A High-Speed Quantum Communication Testbed

National Institute of Standards and Technology Carl J. Williams

http://qubit.nist.gov

Contributors

Coordinators: Ron Boisvert, David Su ---- (ITL) Charles Clark, Carl Williams - (PL)

Hardware group manager Xiao Tang (895) Software development Tassos Nakassis (892)

System Design: Jesse Wen (C), Ed Hagley (C)
Electronic Design: Alan Mink (895), Mikko Heikkero(G), Barry Hershman (895) Bob Carpenter (895) (C)
Quantum Channel: Richang Lu (G), Andreas Vasilyev (S)
Classic Channel: Julie Rounzaud (G), Mikko Heikkero(G)

C: Contractor; G: Guest Researcher; S: Student

Overall Goals

Construct a robust quantum communication facility

 Facility to use single photons to generate quantum key for secure communication – QKD testbed

- Provide standard platform for validation, quantification and comparison of diverse aspects of quantum communication systems
 - Testbed will be used to test single photon sources and detectors developed within NIST and outside
 - Open test-bed to general use by QuIST community
 - Incorporate optical fiber link

NIST QuIST Projects

- Quantum Communications Testbed (Charles, Clark, Victor McCrary, David Su, Xiao Tang, Carl Williams – ITL, PL)
- Single Photon Detector (Sae Woo Nam EEEL) Superconducting Transition Edge Sensors
- Single Photons on Demand (Alan Migdall PL) Parametric Down Converters
- Hybrid Quantum Authentication Protocols (Rick Kuhn – ITL)
- Quantum Error Correction, Avoidance, and Compiling (David Song, Paul Black – ITL)

Overview of Testbed Hardware

- Quantum Link
 - Attenuated VCSEL transmitters (initially)
 - 850 nm free space optics
 - Si avalanche detectors
 - 1.25 Gb/s wire rate
- Two classical links operating near 1550 nm
 - 8B/10B encoded path for timing/framing
 - Dedicated gigabit ethernet channel
 - Sifting
 - Error correction/Reconciliation
 - Privacy amplification

Mikko Heikkero, Julie Rouzaud, Richang Lu, Alan Mink, Andreas Goedecke, Jesse Wen, Ed Hagley, Leticia Pibida, Xiao Tang, Tassos Nakassis, Charles Clark, Carl Williams

Testbed Structure

Alice's Circuit Board Block Diagram

Bob's Circuit Board Block Diagram

DARPA

Technical Accomplishments (1)

Classical Channel Telescopes

- View from Administration Building (Bob) to NIST North (Alice) – 600 m
- Computer-controlled aiming and tracking
- Linked with NIST network
- Tested open air link efficiency

Quantum Channel Telescopes

- Installed computer-controlled aiming & tracking Accuracy » 51mrad
- Installed fiber interface
- Overall receiving efficiency: »30% (short distance)

Technical Accomplishments (3)

WDM System Upgraded

- NIST Base System operated at 625 Mbit/s at 4 wavelengths near 1550 nm
- WDM System Upgraded to:
 - Enables the receivers to run at 1.25 Gbit/s
 - Enables the Multiplexer and Demultiplexer to work with multimode fiber that will connect to the telescopes.

Technical Accomplishments (4)

Alice and Bob Bodies

- Observed VCSEL's spectra
- Determined parameters for interference filters and other parts
- Built the bodies of Alice and Bob

VCSELs and Interfence Filters

SPIE Meeting – Seattle, WA – July 11, 2002

Wavelangth (Nanometers

NIST CENTENNIAL

Status Hardware

- Classical Channel and Telescope
 - WDM System Upgraded to 1.25GHz
 - LVDS Circuit Designed
 - Quantum Scopes Tracking and Linked to Network
- High Speed Electronics
 - Random Number Generator Completed
 - 8/10 bit Encoding Chipset Received
 - High Speed Board Designed and Parts Ordered
 - FPGA Layout Complete
- Quantum Telescopes
 - Developed Computer Controlled Tracking
 - Installed Fiber Interface
- VCSEL's Characterized and Filters Obtained
- Alice and Bob Bodies Built

Software Philosophy

- Develop public-domain java prototype of BB84 protocol with necessary cryptographic services
 - Forward error correction Reed-Solomon Codes
 - Privacy amplification
 - Key store protocols
 - Hybrid authentication protocols
 - Internet Key Exchange, IPSec
- Implement BB84 with cryptographic services and characterize system
- Implement alternatives and variants to BB84
 - Explore engineering tradeoffs
 - Explore enhancements of basic functionality
- Work with others to develop standardized interfaces and integrated cryptographic modules

Tassos Nakassis, David Su

Software Overview/Topology

SPIE Meeting – Seattle, WA – July 11, 2002

Timing Considerations

- Photon travel time (600m/3⁻¹⁰⁸m/s): 2 ms
- Mean photon number: 0.1 photons
- **Detector efficiency:** 50%
- Detector recovery (dead-time): 30 ns
- **Detector jitter:** ~ 0.1 ns
- Quantum link budget: ~ -20 dB
- Pulse rate: 1.25 GHz
- **Count rate: 3 MHz**
- **Frame size: "1250"**
- **Frame length:** 1 m
- **Counts/Frame:** ~ **3**

Data Streams and Timing

Random Number Generator Fills Alice's Basis and Bit Buffer - 16⁻⁶²2

NIST CENTENNIA

Undiscussed Issues

- De-skew Quantum and Classical Channel
- Fill Buffer of Alice's Basis and Bit using Random No.
- Gate Quantum Channel Serdes off Classical Clock
- Buffer Fill and Flushing Across PCI
- Interface w Software Code (Operating System)
 BB84 vs B92

