
NDIIPP Content Transfer Project A. Boyko

 Library of Congress
 J. Kunze
 California Digital Library
 J. Littman
 L. Madden
 Library of Congress
 July 11, 2008

The BagIt File Package Format (V0.95)

Abstract

This document specifies BagIt, a hierarchical file package format for the
exchange of generalized digital content. A "bag" has just enough structure
to safely enclose a brief "tag" and a payload but does not require any
knowledge of the payload's internal semantics. This BagIt format should be
suitable for disk-based or network-based file package transfer. One
important use case is the possibility of eventual safe return of a received
bag. Tag information consists of a small number of top-level reserved file
names, checksums for transfer validation, and optional small metadata
blocks.

An Intenet-Draft of this document is available as a text file at:
http://tools.ietf.org/html/draft-kunze-bagit-02

1. Introduction

BagIt is a hierarchical file package format designed to support disk-based
or network-based transfer of generalized digital content. A "bag" holds a
brief "tag" and an otherwise semantically opaque payload. The name, BagIt,
is inspired by the "enclose and deposit" method [ENCDEP], sometimes
referred to as "bag it and tag it".

In this document the word "directory" is used interchangeably with the
word "folder" and all examples conform to Unix-based filesystem
conventions which should translate easily to Windows conventions after

Page 1

substituting the path separator ('\' instead of '/'). The BagIt format itself
places no limitations on file and path lengths, so implementors thinking
about maximal interoperation may wish to consider the issues listed in the
Interoperability section of this document.

2. BagIt package layout

A "bag" consists of a base directory containing a set of top-level files
comprising the "tag" and a sub-directory named "data/" that holds the
payload. The base directory may have any name and the "data/" directory
may contain an arbitrary file hierarchy.

 <bag_dir>/
 | manifest-<algorithm>.txt
 | bagit.txt
 | [optional additional tag files]
 \--- data/
 | [optional file hierarchy]

The "tag" consists of one or more files named "manifest-algorithm.txt", a
file named "bagit.txt", and zero or more additional files. In top-level text
files with ".txt" extension, each line should be terminated by a newline (LF)
or carriage return plus newline (CRLF); in practice cautious programmers
will also accept a carriage return by itself (CR) as a line terminator. In all
such tag files, text is assumed to be Unicode encoded as UTF-8
[RFC3629].

2.1. Declaration that this is a bag: bagit.txt

The "bagit.txt" file should consist of exactly two lines,

BagIt-Version: M.N
Tag-File-Character-Encoding: UTF-8

where M.N identifies the BagIt major (M) and minor (N) version numbers,
and UTF-8 identifies the character set encoding of tag files.

Page 2

2.2. File manifest: manifest-<algorithm>.txt

A manifest is a top-level file listing payload files that must be present in a
complete bag. Every bag must contain one or more manifest files. A
manifest file has a name of the form manifest-algorithm.txt, where
algorithm is a string specifying a cryptographic checksum algorithm, such
as

manifest-md5.txt
manifest-sha1.txt

Implementors of tools that create and validate bags are strongly encouraged
to support at least two widely implemented checksum algorithms: "md5"
[RFC1321] and "sha1" [RFC3174]. When using other algorithms, the
name of the algorithm should be normalized for use in the manifest's
filename, by lowercasing the common name of the algorithm, and removing
all non-alphanumeric characters.

A manifest contains a complete list of files that must be present in a fully
constituted bag. Each line of a file manifest-algorithm.txt has the form

CHECKSUM FILENAME

where FILENAME is the pathname of a file relative to the base directory
and CHECKSUM is a hex-encoded checksum calculated according to
algorithm over the file's contents. As described below, tag (top-level) files
should be listed, if listed at all, in a separate tag manifest file. One or more
linear whitespace characters (spaces or tabs) separate the CHECKSUM and
FILENAME.

Page 3

3. Example of a basic bag

Here's a very simple bag containing an image and a companion OCR file.
Lines of file content are shown in parentheses beneath the file name.

myfirstbag/
|
| manifest-md5.txt
| (49afbd86a1ca9f34b677a3f09655eae9 data/27613-h/images/q172.png)
| (408ad21d50cef31da4df6d9ed81b01a7 data/27613-h/images/q172.txt)
|
| bagit.txt
| (BagIt-version: 0.9)
| (Tag-File-Character-Encoding: UTF-8)
|
\--- data/
 |
 | 27613-h/images/q172.png
 | (... image bytes ...)
 |
 | 27613-h/images/q172.txt
 | (... OCR text ...)

4. Completing a bag: fetch.txt

For reasons of efficiency, a bag may be sent with a list of files to be fetched
and added to the payload before it can meaningfully be checked for
completeness. An optional top-level file named "fetch.txt", if present,
contains such a list. Each line of "fetch.txt" has the form

URL LENGTH FILENAME

where URL identifies the file to be fetched, LENGTH is the number of
octets in the file (or "-", to leave it unspecified), and FILENAME identifies
the corresponding payload file. One or more linear whitespace characters
(spaces or tabs) separate these three values, and any such characters in the
URL must be percent-encoded [RFC3986].

Because "fetch.txt" lists files that are absent from a sent bag, receivers that
are storing completed bags will want some way to record that the bag no
longer needs completing, such as renaming this file (e.g., to "fetch-

Page 4

orig.txt") or changing a database flag; if bag return is supported, the
"fetch.txt" file will need to be modified as appropriate to support the return
transmission method. Receipt of a bag is not final until all absent files are
fetched. The receiver of a bag with a "fetch.txt" tag file is expected
promptly to complete the bag by fetching all URL-identified components as
the sender is not bound to make the absent components available
indefinitely.

The "fetch.txt" file essentially allows a bag to be transmitted with "holes" in
it, which can be practical for several reasons. For example, it obviates the
need for the sender to stage a large serialized copy of the content until the
bag is transferred to the receiver. Also, this method allows a sender to
construct a bag from components that are either a subset of logically related
components (e.g., the localized logical object could be much larger than
what is intended for export) or assembled from logically distributed sources
(e.g., the object components for export are not stored locally under one
filesystem tree).

5. Tag file manifest: tagmanifest-<algorithm>.txt

Zero or more tag manifest files may be present. A tag manifest is a top-
level file with a name of the form tagmanifest-algorithm.txt, where
algorithm is a string specifying a cryptographic checksum algorithm. For
example, a tag manifest file using SHA1 would have the name

tagmanifest-sha1.txt

A tag manifest contains a list of tag files that must be present in a fully
constituted bag. It has the same form as the file manifest described earlier,
but must not list any payload files. As a result, no FILENAME listed in a
tag manifest begins "data/...".

6. Valid bags and complete bags

A bag is considered valid if it is complete and if each CHECKSUM in
every payload manifest and tag manifest can be verified against the
contents of its corresponding FILENAME.

A bag is considered complete if every file in every manifest is present, and
if every payload file appears in at least one file manifest. A payload file

Page 5

does not need to appear in every file manifest as long as it appears in one
file manifest (i.e., it must belong to the "union" of file manifests). In a
complete bag containing one or more tag manifests, any tag file may appear
in zero or more of those manifests, but every tag file appearing in any tag
manifest must be present in the bag.

Because manifests do not list directories specifically, only referencing them
indirectly in file pathnames, they cannot account for receipt of an empty
directory. Nor can its creation be implied using a "fetch.txt" file. To
guarantee receipt of a directory, the sender may wish to include at least one
file; it suffices, for example, to include a zero-length file named ".keep".

7. Other BagIt metadata: package-info.txt

Any other tag files are considered to be package information separate from
the payload content. The "data/" directory is the custodial focus of a bag,
and the top-level files comprising the tag are intended to facilitate and
document the transfer. The tag could also be used to help in returning the
bag to its sender at some point in the future.

Tag information is optional. If present, tag information at a minimum
consists of a package-info.txt file. This is a text file intended primarily for
human readability using email-style headers [RFC2822]. It is
recommended that lines not exceed 79 characters in length. As mentioned
earlier, text is assumed to be Unicode encoded as UTF-8.

The package-info.txt file contains metadata elements describing the overall
package. It looks like this.

 Source-Organization: Spengler University
 Organization-Address: 1400 Elm St., Cupertino, California, 95014
 Contact-Name: Edna Janssen
 Contact-Phone: +1 408-555-1212
 Contact-Email: ej@spengler.edu
 External-Description: Uncompressed greyscale TIFF images from the
 Yoshimuri papers colle...
 Packing-Date: 2008-01-15
 External-Identifier: spengler_yoshimuri_001
 Package-Size: 260 GB
 Bag-Group-Identifier: spengler_yoshimuri
 Bag-Count: 1 of 15
 Internal-Sender-Identifier: /storage/images/yoshimuri
 Internal-Sender-Description: Uncompressed greyscale TIFFs created from
 microfilm and are...

Page 6

All elements are provided as clues to ease handling on the sender and
receiver ends. No particular relationship between the sender organization
and the payload content is assumed; for example, the sender may be a
content aggregator, redistributor, collector, curator, or producer.

Reserved element names are case-insensitive and defined as follows.

Source-Organization
Organization transferring the content.

Organization-Address
Mailing address of the organization.

Contact-Name
Person at the source organization who is responsible for the
content transfer.

Contact-Phone
International format telephone number of person or position
responsible.

Contact-Email
Fully qualified email address of person or position responsible.

External-Description
A brief explanation of the contents and provenance.

Packing-Date
Date (YYYY-MM-DD) that the content was prepared for
delivery.

External-Identifier
A sender-supplied identifier for the package. This identifier
must be unique across the sender's content, and if recognizable
as belonging to a globally unique scheme, the receiver should
make an effort to honor reference to it.

Package-Size
Size or approximate size of the package being transferred,
followed by an abbreviation such as MB (megabytes), GB, or
TB; for example, 42600 MB, 42.6 GB, or .043 TB.

Bag-Group-Identifier
(optional) A sender-supplied identifier for the set, if any, of
bags to which it logically belongs. This identifier must be
unique across the sender's content, and if recognizable as
belonging to a globally unique scheme, the receiver should
make an effort to honor reference to it.

Bag-Count
(optional) Two numbers separated by "of", in particular, "N of
T", where T is the total number of bags in a group of bags and
N is the ordinal number within the group; if T is not known,
specify it as "?" (question mark). Examples: 1 of 2, 4 of 4, 3 of
?, 89 of 145.

Internal-Sender-Identifier

Page 7

(optional) An alternate sender-specific identifier for the content
and/or package. This value may be useful to senders who may
retrieve the content in the future. For instance, it might contain
values that are relevant to the re-use of the content at the
sender's organization.

Internal-Sender-Description
(optional) A sender-local prose description of the contents of
the package, to assist in later use if returned to the sender.

Arbitrary other package metadata elements may follow these elements.
Such elements could be used to describe the payload in ways intended for
the sender in case of bag return.

8. Bag serialization

In some scenarios, such as network transfer, it may be convenient for the
sender first to serialize the filesystem hierarchy representing the bag (the
outermost base directory) into a single-file archive format such as TAR or
ZIP. After receiving the resulting aggregate file, which we will call a
serialization, the receiver deserializes it to recreate the filesystem hierarchy.
Several rules govern the serialization of a BagIt bag and apply equally to
TAR or ZIP archive files:

1. One and only one bag is contained in one serialization.
2. The serialization has the same name as the bag's base directory, but

with an extension added to identify the format; for example, the
receiver of "mybag.tar.gz" expects the corresponding base directory
to be created as "mybag".

3. A bag is never serialized from within its base directory, but from the
parent of the base directory (where the base directory appears as an
entry). Thus, after a bag is deserialized in an empty directory, a
listing of that directory shows exactly one entry. For example,
deserializing "mybag.zip" in an empty directory causes the creation
of the base directory "mybag" and, beneath "mybag", the creation of
all payload and tag files.

4. One un-archiving (deserialization) step produces a single base
directory bag with the top-level structure as described in this
document without requiring an additional un-archiving step. For
example, after one un-archiving step it would be an error for the
"data/" directory to appear as "data.tar.gz". TAR and ZIP files may
appear inside the payload beneath the "data/" directory, where they
would be treated as opaquely as any other payload file or directory.

Page 8

When preparing a bag in an archive file format, care must be taken to
ensure that the format's restrictions on file naming, such as allowable
characters, length, or character encoding, will support the receiver's
requirements.

9. Disk and network transfer

When recording a bag on physical media (such as hard disk, CD-ROM, or
DVD), the sender will need to select and format the media in a manner
compatible with the bag's content requirements for such things as file
names and sizes, and with the receiver's technical infrastructure. If the
receiver's infrastructure is not known or the media needs to be compatible
with a range of potential receivers, consideration should be given to
portability and common usage. For example, a "lowest common
denominator" for some content and potential receivers could be USB disk
drives formatted with the FAT32 filesystem.

Transmitting a whole bag in serialized form as a single file will tend to be
the most straightforward mode of transfer. When throughput is a priority,
use of "fetch.txt" lends itself to an easy, application-level parallelism in
which the list of URL-addressed items to fetch is divided among multiple
processes. The mechanics of sending and receiving bags over networks is
otherwise out of scope of the present document and may be facilitated by
protocols such as [GRABIT].

10. Another example bag

Here's a bag of material resulting from a hypothetical web harvest. As
before, lines of file content are shown in parentheses beneath the file name,
with long lines continued indented on subsequent lines. This bag is not
completely retrieved, of course, until every component listed in the
"fetch.txt" file is retrieved.

mysecondbag/
|
| manifest-md5.txt
| (93c53193ef96732c76e00b3fdd8f9dd3 data/Collection Overview.txt)
| (e9c5753d65b1ef5aeb281c0bb880c6c8 data/Seed List.txt)
| (61c96810788283dc7be157b340e4eff4 data/gov-20060601-oth-
050019.arc.gz)

Page 9

| (55c7c80c6635d5a4c8fe76a940bf353e data/gov-20060601-img-
100002.arc.gz)
|
| fetch.txt
| (http://WB20.Stanford.Edu/gov-06-2006-ARC/gov-20060601-oth-
050019.arc.gz
| 26583985 data/gov-20060601-oth-050019.arc.gz)
| (http://WB20.Stanford.Edu/gov-06-2006-ARC/gov-20060601-img-
100002.arc.gz
| 99509720 data/gov-20060601-img-100002.arc.gz)
| (...)
|
| package-info.txt
| (Source-organization: California Digital Library)
| (Organization-address: 415 20th Street, 4th Floor, Oakland, CA. 94612)
| (Contact-name: A. E. Newman)
| (Contact-phone: +1 510-555-1234)
| (Contact-email: alfred@ucop.edu)
| (External-Description: The collection "Local Davis Flood Control)
| Collection" includes captured California State and local websites)
| containing information on flood control resources for the Davis and)
| Sacramento area. Sites were captured by UC Davis curator Wrigley)
| Spyder using the Web Archiving Service in February 2007 and)
| October 2007.)
| (Packing-date: 2008.04.15)
| (External-identifier: ark:/13030/fk4jm2bcp)
| (Package-size: about 22Gb)
| (Internal-sender-identifier: UCDL)
| (Internal-sender-description: University of California Davis Libraries)
|
| bagit.txt
| (BagIt-version: 0.9)
| (Tag-File-Character-Encoding: UTF-8)
|
\--- data/
 |
 | Collection Overview.txt
 | (... narrative description ...)
 |
 | Seed List.txt
 | (... list of crawler starting point URLs ...)

11. Interoperability: Windows and Unix file naming

Page 10

Whether transmitted over a network or on physical media, the naming of
the files in the bag may be affected by differences in platforms between the
sending and receiving sides of the transfer. Besides the fundamental
difference between path separators ('\' and '/'), generally, Windows
filesystems have more limitations than Unix filesystems. Windows path
names have a maximum of 255 characters, and none of these characters
may be used in a path component:

 < > : " / | ? *

Windows also reserves the following names: CON, PRN, AUX, NUL,
COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9,
LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9. See
[MSFNAM] for more information.

12. Security considerations

The BagIt package format poses no direct risk to computers and networks.
Implementors of tools that complete bags by retrieving URLs listed in a
"fetch.txt" file need to be aware that some of those URLs may point to
hosts, intentionally or unintentionally, that are not under control of the bag's
sender. Checksum algorithms are designed to protect against corruption and
spoofing in bag transfer, but they are not a guarantee.

13. References

[ENCDEP] Tabata, K., “A Collaboration Model between Archival Systems to Enhance
the Reliability of Preservation by an Enclose-and-Deposit Method,” 2005
(PDF).

[GRABIT] NDIIPP/CDL, “The GrabIt Package Exchange Protocol,” 2008 (HTML).
[MSFNAM] Microsoft, “Naming a File,” 2008 (HTML).
[RFC1321] Rivest, R., “The MD5 Message-Digest Algorithm,” RFC 1321, April 1992.
[RFC2822] Resnick, P., “Internet Message Format,” RFC 2822, April 2001.
[RFC3174] Eastlake, D. and P. Jones, “US Secure Hash Algorithm 1 (SHA1),” RFC 3174,

September 2001.
[RFC3629] Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63,

RFC 3629, November 2003.
[RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier

(URI): Generic Syntax,” STD 66, RFC 3986, January 2005 (TXT, HTML,
XML).

Page 11

http://www.iwaw.net/05/papers/iwaw05-tabata.pdf
http://www.iwaw.net/05/papers/iwaw05-tabata.pdf
http://www.iwaw.net/05/papers/iwaw05-tabata.pdf
http://dot.ucop.edu/home/jak/grabitspec.html
http://dot.ucop.edu/home/jak/grabitspec.html
http://msdn2.microsoft.com/en-us/library/aa365247.aspx
http://msdn2.microsoft.com/en-us/library/aa365247.aspx
mailto:rivest@theory.lcs.mit.edu
ftp://ftp.isi.edu/in-notes/rfc1321.txt
ftp://ftp.isi.edu/in-notes/rfc2822.txt
ftp://ftp.isi.edu/in-notes/rfc3174.txt
ftp://ftp.isi.edu/in-notes/rfc3629.txt
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
ftp://ftp.isi.edu/in-notes/rfc3986.txt
ftp://ftp.isi.edu/in-notes/rfc3986.txt
ftp://ftp.isi.edu/in-notes/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml

Appendix A. Change history

(This appendix to be removed in the final draft.)

A.1. Changes from draft-01, 2008.05.30

Added mention of preserving empty directories.

Simplified function of "tag checksum file" to "tag manifest", having same
format as payload manifest. The tag manifest is optional and need not
include every tag file.

Loosened interpretation of payload manifest to "union" concept: every
payload file must be listed in at least one manifest but need not be listed in
every manifest.

Shortened the Introduction's first paragraph to be less duplicative of text in
the Abstract.

Changed Delivery-Date to Packing-Date.

Correctly sorted the author list and clarification of deserialization wording.

A.2. Changes from draft-00, 2008.03.24

Author address corrections and miscellaneous stylistic edits.

Added some mention of physical media-based transfers, preferred
characteristics of transfer filesystems, and network transfer issues.

Added basic bag example early and changed the narrative to more clearly
delineate component files.

Wording changes under fetch.txt, and note that fetch.txt will need to be
modified before bag return.

Fixed checksum encoding reference to base64 rather than hex. (B. Vargas)

Page 12

Described simple normalization approach for checksum algorithm names.
(B. Vargas)

In the example bag, add the ARC files found in the fetch.txt to the manifest
as well (A. Turoff)

Authors' Addresses

 Andy Boyko
 Library of Congress
 101 Independence Avenue SE
 Washington, DC 20540
 USA

Email: andy@boyko.net

 John A. Kunze
 California Digital Library
 415 20th St, 4th Floor
 Oakland, CA 94612
 US

Fax: +1 510-893-5212
Email: jak@ucop.edu

 Justin Littman
 Library of Congress
 101 Independence Avenue SE
 Washington, DC 20540
 USA

Fax: +1 202-707-1957
Email: jlit@loc.gov

 Liz Madden
 Library of Congress
 101 Independence Avenue SE
 Washington, DC 20540
 USA

Fax: +1 202-707-1957
Email: emad@loc.gov

Page 13

mailto:andy@boyko.net
mailto:jak@ucop.edu
mailto:jlit@loc.gov
mailto:emad@loc.gov

	 The BagIt File Package Format (V0.95)
	Abstract
	1. Introduction
	2. BagIt package layout
	2.1. Declaration that this is a bag: bagit.txt
	2.2. File manifest: manifest-<algorithm>.txt
	3. Example of a basic bag
	4. Completing a bag: fetch.txt
	5. Tag file manifest: tagmanifest-<algorithm>.txt
	6. Valid bags and complete bags
	7. Other BagIt metadata: package-info.txt
	8. Bag serialization
	9. Disk and network transfer
	10. Another example bag
	11. Interoperability: Windows and Unix file naming
	12. Security considerations
	13. References
	Appendix A. Change history
	A.1. Changes from draft-01, 2008.05.30
	A.2. Changes from draft-00, 2008.03.24
	Authors' Addresses

