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In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, 
developed by the Computational Sciences division at NASA Ames Research Center, has been 
uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous 
Sciencecraft Experiment (ASE) which provides an on-board planning capability and a 
software bridge to the spacecraft’s 1773 data bus. Using a model of the spacecraft 
subsystems, L2 predicts nominal state transitions initiated by control commands, monitors 
the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant 
observations. Fault detection and isolation is done by determining a set of component modes, 
including most likely failures, which satisfy the current observations. All mode transitions 
and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to 
EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1’s 
nominal imaging timeline are demonstrated by injecting simulated faults on-board the 
spacecraft. The solid state recorder stores the science images and also hosts the experiment 
software. The main objective of the experiment is to mature the L2 technology to Technology 
Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the 
challenging technical issues encountered. Future extensions may explore coordination with 
the planner, and model-based ground operations. 

I. Introduction 
 

ENESIS project manager, Don Sweetnam, on the Genesis crash in September 2004 after parachutes failed to 
open: “Keep in mind that when we buttoned the system up at Kennedy Space Center and launched it in 2001, 

its fate was sealed,” he said. “There was really nothing we could do at this stage to change the outcome.” NASA has 
recently experienced a string of such failures: Columbia, Mars Polar Lander, Mars Climate Orbiter and Mars 
Observer. The common theme is that our current space systems have limited capability to recognize when the 
mission is in danger and recover to save the day. What is called for is a paradigm shift to a new strategy recognizing 
that mission-critical systems need on-board decision support, especially when operating without human oversight. 
 The technological approach of autonomy has arisen to resolve this challenge. The high-level requirements for 
autonomous systems may be specified as including: 

 the capability to detect anomalous conditions and isolate to the root cause fault (aka diagnosis); 
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 the capability to plan and execute actions to enable mission continuation despite failures (aka recovery). 
 Over the past several years, NASA Ames Research Center (ARC) has been developing autonomous systems 
with these requirements in mind, and is establishing a track record of mission experience. In 1999, the autonomous 
Remote Agent Experiment (RAX) flew on the Deep Space One (DS-1) spacecraft [3] with an earlier version of 
Livingstone. Livingstone is a model-based diagnostic engine developed at Ames by the Model-Based Diagnosis and 
Recovery (MBDR) group [2]. Since then, the MDBR group has created the next version of Livingstone, called 
Livingstone 2 (L2). L2 was further developed by Integrated Vehicle Health Management (IVHM) applications: the 
Propulsion IVHM Technology Experiment for X-Vehicles (PITEX) project [7], performing monitoring and 
diagnosis of a high-fidelity simulation of the X-34 Main Propulsion System on flight-like hardware; and on the X-37 
IVHM experiment where L2 memory management and coding was modified to meet Boeing’s stringent flight 
standards. 
 This paper describes the results of a year-long project in which L2 was uploaded to the Earth Observing One 
(EO-1) satellite to conduct diagnostic tests. EO-1 was developed by NASA Goddard Space Flight Center (GSFC) 
under the New Millenium Program (NMP), and launched in November 2000. EO-1 is an active earth science 
observation platform, operated by Goddard. In this technology infusion experiment, L2 and the spacecraft diagnostic 
models were integrated with the Autonomous Sciencecraft Experiment (ASE) [4]. ASE, another NMP project, was 
developed at NASA Jet Propulsion Laboratory (JPL), and first ran on-board EO-1 on September 20, 2003. The 
autonomy software consists of JPL’s Continuous Activity Scheduling, Planning, Execution and Replanning 
(CASPER) planner; the science event detection software and the Spacecraft Command Language (SCL), developed 
by Interface and Control Systems (ICS). SCL provides an executive, a database and visibility to commands issued to 
the spacecraft, and observations of the spacecraft response telemetry on the 1773 data bus. L2 provides a diagnosis 
component to ASE, not included before. 

Two major challenges were encountered during the course of this work: first, the development of a streamlined 
real-time interface capability to facilitate experiment integration with a real-time system; and second, integration and 
testing on the flight hardware testbeds. Incremental testing was utilized to build up the system in verifiable pieces, 
and automated regression testing ensured that new functionality was thoroughly verified before being baselined. The 
experiment was developed and deployed within a year under tight resource constraints which did not allow for 
model development to the full extent possible. Several interesting subsystems are not in scope: the attitude control 
subsystem (ACS) exhibits continuous behavior; the power subsystem interacts with many other client subsystems 
and serves as a good illustration of the value added by system health management in resolving root cause faults. A 
few component faults have occurred on the spacecraft; modeling these components and triggering these faults could 
allow L2 to diagnose actual faults rather than simulations. Software diagnosis is a relatively untouched research area 
which could also be explored here; complex autonomous systems are a fertile testbed for run-time software 
validation technologies. The nature of hardware and software models is essentially the same; real-time behavior is 
captured in the L2 model, abstracted from the underlying implementation. 
 In early September 2004, the combined L2 and ASE software was uploaded to EO-1. After successful checkout 
procedures, full scenario validation commenced. As of this writing, eight out of the seventeen defined scenarios 
have been validated, with the remaining scenarios to be completed in several weeks. Performance of the experiment 
has been flawless with no issues or technical problems. 

II. Diagnostic Requirements for the Experiment 
The primary goal of this experiment is to increase the Technology Readiness Level (TRL) of L2 by 

demonstration on a flight vehicle. However, several significant functional advances in the technology over previous 
work with Livingstone are to be demonstrated over the course of the experiment; these are shown in Table 1.  

Table 1: L2 on EO-1’s intended functionality compared with previous Livingstone experiments 

Functionality Remote 
Agent (L1) 

PITEX 
(L2) 

L2 on EO-1 

Spacecraft Hardware in the Loop Yes No Yes 
Multiple Hypotheses No Yes Yes 
Multiple Hypotheses with Backtracking No Yes Yes 
Diagnosis During Transients No Yes Yes 
Separation of Code and Model Yes No Yes 
Number of diagnostic scenarios 2 24 17 
Long-term space operations  No No Yes 
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Remote Agent was a flight experiment on DS1, using the original Livingstone (L1). The PITEX experiment 
applied L2 to the proposed X-34 vehicle, running the diagnosis system on flight-like hardware with simulated data. 
As seen from the table, the L2 on EO-1 experiment will incorporate all previously developed functionality of L2, 
and demonstrate additional functionality as well. A subset of these requirements forms the success criteria for the 
experiment, as explained in the next section. Coverage of a number of diagnostic scenarios and the goal of long-term 
space operations (for days or weeks) are desired features rather than minimum requirements. 

A. Minimum Success Criteria 
In order for the experiment to be deemed successful, a minimum set of features are validated by on-board 

demonstration. These required features are the Minimum Success Criteria (MSC), identified below. Each MSC must 
be demonstrated with at least one scenario. In the results section, a scenario which demonstrates each of these 
requirements is presented. 

1) Spacecraft Hardware in the Loop 
 The L2 experiment shall be deployed on-board EO-1, and shall demonstrate monitoring of 

nominal operations and diagnosis of anomalies in the spacecraft subsystems. 
2) Multiple Hypotheses 

 Multiple alternative fault candidates shall be presented in the failure diagnosis, with an indication 
of relative likelihood. 

3) Multiple Hypotheses with Backtracking 
 In light of new evidence, the list of diagnostic fault candidates shall be revised. This may entail a 

revision of the most likely fault candidate. 
4) Diagnosis During Transients 

 Diagnosis of a failure shall not be delayed by concurrent commanding of the spacecraft. 
The real-time interface has the capability to diagnose subsystems prior to system-wide quiescence, in 
the face of concurrent, overlapping commanding. In other words, the state of each component is 
tracked regardless of whether commands are being simultaneously issued to several components. This 
allows diagnosis earlier than would be possible if we had to wait until all commands had been 
processed. This is explained further in section D on ‘Diagnosis in Real-World Systems’. 

5) Separation of Code and Model 
 All L2 code shall be independent of the diagnostic model. 

The idea of the model-based approach is to maintain a separation between the diagnostic engine and 
the model. In the PITEX project, this separation was not enforced in the Real-Time Interface (RTI), 
which contained domain-specific information in order to perform diagnosis while some subsystems are 
transitioning. As a result, any model change would require corresponding updates to the source code, 
and upload of the entire ASE/L2 code to the spacecraft, which takes over a week.  

B. Diagnostic Scope of L2 Models 
The scope of the EO-1 L2 model is a subset of the spacecraft components most relevant to the science data 

collection sequence: the two imaging instruments, called the Hyperion Science Instrument (HSI) and the Advanced 
Land Imager (ALI), and the solid state data recorder, called the Wideband Advanced Recorder Processor (WARP). 
To facilitate the integration of L2 with ASE, the model was scoped to utilize the commands and telemetry already 
made available to ASE by SCL. 

Scenario scope is based on the nominal imaging sequence or Data Collection Event (DCE), the commands and 
telemetry observations sent to the Hyperion, ALI, and WARP. This sequence is: 

 Components set to image collection mode 
 Dark calibration image taken 
 ALI and Hyperion aperture covers opened 
 Earth image taken 
 ALI and Hyperion aperture covers closed 
 Dark calibration image taken again 
 Components set to standby mode 

Diagnostic scenarios were defined in order to get full coverage of fault modes in the model. Each of the fault 
scenarios is based on the nominal scenario, with only the minimal required telemetry modified to inject the fault. 
There are seventeen scenarios in total: 

• one for the nominal data collection event,  
• one for a dual nominal data collect (two successive earth images),  
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• and one to test each of the fault modes in the L2 model (15 faults in all). 
The L2 models of EO-1 were created at Ames in an iterative four step process: knowledge acquisition, scope 

definition, model creation, and model testing. Knowledge about the components, and how they behave under 
nominal and fault conditions, was acquired from EO-1 engineers with several years of experience operating the 
spacecraft. Most of the EO-1 telemetry observations used by the model are already discrete, hence creating a 
discrete L2 model was straight-forward. Development of the models is described further in [1]. 

III. Architecture of the Diagnostic Experiment 

A. EO-1 Satellite Configuration 
L2 was integrated with the ASE software architecture and infrastructure, and uploaded to the Wideband 

Advanced Recorder Processor (WARP) on-board the EO-1 satellite. The WARP is situated within the satellite 
avionics as shown in Figure 1. Avionics subsystems communicate over a 1773 command-response data bus. The 
Command and Data Handling (C&DH) processor serves as the 1773 Bus Controller (BC). Other subsystems such as 
the WARP are Remote Service Nodes (RSN), which communicate under direction of the BC. The C&DH and 
WARP both contain radiation-hardened Mongoose-5 (M-5) processors with very limited available CPU, around 8 
MIPS. Along with hosting the experiment software, the WARP also runs the flight software for data recording and 
playback. Other systems relevant to the current scope of the experiment are the Advanced Land Imager (ALI) and 
Hyperion imaging instruments. ALI and Hyperion transfer image data directly to the WARP via RS-422 serial link. 
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Figure 1: EO-1 Avionics Configuration 

 L2 runs only during periods in which ASE is in control of the spacecraft as only ASE commands are visible to 
L2. During normal operations, the C&DH performs commanding of the spacecraft using pre-defined command 
sequences called Absolute Time Sequence (ATS) or Relative Time Sequence (RTS) loads. When ASE is 
commanding the spacecraft, the C&DH is silent. The X-band downlink is used for high data rate image transfer to 
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ground stations, known as playback. Thereafter, the WARP is reformatted to free up memory for further imaging. 
The S-band is used for low data rate uplink of commands from the Mission Operations Center (MOC) and downlink 
of spacecraft telemetry for display at the MOC. 

B. Software Architecture of the Experiment on the WARP 
The experiment architecture and software configuration on the WARP are shown in Figure 2. The diagnostic 

software has the capability to process spacecraft telemetry and to downlink health status telemetry for monitoring 
and display at the MOC. 
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 Figure 2: Architecture integrating L2 with ASE on the WARP 

 The CASPER planner generates high-level plans and sends them to SCL. The SCL Executive executes scripts 
that send out commands, to execute the plan. The SCL Software Bridge connects applications on the WARP M-5 
processor to the 1773 spacecraft data bus for processing incoming telemetry and output of spacecraft commands and 
ASE/L2 telemetry. The SCL Data Repository stores incoming telemetry data and has database triggers for 
notification of commands sent and observations received to subscriber processes such as L2. 

L2 performs diagnosis using a qualitative model of the target system to predict observations given the 
commands issued to the system, postulating diagnoses to explain discrepant observations. A diagnosis consists of a 
group of candidates, their constituent fault modes and the likelihood or rank of each candidate. Each candidate is a 
set of component fault modes consistent with the current observations, a system-wide hypothesis of what could have 
gone wrong. The alternate candidates are different hypotheses of faults which can explain the observations, also 
known as an ambiguity group. 

A range of development and integration activities were undertaken to support the experiment. Tasks included 
development of L2 models of the EO-1 spacecraft and instrumentation, and failure scenario definition, based on 
knowledge acquired from EO-1 engineers. A Real-Time Interface (RTI) and corresponding modeling methodology 
were developed to account for communication delays and physical transients in the system. L2, models of the 
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spacecraft, and the RTI were integrated with SCL and the CASPER planner, first on a PowerPC embedded system 
and then on EO-1's flight hardware testbed, a pair of M-5 processors with the Virtual Satellite (VSat) simulation 
system. System engineering of the overall autonomy software included allocation of VxWorks task priorities, SCL 
software bus bandwidth, CPU and RAM resources. All defined diagnostic scenarios were validated with the 
integrated software on the flight hardware testbeds, prior to upload. Details of the development, and of the 
integration and test processes on the flight hardware testbeds, are laid out in more detail in a prior paper [1]. 

C. L2 Diagnostic Technology 
The L2 algorithm and component-connection model are introduced here. An L2 diagnosis system consists of 

two main parts, a general inference engine and a domain-specific model. When L2 is deployed on different devices 
or vehicles, the inference engine does not change; only a new model needs to be developed. L2 uses a qualitative 
representation, propositional logic, to model the target system. The target system may be physical, such as the 
spacecraft hardware, or logical, such as the spacecraft software. The model is used to predict the states of system 
components given their initial state, commands which affect the system, and possible mode transitions. If there is a 
discrepancy between observed and predicted behavior, this generates conflicts in L2's internal belief state. These 
conflicts are then used to focus the search for component modes (including failure modes), which are consistent with 
the observed state of the world and the possible mode transitions in the model. This process is known as conflict-
directed best-first search. The set of component modes, which is found to satisfy the constraints expressed in the 
model, is termed the mode vector. 

An L2 component-connection model describes nominal and failure modes for components in terms of the 
propositional constraints that must hold in those modes. The connections are the constraints that must hold due to 
interactions between the components. Transitions between modes of a component are triggered by guard conditions 
such as commands, similar to a finite state machine representation. The model is qualitative due to the underlying 
propositional logic representation. Constraints are expressed as discrete variable-value pairs. Any real-valued sensor 
data must be transformed into qualitative data, "binned" by software called monitors, before being used by L2. For 
the failure modes, the likelihood of the failure is indicated by a rank, an approximation of the prior probability. The 
mode vector describes the overall state of the system. 

As an example of an L2 model, the Hyperion model is shown in Figure 3 as visualized in the Stanley model 
development environment. 
 

 
 

Figure 3: L2 model of the Hyperion subsystem and Hyperion Electronics Assembly Component 
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There are three components modeled in the Hyperion subsystem; the main aperture cover, which opens to 
image the earth, the aperture cover sensor, which measures the aperture cover's position, and the electronics 
assembly, containing the imaging electronics. The imageData variable represents what type of image is being taken. 
It is set based on the modes of the electronicsAssembly and the apertureCover: NO_IMAGE if the 
electronicsAssembly is disabled, DARK_IMAGE if the electronics are enabled but the apertureCover is closed, and 
EARTH_IMAGE if the electronics are enabled and the aperture cover is open. 

The model for the Hyperion electronics assembly component is also shown in Figure 3, as an example of a 
component model. Here we see the modes and transitions defined for that component. The Hyperion electronics 
assembly has three nominal modes: idle, standby, and imaging. Usually the instrument is in idle mode. Just before 
taking an image, the component is commanded into standby mode, sending power to the imagers. The device 
transitions into imaging mode to start the flow of image data. When the image is complete, the device transitions 
back to standby, then back to idle if no more images will be taken shortly. The L2 model also includes the transient 
modes of toImaging, toStandby, and toIdle. The model does not transition directly between the nominal modes; 
these transient modes are defined to allow any transient effects of the system to die out before the diagnosis. More 
explanation on the use of transient modes is given in Section D. Finally, there are two fault modes defined: error 
and unknownFault. Error corresponds to a particular telemetry item reporting the status of the Hyperion electronics, 
and unknownFault is a catch-all mode for all faults not modeled explicitly.   

Of course, the sensors on a spacecraft can fail as well as the components. Several sensors with fault modes are 
included as components in the EO-1 L2 model. As L2 can report multiple hypotheses, often when a failure occurs 
L2 reports that a component could have failed or a sensor could have failed. Reporting of multiple hypotheses is a 
key feature to be demonstrated in the experiment. 

D. Diagnosis in Real-World Systems 
Real-time effects must be accounted for in real-world systems. We have identified two major issues:  

 Propagation delays in telemetry communication and software processing links. 

 Continuous transients in the physical system. 

As an example of the importance of real-time effects, it is believed that the Mars Polar Lander (MPL) spacecraft 
was destroyed due to premature thrust termination of the descent engine, on detecting dynamic transients in the Hall 
effect sensor [6, section 7.7]. Shutdown was commanded by the flight software, based on status reported by the 
touchdown monitor. A requirement to disable Hall sensor input until below 40m altitude had been generated to 
protect against premature shutdown in the event of transients or failed sensors. However, this requirement did not 
flow-down to the software requirements. The resulting flight software design did not include a mechanism to protect 
against transients, permitting the failure to occur. 

In hindsight, a cross-subsystem model of the MPL landing phase, with constraints on altitude and landing gear 
mode, would have generate a conflict for the simultaneous constraints of high altitude and Hall sensors indicating 
touchdown. A sensor failure would most likely have been diagnosed, either of the altitude sensor or the Hall sensor. 
With correlating information the controller could have rejected the conflicting information from the Hall sensor and 
avoided premature engine cutoff. 

Propagation delays may be tiny but they are finite. If all observations or commands for a modeled system have 
not yet been received and L2 performs a diagnosis, a false alarm or false positive may be reported as conflicts arise 
due to inconsistencies between new and stale data. At best, L2 may report a false negative (missed diagnosis) due to 
incomplete information. The design of the RTI for EO-1, in conjunction with a transient modeling methodology, 
account for propagation delays and continuous transients, allowing sufficient time for all information to be received 
and for transients to settle. EO-1 does exhibit continuous behavior, most notably in the attitude control system, but 
this is outside the scope of the current model.  

 
1) The Real-Time Interface (RTI) 
The RTI is a software module that resides between the SCL Adaptor and L2. The RTI developed for the PITEX 

project implemented the design decision to withhold effected observations from L2 until the end of the transient 
period, so that a diagnosis can be made during a transient period without incurring false positives. This involved 
complex time-segmenting and reasoning to determine when to withhold and when to forward commands and 
observations to L2. The RTI contained a list of which telemetry observations are affected by which commands; 
when a command was received, it removed the telemetry observations associated with that command and reinstated 
them after the transient period was over. Such decisions required the encoding of domain-specific information in the 
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RTI to know which observations were affected by the transient. This created a dependency between the RTI and the 
model, a violation of the engine-model separation principle. In addition, when several commands are being executed 
concurrently and observations are affected by more than one command, deciding when to withhold and reinstate 
observations becomes burdensome. The implication of this design decision was twofold: unacceptable risk due to 
overly complex RTI software and the operational impact that any model change would require corresponding 
updates to the RTI and upload of the ASE/L2 code, a process which takes over a week. 

The RTI developed for EO-1 avoids these two pitfalls: its design is simple and contains no model references; 
commands and observations are forwarded to L2 immediately on notification by the SCL Adaptor. The new RTI 
works hand-in hand with the transient modeling methodology described below. Diagnoses can be made during a 
transient period and during concurrent commanding without incurring false positives, due to the modeling of 
transient modes. 

Both the PITEX RTI and the new RTI developed for EO-1 utilize timers to indicate the end of a transient period 
and transition to steady state mode, whether due to propagation delays or settling of physical transients. Timeouts 
are presently triggered by an empirically determined constant for each such component mode transition. By 
necessity, the timeout is an upper bound on the propagation delay and transient response.   
 

2) Transient Modeling Methodology  
Previously, L2 models contained only the steady-state modes of a component, and the model instantly 

transitioned between the steady-state modes, as shown on the left in Figure 4. The modeling methodology for real-
time systems, component models includes transient modes between the steady state modes in the component model, 
as shown on the right. The transient modes are loosely constrained, allowing transient as well as steady state 
observations to be reported for mode identification without the need to withhold information.  

 

 
 Figure 4: L2 Component Models with and without Transient Modes 

The transition modes are inserted between the steady-state modes, e.g. instead of  transitioning directly from 
‘open’ to ‘closed’, the component transitions from ‘open’ to ‘closing’, then finally to ‘closed’ when we expect the 
observations to have settled. The transition modes are different from steady-state modes in that they contain no 
constraints. Thus, L2 has no expectation for telemetry values at this point, the telemetry observations can have any 
values and L2 will not generate a false alarm. When L2 is signaled that the transient period is over, it transitions into 
the final steady-state mode, and the constraints of the steady-state mode are imposed. Further, other components 
which are not affected by the component in transition may be diagnosed as usual. In effect, by including the 
transient modes, instead of the RTI withholding and reinstating potentially conflicting telemetry observations, L2 
removes and reinstates the constraints as the component transitions through transients.  

In the case of blind commanding or rapid commanding, the component model facilitates direct transitions 
between transient modes, as can be seen from the short-cut between ‘opening’ and ‘closing’ modes in the transient 
model. 

The transient period timeout need not be fixed at the upper bound, early timeout and transition to the steady 
state is possible and desirable to improve diagnostic performance. With monitor support, recognition of the end of 
the transient period allows early transition to the steady state, diagnosis of a failed transition, and identification and 
diagnosis of anomalous transients. Monitoring and diagnosis of systems during physical transients is an active area 
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of research, Hybrid Diagnosis. Continuous systems, such as propulsion systems, exhibit dynamic behavior with hard 
real-time diagnostic requirements - steady-state diagnosis is no longer sufficient. 

IV. Mission Operations for the Experiment 

A. Ground Operations  
Ground Operations for EO-1 are conducted at the GSFC Mission Operation Center (MOC). The MOC is 

connected to a network of ground stations which receive telemetry from and issue commands to the satellite. EO-1 is 
in a polar Sun Synchronous orbit and follows in formation 1 minute behind Landsat-7. The primary ground stations 
are in Poker Flat, Alaska and Svalbard, Norway and the Tracking and Data Relay Satellite System (TDRSS) can 
also be used to command and receive lower rate telemetry. 

The command and control software in the MOC is called Advanced Spacecraft Integration and System Test 
(ASIST). Ground commands are uplinked to the satellite through ASIST and telemetry is displayed via Standards-
based, Advanced Man-Machine Interface (SAMMI) pages. A screenshot of the SAMMI telemetry page developed 
for the L2 application is shown in Figure 5.  

 

 
 Figure 5: Example of L2 Telemetry Display - the L2 Checkout Procedure 

L2 uses three separate telemetry packets: one for diagnostic candidates, one for all mode transitions (both 
nominal and off-nominal), and one for a task status heartbeat. For instance, in the screenshot, there are three 
candidates for the L2 checkout procedure. All are double faults: (1) the Hyperion cover position sensor in an 
unknown fault and the ALI mechanism power sensor in an unknown fault, (2) the ALI mechanism power failed 
disabled and the Hyperion cover stuck closed, and (3) the ALI mechanism power failed disabled and the Hyperion 
cover position sensor in an unknown fault. The ranks of these double fault candidates are each two (displayed as 
Rank value of 1 for each component fault), making this a less likely candidate than a rank one single fault. 

In order for spacecraft and ground to process L2 telemetry, the exact data format with byte ordering and sizes in 
each packet is specified using the Record Definition Language (RDL). All L2 telemetry consists of integer values; 
this encoding consumes less bandwidth. Labels are used in the RDL specification to map these encoded values to 
meaningful text.  

The diagnostic output is also stored in integer-encoded log files on the WARP. After a test, the log files are 
compressed and downlinked to the ground, to be decompressed and decoded to human-readable text, for analysis. 

To support mission operations, certain commands can be issued by the MOC during a ground contact, using 
predefined procedures written in the Systems Test and Operations Language (STOL). A suite of STOL procedures 
has been developed for L2 operations, and documented in the EO-1 L2 Operations Procedures document, to handle:  
• Startup of the four L2 VxWorks tasks and the SCL2L2 Adaptor 
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• Changing of command timeout delays (utilized by the RTI) from the default values in the SCL database. 
• Reset of the scenario count, which limits the number of L2 test scenarios which can be run. This is done to 

conserve ramdisk space. 
• Procedures to download L2 log files for analysis, and to remove them from the WARP ramdisk once 

successfully downloaded. 
• Shutdown of the four L2 VxWorks tasks. 
• L2 checkout procedures, including a dark calibration procedure which exercises all imaging commands except 

for the opening and closing of the Hyperion and ALI instrument covers.  
Operations procedures may be used for updating the L2 model as well as for SCL database, project and script 

updates. These require no code changes. All code changes require complete upload of the ASE/L2 build, a 
significant undertaking of several days. 

B. Space Operations  
In order to operate the experiment in the blind, the scheduling and execution of on-board tests is automated. L2 

testing with any significant fault coverage would proceed very slowly, if commanded solely from the ground. 
Ground contacts tend to be short, with only about 10 minutes to execute procedures, and time between contacts of 
about 3 hours. The JPL CASPER planner provides the solution: autonomous in-space operations, which can be 
conducted out of ground contact. Scenario validation activities are specified in the CASPER goal file, as for any 
other activity to be planned. In initial tests, a Data Collect Event (DCE) is preceded by an l2-start activity, and 
succeeded by an l2-terminate activity. This runs L2 only during periods of activity that are in the current model 
scope. Terminating L2 between fault scenarios is also necessary to clear the previously diagnosed fault, prior to 
running the next scenario. 

It is also possible to run L2 for indefinite periods. In this experiment, we intend to run L2 for extended periods 
to monitor nominal operations, and hope to discover an actual fault. 

 

V. Results of L2 Validation on EO-1 

A. L2 Checkout 
In the L2 checkout tests, L2 and SCL execute without CASPER. Commands to the spacecraft are sent up from 

the MOC, in the form of STOL procedures. For the first test, L2 Checkout, several mode transitions are commanded 
and monitored and two unrelated faults are injected and diagnosed. The diagnostic telemetry from L2 Checkout as 
displayed in ASIST is shown in Figure 5. For the second test, a nominal dark calibration was performed. This 
exercises all commands in the imaging sequence as well as their timeout delays, other than the opening and closing 
of the instrument covers. 

The criteria for success are as follows: 
1) The diagnosis contains the injected fault as a candidate 
2) All other candidates in the diagnosis are also possible given the commands and observations 
The results for all of the L2 checkout tests are summarized in Table 2. As evident from the table, the L2 

checkout tests completed successfully. 

Table 2: Results of L2 Checkout Procedures 

Checkout 
Procedure 

Diagnostic Candidates Telemetry 
Correct? 

Logs 
Correct? 

ALI mechanism power sensor=unknown fault 
Hyperion cover position sensor = unknown fault 
ALI mechanism power = failed disabled 
Hyperion cover = stuck closed L2 Checkout 

ALI mechanism power = failed disabled 
Hyperion cover position sensor = unknown fault 

Y Y 

L2 Dark 
Calibration None. Nominal scenario. Y Y 

 
 The screenshot in Figure 5 shows the L2 telemetry page for the L2 Checkout Procedure. The relevant diagnostic 
information is that there are 2 candidates for this fault. Each candidate is a possible explanation of the current 
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observations. The first candidate contains a single fault, that the ALI's aperture cover is stuck closed. The second 
candidate contains two faults, that both of the LED sensors have failed. Each candidate is a possibility, according to 
the observations, but the single-fault candidate is more likely to have occurred than the double fault (as indicated by 
the lower number in the "Rank" column. Here, the two LED sensors were measuring the position of the aperture 
cover. Hence, L2's diagnosis is that either the aperture cover is stuckClosed, or both of the sensors measuring the 
cover position have failed. This split of "component failed or sensors failed" is a common result when using L2. 

B. Scenarios Demonstrating the Minimum Success Criteria 
 The results of the scenario testing completed thus far are shown in Table 3. All scenarios tested have completed 
successfully. No technical problems have occurred. 

 Table 3: Scenario Validation Test Results 

No. Scenario 
ID 

Sub-
system Fault Injected 

Final Diagnosis 
Candidate(s) and Component 
Fault(s) 

Passed? 

1 DCE  None. Nominal scenario. no component faults Y 
2 Dual  None. Nominal scenario. no component faults Y 
3 FS01 ALI Data-Gate Failed Disabled  Untested 

data-gate failed enabled 4 FS02 ALI Data-Gate Failed Enabled data-gate unknown fault Y 

5 FS03 ALI Mechanism Power Failed Disabled  Untested 

6 FS04 ALI Mechanism Power Failed Enabled  Untested 

7 FS05 ALI Mechanism Power Sensor Failed mechanism power sensor unknown 
fault Y 

aperture cover failed closed 
8 FS06 ALI Aperture Cover Failed Closed led08 unknown fault 

aperture cover stuck transitioning 
Y 

9 FS07 ALI Aperture Cover Failed Open  Untested 

10 FS08 ALI Aperture Cover Failed Intermediate  Untested 

11 FS09 ALI LED 09 Failed LED 09 unknown fault Y 
12 FS10 ALI LED 08 Failed  Untested 

aperture cover stuck open 
13 FS20 HSI Aperture Cover Failed Open aperture cover sensor unknown 

fault 
Y 

14 FS21 HSI Aperture Cover Failed Closed  Untested 

15 FS23 HSI Electronics Error  Untested 

16 FS24 HSI Aperture Cover Sensor Failed  Untested 

17 FS35 WARP Failed To Record software unknown fault Y 
 

In this section, scenarios which meet each Minimum Success Criteria requirement are explained 
 

1) Spacecraft Hardware in the Loop 
Nominal and dual nominal scenarios demonstrate nominal operations. All other scenarios demonstrate fault 

diagnosis. All scenarios are executed on-board with spacecraft hardware and software in the loop. 
2) Multiple Hypotheses 
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Scenario number 6, the ALI mechanism power failed enabled, meets this criterion. More than one possible 
explanation for the failure is given. In this scenario, the telemetry value reporting the mechanism power remains 
"enabled" at a time when the mechanism power should be "disabled". As a result, L2 reports two possible 
candidates: that the mechanism power component has failed in the "enabled" mode, or the sensor measuring the 
mechanism power has failed.  These two possibilities are indistinguishable according to the observations, and both 
remain throughout the scenario. 

3) Multiple Hypotheses with Backtracking 
Scenario number 11, the "open LED sensor" fault, meets this criterion. The likely hypotheses are revised based 

on updated observations received on the state of the spacecraft. Here, the "open LED sensor", which reports the state 
of the ALI aperture cover as "fully open" or "not fully open", fails. The fault is injected before the ALI aperture 
cover is opened, and the sensor reports "not fully open" for the entire scenario. The fault is detected after attempting 
to open the ALI aperture cover, and the two candidates from L2's diagnosis are (1) that the LED sensor has failed, or 
(2) that the ALI aperture cover has failed in the intermediate position. Again, both are possibilities given the 
observations. However, later in the scenario the ALI aperture cover is commanded to close, and we get an update 
from the "closed LED sensor" reporting that the ALI aperture cover is fully closed. This couldn't have happened if 
the ALI cover was in fact failed in the intermediate position, and as a result L2 rules out this possibility. The only 
candidate that persists to the end of the scenario is the sensor fault. 

4) Diagnosis During Transients  
Diagnosis of a failure shall not be delayed by concurrent commanding of the spacecraft: 
All scenarios satisfy this criterion. During a data collection, several components are commanded at once.  The 

separate commands given the separate components are diagnosed independently, based on the best information 
available at the time of diagnosis. 

5) Separation of Code and Model  
The RTI developed for L2 on EO-1 is domain-independent and does not have this limitation. All scenarios 

demonstrate this. 
The last two feature requirements, which are not MSC requirements, have not yet been validated: 
1) Coverage of diagnostic scenarios - several of the defined seventeen scenarios are not yet tested 
2) Long-term space operations 
In the onboard tests, all eight executed scenarios have completed successfully. Nine of the seventeen scenarios 

remain to be tested. We expect scenario FS01 to fail, if onboard timing latencies are similar to those experienced on 
the flight hardware testbed. During ground testing, it was found that the ALI data gate was commanded enabled, but 
commanded disabled again before the "enabled" telemetry was received. Therefore, L2 saw the same final disabled 
mode and did not have timely information to detect that the intermediate mode transition had failed. L2 assumes no 
faults exist until evidence to the contrary is received; in this case, that assumption resulted in a missed diagnosis or 
false negative for FS01 during ground testing. 

A minor difference between the on-board test results and L2 ground unit testing exists, with FS06 reporting a 
different double-fault candidate. These candidates are both equally likely. Because of CPU restrictions, L2 is 
restricted from exhausting all possible candidates. Here, it simply found this double-fault candidate first. If L2 was 
not limited by CPU, it would have returned both double-fault candidates (for a total of 3 candidates) in both the unit 
test and the on-board test. 

VI. Conclusion 
Over the past year, the project has gone from initiation to deployment on-board a spacecraft. Models of the 

satellite were developed from scratch and diagnostic scenarios validated on a series of testbeds of increasing fidelity. 
A new Real-Time Interface and transient modeling methodology were employed to enable the software to run on a 
real-world system, with reduced complexity and complete independence of the RTI from the model specification. 
The project team learned about the satellite, about operations procedures, and how to coax delicate hardware and 
firmware systems into a working state. In September, L2 checkout on-board EO-1 was successfully completed and 
diagnostic scenario validation commenced. Tests are expected to continue until December.  

This experiment was undertaken primarily to mature L2 in a flight environment and ready it for technology 
transfer to industry. This has been accomplished. TRL 7, defined as ‘System prototype demonstration in a space 
environment’, has been reached. The L2 source code has been made open source, available at [8].  

Continued effort in the area of model-based diagnosis and system health management is essential to further 
develop this critical technology for infusion into NASA’s missions. Further important work remains that we would 



 
American Institute of Aeronautics and Astronautics 

 

13

like to address, such as enacting recovery once a diagnosis is made by closing the loop with the CASPER planner, 
with performance improvements to meet hard real-time requirements. The L2 models could be grown to cover 
additional subsystems such as power and attitude control, to self-diagnose faults within the autonomy software, and 
to diagnose known faults that have occurred on-board the spacecraft. 
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