I	PRLTA 75,	1719	M. Zinser, F. Humbert, T. Nilsson, W. Schwab, T. Blaich, M.J.G. Borge, L.V. Chulkov, H. Eickhoff, T.W. Elze, H. Emling, B. Franzke, H. Freiesleben, H. Geissel, K. Grimm, D. Guillemaud-Mueller, P.G. Hansen, R. Holzman, H. Imich, B. Jonson, J.G. Keller,
			O. Klepper, H. Klingler, J.V. Kratz, R. Kulessa, D. Lambrecht, Y. Leifels, A. Magel,
			K. Rijsaper, C. Scheidenberger, G. Schrieder, R.M. Sherrill, H. Simon, K. Stelzer
			J. Stroth, O. Tengblad, W. Trautmann, E. Wajda, E. Zude
			preprint GSI-95-03

Table IV. Deviating data compared with recommended ones

EXPLANATION OF TABLE

This table is an update to Table B of [I] for some experimental data which are not checked by other experimental method and which are at variance with systematics (see Section 9). The second part gives the resulting mass values if those data were used.

Item	Reference ^a	Experiment	Experimental value		ded value
⁵⁵ Sc-C _{4,583}	90Tu01	-30600	1100	-32570	1100
⁵⁷ Ti-C _{4.75}	90Tu01	-35700	1000	-37100	1000
90 Tc(β^+) 90 Mo	74Ia01	8900	400	remov	ved
	81Ox01	8870	300	remov	ved
$108 \mathrm{Mo}(\beta^{-})^{108} \mathrm{Tc}$	92Gr.A	5135	60	4750	150
$108 \operatorname{Mo}(\beta^{-})^{108} \operatorname{Tc}$	95Jo02	5100	60		
109 Tc(β^{-}) 109 Ru	89Gr23	6315	70	5985	200
112 Ru(β^{-}) 112 Rh	91Jo11	4520	80	3670	200
$^{116}Cs^{m}(\epsilon p)^{115}I$	78Da07	6450	300	6780	300
129 Nd(ϵ p) 128 Ce	78Bo.A	5300	300	6100	200
131 Nd(ϵ p) 130 Ce	78Bo.A	4600	400	4270	400
138 Nd(β^+) 138 Pr	61Bo.B	2020	100	1100	200
139 Eu(β^+) 139 Sm	95Gr.A	6080	50	7020	150
140 Sm $(\epsilon)^{140}$ Pm	87De04	3400	300	remov	ved
142 Tb(β^+) 142 Gd	91 Fi03	10400	700	9900	700
145 Dy $(\beta^+)^{145}$ Tb	93A103	7300	200	7520	200
$^{149}\mathrm{Er}(\epsilon)^{149}\mathrm{Ho}$	89Fi01	8610	650	7810	470
150 Ho(β^+) 150 Dy	84A136	6980	150	7240	100
156 Er(β^+) 156 Ho	82Vy06	1670	70	remov	ved
158 Er(β^+) 158 Ho	61Bo24	1940	80	remov	ved
	68Ab18	1860	60	remov	ved
	82Vy06	1710	40	remov	ved
161 Yb(β^+) 161 Tm	94Po26	3585	200	4150	200
162 Lu(β^+) 162 Yb	83Ge08	6740	270	remov	ved
	93A103	6960	100	remov	ved
$^{172}W(\beta^+)^{172}Ta$	74Ca.A	3250	100	2500	200
173 Ta $(\beta^+)^{173}$ Hf	73Re03	3670	200	2690	200
1^{176} Tm $(\beta^{-})^{176}$ Yb	67Gu11	4120	100	remov	ved
184 Au(β^+) 184 Pt	84Da.A	6450	50	7060	60
184 Hg(β^+) 184 Au	84Da.A	3660	30	4120	60
187 Au(β^+) 187 Pt	83Gn01	3600	40	3730	100
188 Au(β^+) 188 Pt	84Da.A	5520	30	5300	100
188 Hg(β^+) 188 Au	84Da.A	2040	20	2300	150
190 Hg(β^+) 190 Au	74Di.A	2105	80	1470	150
204 Au(β^{-}) 204 Hg	67Wa23	4500	300	remov	ved
207 Fr $-^{213}$ Fr $_{.324}$ 204 Fr $_{.676}$	82Au01	-2540	330	-2140	240

IV-a DEVIATING DATA

^a References are listed in Table III.

IV-b RESULTING MASSES

Nuclide	Mass ex from exp.	Mass excess from exp. data		ended cess	Nuclide	Mass ex from exp.	cess data	Recomme mass ex	Recommended mass excess	
³⁵ Mg	17390	1600	16290#	440#	¹⁵⁰ Ho	-62630	80	-62080#	100#	
⁵³ Sc	-38960	260	-37970#	300#	¹⁵⁰ Er	-58520	80	57970#	100#	
⁵⁵ Sc	-28500	1020	-30340#	1030#	¹⁵¹ Tm	-51380#	120#	-50830#	140#	
⁵⁷ Ti	-33250	930	-34560#	930#	$151 {\rm Tm}^m$	-51330	120	50780#	130#	
⁶⁶ As	-52070	60	-51820#	200#	¹⁵¹ Yb	-42240	310	-41690#	320#	
⁷⁰ Br	-51970#	270#	51590#	360#	¹⁵⁴ Tm	-55110	100	54560#	110#	
⁷¹ Se	-63460	130	-63090#	200#	¹⁵⁴ Yb	-50630	80	-50080#	100#	
⁷⁹ Zn	-53940	270	-53400#	270#	¹⁵⁵ Lu	-43180	120	-42630#	130#	
⁸⁰ Y	-63360	130	-61170#	400#	¹⁵⁵ Lu ^m	-43160#	120#	-42610#	140#	
⁸⁸ Nb	76070	100	-76420#	200#	$^{155}Lu^{n}$	-41380#	130#	40830#	140#	
¹⁰⁶ Sb	-66900	170	-66360#	310#	¹⁵⁶ Ho	-66130	400	-65470#	200#	
¹⁰⁸ Mo	-70820	140	-71190#	200#	¹⁵⁸ Lu	-47900	110	-47350#	120#	
¹⁰⁹ Tc	-74540	100	74870#	210#	¹⁵⁸ Hf	-42800	80	-42250#	100#	
¹¹⁰ Sb	-76820	90	-77540#	200#	¹⁵⁹ Ta	-35100	110		120#	
^{110}I	60890	170	-60350#	310#	¹⁵⁹ Ta ^m	-34990#	120#	-34440#	140#	
¹¹¹ Sb	-81470	50	-80840#	200#	¹⁶⁰ Eu	-63840	170	-63370#	200#	
¹¹² Ru	-75620	510	-75870#	540#	¹⁶⁰ Lu	50880#	230#	50280#	230#	
¹¹² Rh	-80140	500	-79540#	500#	¹⁶¹ Yb	-58350	180	-57890#	220#	
¹¹³ Te	-78760	170	-78310#	200#	¹⁶¹ Lu	-53050	210	-52590#	240#	
¹¹⁴ Ru	70890	540	70790#	360#	¹⁶² Ta	-40470	120	39920#	130#	
¹¹⁴ Rh	76990	500	75590#	300#	¹⁶² W	-34700	80	-34150#	100#	
¹¹⁴ Te	-81510	190		200#	¹⁶³ Re	-26660	100	-26110#	110#	
¹¹⁴ Cs	-55110	160	54570#	310#	¹⁶³ Re ^m	-26490#	120#	-25940#	140#	
¹¹⁵ I	-76130#	470#		470#	¹⁶⁶ Re	-32410	130	-31860#	140#	
¹¹⁵ Xe	-68020	230	-68430#	240#	¹⁶⁶ Os	-26140	90	-25590#	100#	
¹¹⁶ Rh	-71960	500	-71060#	500#	¹⁶⁷ Ta	-47840#	410#	-48460#	430#	
¹¹⁶ Xe	-73220	250	-72900#	250#	¹⁶⁷ Ir	-17740	90	-17190#	100#	
¹¹⁷ Ba	-58030	390	56950#	650#	¹⁶⁷ Ir ^m	-17520#	120#		140#	
¹²⁹ Ce	-75750	210	-76300#	210#	^{170}W	-48000	350	-47240#	470#	
¹²⁹ Nd	-62980#	420#	-62170#	360#	¹⁷⁰ Ir	-23810	140	-23260#	150#	
¹³⁰ Ce	-79790	610	-79460#	610#	¹⁷⁰ Pt	-17010	90	-16460#	100#	
¹³⁸ Nd	-81120	100	-82040#	200#	¹⁷¹ Au	-8210#	240#	7660#	250#	
¹³⁸ Pm	-74120	270	-75040#	320#	$^{171}Au^{m}$	-7910#	130#	-7360#	140#	
¹³⁸ Pm ^m	-74030	110	-74950#	210#	¹⁷² W	-48220	210	-48980#	270#	
¹³⁹ Eu	-66300	50	-65360#	150#	¹⁷³ Ta	-51610#	230#	-52590#	230#	
¹⁴⁰ Gd	-62190	400	-61530#	400#	¹⁷³ W	-47610#	380#	-48590#	380#	
¹⁴⁰ Tb	-50890	900	-50730#	900#	¹⁷⁴ Re	-44610#	350#	-43680#	410#	
¹⁴² Gd	-67150	300	-66850#	300#	¹⁷⁴ Os	-40700	350	-39940#	470#	
¹⁴² Tb	56750	760	-56950#	760#	¹⁷⁴ Au	14600	140	-14050#	150#	
¹⁴² Dy	-49650	790	50050#	790#	¹⁷⁶ Os	-43070	70	-41960#	200#	
¹⁴⁴ Gd	-71360	400	-71920#	200#	¹⁷⁸ Ir	-37180	280	-36250#	360#	
¹⁴⁵ Dy	-58950#	300#	-58730#	300#	¹⁷⁸ Pt	-32700	350	-31940#	470#	
¹⁴⁹ Er	-53300	380	-53860#	470#	¹⁷⁸ TI	5000#	210#	-4450#	210#	

Nuclide	Mass ex from exp	ccess o. data	Recomme mass ex	Recommended mass excess		Mass e from ex	xcess p. data	Recommended mass excess	
¹⁸⁰ Os	-44420	40	-44390#	180#	¹⁹⁵ Bi ^m	-17180	220	17530#	220#
¹⁸⁰ Ir	-38610	70	-37960#	190#	¹⁹⁶ Bi	-17480	1230		210#
180Pt	-35370	70	-34270#	200#	¹⁹⁶ Bi ^m	-17310	1230		210#
¹⁸² Au	-29230	280		360#	¹⁹⁶ Bi ⁿ	-17210	1230	~17790#	210#
¹⁸² Hg	-24280	350	-23520#	470#	¹⁹⁶ Po	-13540	40	-13500#	180#
¹⁸⁴ Pt	-37400	40	-37360#	180#	¹⁹⁶ Rn	1040	80	2150#	200#
¹⁸⁴ Au	-30950	70	-30300#	190#	¹⁹⁷ At	-5690	420	-6250#	350#
¹⁸⁴ Hg	-27290	70	-26180#	200#	¹⁹⁷ At ^m	-5640	420	-6200#	350#
¹⁸⁶ Tl	-20910	290	-19980#	370#	¹⁹⁸ Po	-14880	80		150#
¹⁸⁶ Tl ^m	-20810#	290#	-19880#	370#	¹⁹⁸ At	-6120	410	-6750#	430#
¹⁸⁶ Tl ⁿ	-20440#	290#	-19510#	370#	¹⁹⁸ At ^m	-5750	310	-6380#	340#
¹⁸⁶ Pb	-15380	350	-14620#	470#	¹⁹⁹ Po	-13930	590	-15280#	410#
¹⁸⁷ Pt	-36610#	160#	-36740#	180#	¹⁹⁹ Po ^m	-13620	590	-14970#	410#
¹⁸⁸ Au	-32300	30	-32520#	100#	¹⁹⁹ At	-8380	220	-8730#	220#
¹⁸⁸ Hg	-30260	40	-30220#	180#	200 At	-8460	1230	-9040#	210#
¹⁸⁸ Pb	-18750	70	-17640#	200#	²⁰⁰ At ^m	-8340	1230		210#
¹⁸⁹ Au	-33320	300	-33640#	200#	²⁰⁰ At ⁿ	-8110	1230		210#
¹⁸⁹ Hg	-29120	360	-29690#	280#	²⁰⁰ Rn	-4070	40	-4030#	180#
189TI	-23950	410	-24510#	350#	²⁰¹ Fr	4270	420	3710#	350#
¹⁸⁹ Tl ^m	-23660	410	-24230#	350#	²⁰² Rn	-5680	80	-6320#	150#
¹⁹⁰ Hg	-30780	80	-31410#	150#	²⁰² Fr	3700	410	3060#	430#
¹⁹⁰ Ti	-23780	410	-24410#	430#	$^{202} Fr^{m}$	4060	310	3430#	340#
¹⁹⁰ Tl ^m	-23610	310	-24240#	340#	²⁰³ Rn	-4880	590	-6230#	410#
¹⁹⁰ Bi	-11630	290	-10700#	370#	²⁰³ Rn ^m	-4510	590	-5860#	410#
¹⁹⁰ Bi ^m	-11420#	290#	-10490#	370#	²⁰³ Fr	1330	230	980#	230#
¹⁹⁰ Po	-5320	350	4560#	470#	²⁰⁴ Fr	1140	1230	550#	210#
¹⁹¹ Tl	-25840	220	-26190#	220#	²⁰⁴ Fr ^m	1190	1230	610#	210#
¹⁹¹ TI ^m	-25540	220	-25890#	220#	²⁰⁴ Fr ⁿ	1470	1230	880#	210#
¹⁹² Hg	-31740	1250	-32070#	280#	²⁰⁴ Ra	5990	40	6030#	180#
¹⁹² Tl	-25360	1230	-25950#	200#	²⁰⁶ Ra	4160	80	3520#	150#
¹⁹² Tl ^p	-25160	1230		210#	²⁰⁷ Ra	4820	590	3470#	420#
¹⁹² Pb	-22620	40	-22580#	180#	²⁰⁷ Ra ^m	5380	590	4030#	410#
¹⁹² Po	-9010	70	7900#	200#	²⁰⁷ Ac	11620	230	11270#	230#
¹⁹³ Bi	-15220	410	-15780#	350#	²⁰⁸ Ac	11280	1230	10700#	210#
¹⁹³ Bi ^m	-14910	410	-15470#	350#	²⁰⁸ Ac ^m	11790	1230	11210#	210#
¹⁹⁴ Pb	-23620	80	-24250#	150#	²¹⁰ Th	14640	90	14000#	150#
¹⁹⁴ Bi	-15430	410	-16070#	430#	²¹¹ Th	15190	600	13840#	420#
¹⁹⁴ Bi ⁿ	-15170	310	-15800#	340#	²²⁸ Fr	32390	1640	33280#	200#
¹⁹⁴ At	-1 890#	330#	-960#	400#					
¹⁹⁴ At ^m	-1640#	290#	-710#	370#					
¹⁹⁵ Pb	-22430	590	-23780#	410#					
¹⁹⁵ Pb ^m	-22230	590	-23580#	410#					
¹⁹⁵ Bi	-17580	220	-17930#	220#					