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Abstract—Humpback whales (Megap-
tera novaeangliae) are significant 
marine consumers. To examine the 
potential effect of predation by hump-
back whales, consumption (kg of prey 
daily) and prey removal (kg of prey 
annually) were modeled for a current 
and historic feeding aggregation of 
humpback whales off northeastern 
Kodiak Island, Alaska. A current prey 
biomass removal rate was modeled by 
using an estimate of the 2002 hump-
back whale abundance. A historic 
rate of removal was modeled from a 
prewhaling abundance estimate (pop-
ulation size prior to 1926). Two pro-
visional humpback whale diets were 
simulated in order to model consump-
tion rate. One diet was based on the 
stomach contents of whales that were 
commercially harvested from Port 
Hobron whaling station in Kodiak, 
Alaska, between 1926 and 1937, and 
the second diet, based on local prey 
availability as determined by fish 
surveys conducted within the study 
area, was used to model consumption 
rate by the historic population. The 
latter diet was also used to model 
consumption by the current popula-
tion and to project a consumption 
rate if the current population were to 
grow to reach the historic population 
size. Models of these simulated diets 
showed that the current population 
likely removes nearly 8.83 × 106 kg 
of prey during a 5-month humpback 
whale feeding season, which could 
include around 3.26 × 106 kg of juve-
nile pollock (Theragra chalcogramma), 
2.55 × 106 kg of capelin (Mallotus vil-
losus), if these species are consumed 
in proportion to their availability. The 
historic humpback whale population 
may have removed over 1.76 × 107 kg 
of prey annually. 
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Numerous studies have revealed that 
an increased awareness of trophic-level 
interactions is essential in assessing 
the status of complex marine ecosys-
tems (Overholtz et al., 1991; Hair-
ston and Hairston, 1993; Pascual et 
al., 1993; Estes, 1994; Kenney et al., 
1997; Trites et al., 1997). Such stud-
ies have shown that predator-prey 
relationships in marine systems can 
have direct and indirect effects on all 
ecosystem members, but predictions of 
their effects cannot be made without 
multispecies models. 

Cetaceans are top predators in 
marine ecosystems and consume sig-
nificant amounts of prey. Knowledge 
of the distribution, abundance, and 
foraging habits of cetaceans is, there-
fore, an essential element of any pe-
lagic ecosystem study (van Franeker, 
1992). Many species preyed upon by 
cetacean populations are targeted by 
other marine predators and commer-
cial fisheries or are linked to fisheries 
through complex food webs. Previous 
studies have reported that prey re-
moval due to cetacean consumption 
approaches or exceeds removals due to 
commercial fishing (Laws, 1977; Lae-
vastu and Larkins, 1981; Bax, 1991, 
Markussen et al., 1992; Nordøy et 
al., 1995; Kenney et al., 1997). Such 
high levels of consumption can have 
significant effects on the distribution 
and abundance of prey species and 
the structure of marine communities 
(Perez and McAlister, 1993; Kenney 
et al., 1997; Croll et al., 1998). There-
fore, examining consumption by ceta-
ceans contributes information about 

complex ecosystem relationships and 
the long-term sustainability of ma-
rine resources (Perez and McAlister, 
1993; Kenney et al., 1997; Tamura 
and Ohsumi1). 

Humpback whales (Megaptera no-
vaeangliae) feed in the waters off 
Kodiak Island and, because they are 
considered apex predators, may in-
fluence the structure of the Kodiak 
Island marine ecosystem (Fig. 1) 
(Trites et. al., 1997; Croll et. al., 
1998). Modeling the amount of prey 
consumed (kg of prey annually) by 
feeding humpback whales is, there-
fore, a useful tool for evaluating their 
role as marine predators. 

Cetaceans, in general, are described 
as opportunistic in their food selec-
tion, although species tend to select 
broad categories of prey such as 
cephalopods, fish, or zooplankton (To-
milin, 1954; Nemoto, 1959; Klumov, 
1966; Sigurjónsson and Víkingsson, 
1998). Humpback whales are clas-
sif ied as generalists and target a 
wide variety of prey species (Nemoto, 
1970; Perry et al., 1999). They have 
been shown to be seasonal feeders on 
euphausiids (Thysanoessa spp.) and 
schooling fish species up to 30 cm in 
length, including capelin (Mallotus 
villosus), Pacific herring (Clupea pal-

1 Tamura, T., and S. Ohsumi. 2000. Re-
gional assessments of prey consumption 
by marine cetaceans in the world. In-
ternational Whaling Commission docu-
ment SC/52/E6, 45 p. Website: www. 
icrwhale.org/eng/SC52E6.pdf [Accessed 
on 30 November 2002]. 
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Figure 1
Map of Kodiak Island study area. Study area is shown as shaded area and subareas (1−4) are outlined and 
numbered. In detail is the nearshore subarea between Woody Island and Long Island.

Chiniak Bay

1

2
34

156°0'0"W

156°0'0"W

155°0'0"W

155°0'0"W

154°0'0"W

154°0'0"W

153°0'0"W

153°0'0"W

152°0'0"W

152°0'0"W

151°0'0"W

151°0'0"W
57

°0
'0

"N

57
°0

' 0
" N

58
°0

'0
"N

58
°0

'0
"N

1

2

Long Island

Woody Island

Alaska

1

2
34

156°0'0"W

156°0'0"W

155°0'0"W

155°0'0"W

154°0'0"W

154°0'0"W

153°0'0"W

153°0'0"W

152°0'0"W

152°0'0"W

151°0'0"W

151°0'0"W
57

°0
'0
"N

57
°0

' 0
" N

58
°0

'0
"N

58
°0

'0
"N

Ko
dia

k I
sla
nd

Marmot Bay

0 50 100 150 20025
Kilometers

lasi), walleye pollock (Theragra chalcogramma), Atka 
mackerel (Pleurogrammus monopterygius), cod (Gadus 
spp.), sardines (Sardinops spp.), and sandlance (Ammo-
dytes spp.) (Nemoto, 1957, 1959; Mitchell, 1973; Payne 
et al., 1990). The variety, as well as the amount, of 
prey removed from Kodiak waters may therefore be 
significant. Resource removal from Kodiak waters is of 
particular importance when considering the high value 
of Kodiak Island commercial fisheries, which totaled 
63.3 million dollars in exvessel (wholesale) value in 
2002 (NMFS2).

Modeling consumption by humpback whales as they 
recover from severe population declines could shed light 
on patterns of change seen in prey and sympatric con-
sumer populations, such as marine birds and pinnipeds 
(Merrick, 1997; Anderson and Piatt, 1999). Commercial 
whaling in the 1900s significantly reduced the number 
of humpback whales, both within coastal Kodiak waters 
and throughout the North Pacific (Rice, 1978). Following 

the protection of humpback whales in 1965, however, 
their numbers in the central North Pacific increased, 
possibly by as much as 10%, between the early 1980s 
and early 1990s for some North Pacific stocks (Baker 
and Herman, 1987; Calambokidis et al.3). Removal and 
subsequent recovery of a marine predator of this magni-
tude may cause large variations in the biomass removal 
of prey in the ecosystem, as has been hypothesized in 
other studies (Laws, 1985; Springer et al., 2003). How-
ever, no empirical evidence exists to demonstrate such 
trophic interactions in the Gulf of Alaska. In this article, 

2 NMFS (National Marine Fisheries Service). 2002. Unpubl. 
data. Website: http: //www.st.nmfs.gov/pls /webpls /MF_
LPORT_YEARD.RESULTS [Accessed on 31 May 2003.]

3 Calambokidis, J., G. H. Steiger, J. M. Straley, T. Quinn, L. 
M. Herman, S. Cerchio, D. R. Salden, M. Yamaguchi, F. Sato, 
J. R. Urbán, J. Jacobson, O. von Ziegesar, K. C. Balcomb, 
C. M. Gabriele, M. E. Dalheim, N. Higashi, S. Uchida, J. 
K. B. Ford, Y. Miyamura, P. Ladron de Guevara, S. A. Miz-
roch, L. Schlender, and K. Rasmussen. 1997. Abundance 
and population structure of humpback whales in the North 
Pacific basin. Cascadia Research Cooperative Final Con-
tract Report 50ABNF500113 to Southwest Fisheries Science 
Center, La Jolla, CA 92038, 72 p. Website: http://www.
cascadiaresearch.org/reports/rep-NPAC.pdf. [Accessed on 
19 April 1999.]
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we model the historic and current consumption rate by 
humpback whales within waters of northeastern Kodiak 
Island in order to assess the impact these whales have 
as predators on local prey populations. 

Materials and methods 

Study area 

The study area encompassed waters of northeastern 
Kodiak Island, including Chiniak and Marmot Bays 
(Fig. 1). The study area was divided into four subareas 
of approximately equal size in order to equalize sampling 
effort and maximize coverage of the study area. Subar-
eas were also used to separate sightings of humpback 
whales for the purpose of weighting diet composition 
in relation to prey availability. An additional subarea, 
including the waters near Woody and Long Islands, was 
not considered a survey subarea but was designated in 
the poststudy period for calculating diet composition 
(“nearshore,” Fig. 1). 

Sightings and abundance of humpback whales 

Data on humpback whale sightings were collected during 
vessel surveys conducted between June and September 
in 2001 and 2002. Individual whales were identified from 
photographs of the black and white pigment patterns 
(and other natural markings) on the ventral surface 
of their tail flukes (Katona et al., 1979). A humpback 
whale sighting was defined as a sighting of an individual 
whale on a single day. Therefore, no whale was counted 
twice on one day, but may have been counted multiple 
times during the study period. Humpback whale sight-
ings were summed by month and then by subarea for 
calculation of whale diet (see “Materials and methods” 
section: “Composition of simulated diets”). 

These sightings and f luke photographs were used 
in an associated study to estimate current humpback 
whale abundance within the study area (Witteveen, 
2003). The estimate determined from this associated 
study was used in conjunction with historic catch data 
from the Port Hobron whaling station to estimate his-
toric humpback whale abundance. The whaling grounds 
of Port Hobron encompassed most of eastern Kodiak 
waters—an area approximately four times that of the 
study area. To account for the size difference between 
whaling grounds and the study area, catch values were 
divided by four under the assumption of a random har-
vest throughout the grounds. The prewhaling and cur-
rent estimates of humpback whale population size in 
the study area are 343 individuals (95% CI: 331, 376) 
and 157 individuals (95% CI: 114, 241), respectively 
(Witteveen, 2003). 

Composition of simulated diets 

Two diets were simulated: one that reflected the historic 
diet and the other that reflected the current diet for 

humpback whales. The diets were simulated because 
direct observation of humpback whale feeding behavior 
is rare and, even when observed, cannot produce a pre-
cise account of the prey species being eaten. 

Diet A simulated historic target species and was 
based on the stomach contents of 39 humpback whales 
harvested at the Port Hobron whaling station from 
southeast Kodiak waters between 30 May and 9 August 
1937 as analyzed by Thompson (1940). 

Diet B simulated current target species and assumed 
no prey selectivity. It was based on the assumption 
that humpback whales will eat prey of a suitable size 
(<30 cm) in proportion to the relative occurrence of the 
prey in areas used by humpback whales. Euphausiid 
proportions in the diet were based on historic stomach 
contents and assumed to be constant over time (no cur-
rent euphausiid abundance estimate is available). 

Information on seasonal prey availability was collect-
ed from mid-water trawl surveys that were conducted 
within eastern Kodiak waters in July 2001 and from 
June through September 2002. Multiple passes with a 
commercial mid-water trawl net with a 22-mm mesh 
codend liner were made through acoustic scattering 
layers, ensuring an accurate representation of mid-wa-
ter fish composition and occurrence. Species composi-
tion, species counts, and fish size were determined for 
each tow and grouped within the study subareas. Only 
data from tows conducted during the study period in 
2001 and 2002 in areas utilized by humpback whales 
were included in our analysis. Therefore, prey surveys 
overlapped humpback whale sightings both temporally 
and spatially. A separate series of acoustic and purse-
seine (center panel with a 3.2-mm mesh net) surveys 
was used to determine prey availability within the 
nearshore subarea from June through September 2002 
(Foy4). Prey composition determined by these surveys 
was assumed to be homogeneous throughout the near-
shore habitat within the study area. 

To calculate diet B, the occurrence of fish smaller 
than 30 cm was determined from the mid-water trawl 
surveys within each subarea and month for both 2001 
and 2002. Tow data were first separated by subarea 
and month. Percent composition of prey species in each 
tow was calculated by dividing the total number of 
fish of each species caught by the total number of all 
fish caught in each tow, excluding species larger than 
30 cm (Nemoto, 1959) and species that were not previ-
ously documented as prey, such as flatfish and other 
nonschooling fishes (Nemoto, 1957, 1959; Klumov, 1963; 
Krieger and Wing, 1984, 1986; Perry et al., 1999). 

To calculate diet B for the entire study area, prey 
proportions were weighted by the number of whales 
in each subarea. The weighted proportions were then 
summed across all months and subareas and multiplied 
by one minus the percentage of assumed euphausiid 

4 Foy, R. 2002. Unpubl. data. Fishery Industrial Technol-
ogy Center, University of Alaska Fairbanks, Kodiak, AK 
99615. 
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Figure 2 
A close-up of the study area showing locations of humpback whale (Megaptera novaeangliae) sightings  
and prey tows (+) for 2001 and 2002. Only mid-water trawl locations are shown.
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occurrence within the diet. Thus, diet B simulated a 
weighted availability of prey species based on temporal 
and spatial overlap between prey surveys and humpback 
whale sightings within the study period (Fig. 2). 

Consumption rate

A seasonal consumption rate was estimated for both 
the current humpback whale population and the pre-
whaling humpback whale population. The prewhaling 
consumption rate was estimated by using diet A only. 
Diet B was used to estimate the consumption rate by 
the current humpback whale population and to project 
the consumption rate by a humpback whale population 
at the prewhaling abundance level.

The active metabolic rate (kcal /day) of feeding 
humpback whales was estimated in this study as 
E=192M0.75, where Kleiber’s (1961) model for basal 
metabolic rate (BMR; E=70M0.75) was modified by us-
ing average oxygen consumption estimates for feeding 
baleen whales, where M is average body weight (kg) 
(Wahrenbrock et al., 1974: Sumich, 1983; Perez and 
McAlister, 1993).

Daily prey consumption was then estimated as

I
E
K

= 1
1 000,

,

where I = total prey consumption (kg/day); 
 E = estimated daily energy requirements (kcal/

day); and 
 K = the estimated energy density (kcal/gram wet 

weight) of presumed prey. 

The average body mass for humpback whales (M) was 
set equal to 30,408 kg (Trites and Pauly, 1998). The 
total energy density (K) of each diet was calculated by 
multiplying the average seasonal energy density of each 
prey species sampled in the study area by the percentage 
of that species within each diet and summing across all 
species. Values of K for individual prey species came from 
proximate compositions that were determined from prey 
collected during 2002 trawl surveys for all months within 
the study period (Foy4). For each month, energy density 
was calculated by multiplying percent lipid by 9.4 kcal/g 
and percent protein by 4.3 kcal/g, which are conversion 
factors based on heat produced during metabolism of food 
(Schmidt-Nielson, 1997). Carbohydrates were considered 
to be bound and not available for nutrition (Gaskin, 
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1982). The average seasonal energy density of each prey 
species was calculated by summing all values of energy 
density and dividing by the number of months in the 
study period. Previously published proximate composition 
values for surf smelt (Hypomesus pretious) and energy 
density data for euphausiids (Thysanoessa spp.) were 
used (Davis et al., 1997; Payne et al., 1999). 

Seasonal prey consumption for the population was es-
timated by multiplying I by estimates of abundance (N) 
and the total number of days in the humpback whale 
feeding season. Consumption estimates were calculated 
for both the upper and lower 95% confidence limits on 
the abundance estimates to show a possible range of 
consumption. The length of the feeding season was pre-
sumed to be 152 days (Perez and McAllister, 1993). 

Results 

Analysis of sightings showed that humpback whales 
were not uniformly distributed within the study area 
(Table 1). Occurrence of humpback whales within sub-
areas was variable, indicating within-season shifts of 
habitat use. Peak humpback whale sightings occurred 
in subarea 2 in July of both years. No humpback whales 
were sighted in the nearshore area after the month of 
July in either year. 

Only two prey items were identified in the 27 stom-
achs that contained appreciable quantities of prey of 
39 stomachs analyzed by Thompson (1940). Surf smelt 
were found in 21 of 27 (78%) stomachs and euphausiids 
were found in 6 of 27 (22%) stomachs (Table 2). These 
percentages represent diet A. Energy densities of these 
two species combined to give a total energy density of 
1.31 kcal/gram (Table 3). 

The fish species in areas used by humpback whales 
in 2001 and 2002, as shown by mid-water trawl sur-
veys, were pollock (36.96%), capelin (28.89%), eula-

Table 1 
Number of sightings of humpback whales (Megaptera 
novaeangliae) for 2001 and 2002 by subarea and month in 
the Kodiak Island study area. 

2001 and 2002 

Area June July August September Total 

1 10 7 10 3 30 

2 29 89 22 3 143 

3 20 8 0 12 40 

4 0 3 0 7 10 

Nearshore 5 14 0 0 19 

Total  64 121 32 25 242 

chon (7.60%), Pacific sandlance (4.44%), Pacific sandfish 
(0.08%), and Pacific herring (0.03%) (Table 2). These 
percentages represent diet B. Calculated energy densi-
ties of prey species ranged from a high (eulachon) of 
2.52 kcal/gram to a low of 1.12 kcal/gram ( juvenile 
pollock). The total energy density for diet B was 1.19 
kcal/gram (Table 3). 

Based on energetic content of the above diets, the 
model indicated that each humpback whale in the study 
area would consume 338 kg/day on diet A and 370 kg/ 
day on diet B. Using a prewhaling estimate of 343 (95% 
CI=331−376) animals in the study area, we determined 
that humpback whales feeding on diet A prior to 1927 
would have removed an estimated 1.76×107 kg of prey 
annually (95% CI= 1.70 × 107 to 1.93 × 107), including 
nearly 3.87 × 106 (3.74 × 106 to 4.24 × 106) kg of euphausi-
ids and approximately 1.37 × 107 (1.32 × 107 to 1.50 × 107) 
kg of surf smelt (Table 4). If diet B accurately reflects 
prey selection by the estimated 157 (95% CI=114−241) 

Table 2 
Composition and relative occurrence of prey species represented in simulated humpback whale (Megaptera novaeangliae) diet A 
(historic) and diet B (current). 

Diet Prey species Common name Percent of total diet 

A Hypomesus pretious 

Thysanoessa spp. 

surf smelt 

euphausiid spp. 

Total 

78.00% 

22.00% 

100% 

B Theragra chalcogramma 

Mallotus villosus 

Thysanoessa spp. 

Thaleichthys pacificus 

Ammodytes hexapterus 

Trichodon trichodon 

walleye pollock 

capelin 

euphausiid spp. 

eulachon 

Pacific sandlance 

Pacific sandfish 

36.96% 

28.88% 

22.00% 

7.60% 

4.44% 

0.08% 

Clupea harengus pallasi Pacific herring 

Total 

0.03% 

100% 
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Table 3 
Monthly and average energy densities (kcal/gram) of prey species represented in simulated humpback whale (Megaptera novae-
angliae) diets A and B based on lipid and protein composition. Energy densities were used to estimate consumption by humpback 
whales. Average values in parentheses have been adjusted to reflect standard deviations of lipid and protein composition. N/A = 
not available. 

Energy densities (kcal/gram) 

Species June July August September Average 

Capelin 1.1285 1.2632 1.1956 1.4298 1.2542 (1.1665, 1.3755) 

Pacific sandlance 1.4179 1.4179 1.4179 1.4179 1.4179 (1.3211, 1.5590) 

Pacific sandfish 0.8661 1.2126 1.1165 1.1165 1.0779 (1.0449, 1.1300) 

Eulachon 2.1582 2.5218 2.6758 2.7424 2.5245 (2.3761, 2.6860) 

Herring 2.0999 2.0999 1.9454 2.1205 2.0664 (1.9432, 2.2942) 

Juvenile pollock  1.0144 1.0657 1.1380 1.2461 1.1160 (0.9730, 1.2994) 

Euphausiids  N/A N/A N/A N/A 0.7430 

Surf smelt N/A N/A N/A N/A 1.4698 

Table 4 
Daily and annual (over a 152-day feeding season) consumption of prey from two different diets off northeastern Kodiak Island 
by humpback whales (Megaptera novaeangliae) at two levels of population abundance: the current population of 157 and the 
historic population of 343 (also presumed to be the carrying capacity to which the current population will recover). Diet A is the 
simulated diet of the historic population through analysis of stomach contents of 39 whales in 1937; Diet B is the simulated diet 
of the historic and current population based on currently available prey of suitable size for consumption. 

Prey species 
Daily prey 

removal (kg) Mean 

Annual prey removal (kg) 

Lower limit Upper limit 

Historic population 

Diet A 

Surf smelt 90,301 13,725,715 13,245,515 15,046,264 

Euphausiids  25,469 3,871,355 3,735,914 4,243,818 

Total 115,770 17,597,070 16,981,429 19,290,083 

Diet B 

Euphausiids 27,934 4,246,006 4,097,458 4,654,514 

Walleye pollock 46,924 7,132,406 6,882,876 7,818,614 

Capelin 36,671 5,573,943 5,378,936 6,110,211 

Eulachon 9,652 1,467,057 1,415,731 1,608,202 

Pacific sandlance 5,635 856,475 826,511 938,876 

Pacific sandfish 98 14,907 14,386 16,342 

Pacific herring 33 5,038 4,862 5,523 

Total 126,974 19,300,028 18,624,808 21,156,882 

Current population 

Diet B 

Euphausiids 12,786 1,943,507 1,411,209 2,983,345 

Walleye pollock 21,478 3,264,687 2,370,537 5,011,399 

Capelin 16,785 2,551,338 1,852,564 3,916,385 

Eulachon 4,418 671,510 487,593 1,030,789 

Pacific sandlance 2,579 392,031 284,659 601,780 

Pacific sandfish 45 6,824 4,955 10,474 

Pacific herring 15 2,306 1,675 3,540 

Total 58,119 8,834,124 6,414,587 13,560,661 
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humpback whales currently feeding in the study ar-
ea, these whales would be removing nearly 8.83 × 106 

(6.41 × 106 to 1.36 × 107) kg annually, including 3.26 × 106 

(2.37 × 106 to 5.01 × 106) kg of pollock, nearly 2.55 × 106 

(1.85 × 106 to 3.92 × 106) kg of capelin, and 6.71 × 105 

(4.88 × 105 to 1.03 × 106) kg of eulachon. If the same diet 
were consumed by a population of humpback whales al-
lowed to return to prewhaling abundance, the projected 
population would remove 1.9 × 107 (1.86 × 107 to 2.12 × 107) 
kg of prey annually, including approximately 7.13 × 106 

(6.88 × 106 to 7.82 × 106) kg of pollock, 5.57 × 106 (5.38 × 106 

to 6.11 × 106) kg of capelin, and 4.25 × 106 (4.10 × 106 to 
4.65 × 106) kg of euphausiids (Table 4). 

Discussion 

Consumption rate 

Estimating the energy requirements of large cetaceans is 
inherently difficult and values presented in the present 
study may be subject to substantial uncertainty. Previ-
ous studies in which consumption rates for cetaceans 
were estimated have used a range of values to adjust 
BMR (E=70M0.75) for active metabolism. These values 
generally range from approximately 1.5 to 3 times BMR 
(Hinga, 1979; Lockyer, 1981; Sigurjónsson and Víkings-
son, 1998). Our value of 192 is 2.7 times larger than 70 
and is, therefore, a reasonable estimate because it fits 
within this range and is based on the observed oxygen 
consumption rates of baleen whales. However, the con-
sumption estimates are highly sensitive to perturbations 
of model input; a 5% error in this value would cause 
deviation of the same percentage (5%) in final consump-
tion values. Further, all values in our consumption model 
are assumed to be constant when body mass, physiologi-
cal status, and assimilation efficiency are likely subject 
to large seasonal fluctuations (Innes et al., 1987; Perez 
and McAlister, 1993, Kenney et al., 1997; Trites et al., 
1997; Sigurjónsson and Víkingsson, 1998). Our model, 
however, did account for seasonal changes in the energy 
density of local prey sources; previous models, on the 
other hand, did not account for these changes (Perez 
and McAlister, 1993). Further research is necessary to 
obtain reliable field estimates of metabolic rates if model 
uncertainty is to be reduced. 

The historic prevalence of surf smelt in diet A could 
imply a dramatic change in surf smelt availability, 
misidentification, or an overestimation of smelt found 
in stomachs. Thompson’s (1940) analysis resulted from 
“samples of stomach contents” obtained from catcher 
vessels; therefore, these samples may have completely 
missed less prevalent species. Further, stomach samples 
may have only reflected the most recent meal of the 
whale and therefore be biased toward a single species. 
This potential bias, however, could have been minimized 
by sampling stomachs throughout the season (May 30– 
August 09) (Thompson, 1940). Diet B was dominated by 
walleye pollock, a species not present in historic diet A. 
The increased importance of juvenile pollock in contem-

porary humpback whale diet B could reflect changes in 
prey species availability and use, foraging selectivity, 
or reflect our diet reconstruction method. 

Diet B is considered provisional for two reasons. First, 
it is assumed that humpback whales eat prey species 
in proportion to their availability within foraging ar-
eas. Humpback whales select preferred prey species 
and consumption, therefore, may be disproportional 
to availability. That is, they may be selectively forag-
ing from all available prey sources. Previous foraging 
studies have described humpback whale distribution 
as being correlated with areas of capelin (Whitehead 
and Carscadden 1985; Piatt et al. 1989) and sandlance 
abundance (Payne et al. 1986; Kenney et al. 1996) and 
this correlation may indicate a possible preference for 
small forage fish species. Given that in the decades 
since whaling, the Gulf of Alaska has shifted from a 
system dominated by forage fish to one dominated by 
pollock and other groundfish (Merrick 1997; Anderson 
and Piatt 1999; Benson and Trites 2002), a shift in 
prevalence from surf smelt in the historic diet to pol-
lock in the current diet is not unexpected. Pollock have 
been shown to be a dominant prey source of humpback 
whales harvested in Russia (Klumov, 1963). Addition-
ally, humpback whales in southeastern Alaska have 
been observed near schools of juvenile pollock and are 
believed to eat pollock to an unknown, but potentially 
large, extent in some years (Gabriele5). 

The second source of uncertainty in diet B stems 
from the assumption that our mid-water trawl surveys 
provide unbiased samples of all available prey. Because 
these surveys were not designed to sample zooplankton, 
they may have produced a biased estimate of euphausiid 
availability. This bias may not be significant, however, 
because the 22% value we used in diet B was based on 
historic usage and falls within the range of euphausiid 
consumption (5−30% of the total diet) estimated in 
other humpback whale studies (Perez and McAlister, 
1993; Kenney et al., 1997). 

Further, diet B was constructed from the results of 
mid-water trawl surveys that may underestimate the 
availability of some forage fishes, particularly Pacific 
sandlance. Pacific sandlance are often small enough 
to swim through the meshes in the net or are found in 
benthic habitats and cannot be captured by mid-water 
trawl methods. To minimize this potential sampling 
bias, we supplemented our trawl surveys with purse 
seine sampling in the nearshore subarea. Despite this 
effort we may have underestimated the prevalence of 
Pacific sandlance in the area because it was found to 
dominate the diets of other coastal piscivores; stomach 
contents of 34 coho salmon (Oncorhynchus kisutch) and 
Pacific halibut (Hippoglossus stenolepis) in 2002 (Wit-
teveen6) and regurgitants from blacklegged kittiwakes 

5 Gabriele, C. 2001−2002. Personal commun. Glacier Bay 
National Park, P.O. Box 140. Gustavus, AK 99826-0140. 

6 Witteveen, B. H. 2002. Unpubl. data. Fishery Industrial 
Technology Center, University of Alaska Fairbanks, Kodiak, 
AK 99615. 
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in 2001 (n=96) and 2002 (n=147) were dominated by 
Pacific sandlance (Murra et al., 2003). 

Ecological effects from humpback whale prey 
consumption 

Although estimates of consumption are highly dependent 
on estimates of population abundance and metabolic 
rates, these values indicate that humpback whales were, 
and still are, significant predators within the Kodiak 
Island ecosystem. 

Historic commercial whaling reduced the population 
in our study area to an estimated low of 27 animals 
by 1938 (Witteveen, 2003). The removal of so many 
large consumers likely had significant impacts on the 
surrounding ecosystem. As modeled, reducing historic 
consumption to that of current levels would release 
nearly 10,000 tons of prey within the study area in a 
single feeding season. Such a release could have caused 
a trophic cascade effect. 

Cetacean removals in the Southern Ocean have dem-
onstrated how trophic cascades can affect marine eco-
systems through removal of large marine predators, 
including whales (Laws, 1985). It has been hypothesized 
that a similar reorganization of the marine community 
may have occurred in the Bering Sea and Gulf of Alas-
ka, although the mechanisms of such a cascade are not 
well understood (Merrick, 1997; Trites, 1997; Springer 
et al. 2003). Removal of whales during commercial 
harvest reduced predation on certain fish, cephalopod, 
and zooplankton species, which were then available to 
other consumers. This large number of unconsumed 
prey, when combined with environmental factors such 
as the 1977 regime shift, may have contributed to the 
growth of sympatric marine predator populations from 
the late 1940s to late 1970s. It is hypothesized that 
whale stock resurgence, coupled with the 1977 regime 
shift that favored the proliferation of groundfish species, 
may have reduced prey availability to other piscivores 
in the system and may have led to declines seen in har-
bor seal (Phoca vitulina), Steller sea lion, northern fur 
seal (Callorhinus ursinus), common murre (Uria aalge), 
thick-billed murre (U. lomvia), and red-legged kittiwake 
(Rissa brevirostris) populations (Merrick, 1995, 1997; 
NRC, 1996; Trites, 1997). The Gulf of Alaska and Ber-
ing Sea ecosystems may still be affected by changes 
caused by baleen whale removals and their recovery 
(NRC, 1996). 

Assuming that the Kodiak Island study area was 
similarly affected by this trophic reorganization, an es-
timate of the current consumption by humpback whales 
would help elucidate the role that a humpback whale 
recovery is playing in ecosystem dynamics. If our diet 
composition and subsequent consumption estimates are 
accurate, our results indicate that the diet of hump-
back whales in Kodiak waters directly overlaps those 
of sympatric piscivores and the biomass that is removed 
may be substantial. The top species modeled in the 
humpback whale diet represent important sources of 
energy for multiple higher-trophic-level species and are 

known to be significant dietary species for Steller sea 
lions (Wynne7), harbor seals (Jemison8), tufted puffins 
(Fratercula cirrhata) (Piatt et al., 1997), blacklegged 
kittiwakes (Murra et al., 2003), adult pollock, Pacific 
halibut, and arrowtooth f lounder (Livingston, 1993; 
Yang, 1995; Merrick, 1997; Best and St. Pierre9). 

Our model indicates that humpback whales within 
the study area may currently be consuming a signifi-
cant amount of fish, including over 3.26 × 106 kg of juve-
nile pollock and nearly 3.62 × 106 kg of small forage fish, 
such as capelin, eulachon and Pacific sandlance, during 
a 152-day feeding season. In comparison, tufted puffins 
consume less juvenile pollock (6.40 × 104 kg) between 
mid-July and mid-September, but this amount still 
accounts for one-tenth of the age-0 pollock stock in the 
Gulf of Alaska during early July (Hatch and Sanger, 
1992). In addition, gadid removal by Steller sea lions 
in 1998 was estimated to be 1.79 × 108 kg, or 12% of 
the total gadid biomass that is removed by commercial 
fisheries for that year (Winship and Trites, 2003). This 
amount, although nearly 55 times the amount of pol-
lock removal due to consumption by humpback whales, 
includes all gadid (not only pollock) species removals in 
all Alaskan waters. More importantly, these fish are 
likely larger (≥60 cm vs. ≤30 cm) than fish targeted by 
humpback whales. 

Although humpback whales generally feed on smaller 
age classes than are targeted by commercial fisheries or 
Steller sea lions (Perez and McAlister1; Kenney et al., 
1997), consumption of younger age classes may affect 
future recruitment into the fishery. Barrett et al. (1990) 
stated that consumption of young cod (Gadus morhua) 
and saithe (Pollachius virens) by shags (Phalacrocorax 
aristotelis) and cormorants (P. carbo) in the Northeast 
Atlantic could be a limiting factor in recruitment in 
years of low stock size, even if consumption of these 
species was overestimated by an order of magnitude. 
Thus, it is noteworthy that the removal by humpback 
whales of an estimated 3.26 × 106 kg of pollock (age 0−2) 
equals 30% of the 2002 commercial pollock harvest of 
1.09 × 107 kg (ages 3 to 8) for the entire Kodiak Island 
management area and 2.1% of the 2002 spawning bio-
mass of pollock for the entire Gulf of Alaska, which was 
estimated at 1.58 × 108 kg (NMFS10; NPFMC11,12). 

These comparisons are based on mean estimates of 
prey removal and do not take into account model uncer-

7 Wynne, K. M. 2002. Unpubl. data. Fishery Industrial 
Technology Center, Univ. Alaska Fairbanks, Kodiak, AK 
99615. 

8 Jemison, L. A. 2001. Summary of harbor seal diet data 
collected in Alaska from 1990−1999. In Harbor seal inves-
tigations in Alaska (R. J. Small, ed.), p. 314−22. Ann. Rep. 
NOAA Grant NA 87Fx0300. Alaska Departmart of Fish 
and Game, P.O. Box 240020, Douglas, AK 99824. 

9 Best, E. A., and G. St. Pierre. 1986. Pacific halibut as 
predator and prey. International Pacific Halibut Commis-
sion Technical Report 21, 27 p. Website: http://www.iphc. 
washington.edu/halcom/pubs/techrep/tech0021.pdf. [Accessed 
on 31 May 2003.] 

10, 11, 12 See next page for footnote text. 
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tainty. When uncertainty is considered, comparison to 
even the lower end of estimates of prey removal are still 
of note. For example, assuming that removal of juvenile 
pollock is equal to the lower estimate, or 2.37 × 106 kg, 
the removal of pollock by humpback whales could still 
equal 21.7% of the 2002 commercial pollock catch and 
1.5% of 2002 spawning biomass. Thus, it follows that 
if true consumption is actually closer to the upper esti-
mates, the impact of prey removal by humpback whales 
would likely increase. 

The humpback whale represents only one of a myriad 
of marine consumers within the Kodiak Island ecosys-
tem whose ecological role cannot be determined without 
sophisticated multispecies models and an analysis of 
ecosystem interactions. This study was designed to 
provide essential baseline data and a model for estimat-
ing prey removal by foraging humpback whales. Our 
results show that the potential for biomass removal due 
to consumption by humpback whales is significant and 
that the foraging strategies of these whales warrant 
further investigation. Continued research efforts can 
improve estimates of biomass removal by identifying 
target prey, determining the degree of prey selectivity, 
and assessing variable foraging efficiency. 
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