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Remote Sensing 
of Fuels

• Fuels are highly variable 
in space

• Remote sensing is well-
suited to mapping this 
variability

• Surface fuels vs. canopy 
fuels

• Fuel properties that can 
be mapped using remote 
sensing:
– Fuel type
– Fuel load and structure
– Fuel condition



Fuel Type
Important parameters for 

fuels assessment and fire 
behavior modeling:
– Vegetation type or species 

maps (often intermediate 
step)

– Fuel models
• Anderson (1982) 13 

models
• Scott and Burgan (2005) 

40 dynamic fuel models



Mapping Fuel Type

• Moderate resolution 
multispectral data are 
sufficient for mapping 
vegetation for use in 
simpler fuel model 
classifications

• Hyperspectral data permit 
discrimination of more 
detailed fuel types



• National fuels mapping project supported by US 
Forest Service, USGS, and Nature Conservancy

• Surface fuel models mapped using four variables:
– existing vegetation type
– canopy cover
– canopy height
– environmental site potential 

• Existing vegetation type and canopy cover/height 
are derived from Landsat data

• Fuel model classification rulesets were developed 
using expert review and refined through 
calibration workshops
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Santa Barbara Wildland-Urban Interface
Species-Level Fuel Type Map
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Grass
Soil

Dennison and Roberts, 2003



Urban Fuels: Hyperspectral Mapping of 
Wood Shake Roofs

Martin Herold



AVIRIS Image Acquired over 
2003 Simi Fire
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Fuel Load and 
Structure

Important parameters for 
fuels assessment and fire 
behavior modeling:
– Fuel load (surface fuels)
– Canopy bulk density
– Canopy height
– Canopy base height
– Canopy cover
– Ladder fuels



Remote Sensing of 
Fuel Load and Structure

• Grass, shrub surface fuel loadings can be 
mapped using multispectral indices

• LANDFIRE uses Landsat data as one 
input into a predictive model for canopy 
bulk density and canopy base height 

• Lidar can directly measure canopy height 
and canopy base height

• Models can be used to estimate canopy 
bulk density from lidar returns
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Small Footprint Lidar Vertical Cross-sections

Riaño et al., 2003
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Fuel Load and Structure Estimation 
Using Canopy Complexity

• Small footprint lidar was used to create digital 
canopy model (DCM)

• Canopy complexity measures calculated from 
DCM
– Rumple index (Parker et al., 2004) = ratio of DCM 

area to ground surface area
– Standard deviation of DCM height

Parameter Linear Model Adjusted r2

Available Canopy Fuel (Mg/ha) 8.071*MEAN -6.95*RUMPLE + 8.441 0.851

Canopy Bulk Density (kg/m3) 0.062*MEAN -0.063*RUMPLE + 0.099 0.745

Kerry Halligan and Dar Roberts



Storm Creek Fire scar

Kerry Halligan and Dar Roberts
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Large Footprint Lidar: LVIS

Birgit Peterson



Large Footprint Lidar: LVIS

Birgit Peterson



Shrub Canopy Height
• Lidar has limited 

abilities for retrieving 
fuel properties from 
shrubs and grasses

• Riaño et al. (2007) 
demonstrated small 
footprint lidar 
estimation of shrub 
height using aerial 
orthoimages to 
separate shrub returns 
from ground returns

Riaño et al., 2007



Fuel Condition

Important parameters 
for fuels monitoring 
and fire behavior 
modeling:
– Phenology and 

senescence
– Fuel moisture (live 

fuels)
– Fractions of live and 

dead fuels



Remote Sensing of Fuel Condition

• Fuel condition can be assessed using 
multispectral, hyperspectral and radar remote 
sensing
– Phenology and senescence can be assessed using time 

series of vegetation indices
– Live fuel moisture is correlated with direct and indirect 

measures of canopy water content
• Water absorption indices
• Chlorophyll absorption indices

– Fractions of live and dead fuels can be measured using 
spectral mixture analysis (green vegetation fraction vs. 
non-photosynthetic vegetation fraction)

– Soil moisture is correlated with radar backscatter



Vegetation Spectral Changes
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R2 = 0.80 R2 = 0.88

Kraivut Charoensiri
and Phil Dennison

Chamise Chaparral Sagebrush
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Stow and Niphadkar, 2007



Eastern Forest Live Fuel Moisture

• MODIS band 
response to 
LFM simulated 
using 
PROSPECT 
leaf model

• An inversion 
model 
calibrated using 
ground data can 
be used to map 
live fuel 
moisture

Hao and Qu, 2007
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SAR Monitoring of 
Soil Moisture

• Backscatter increases with 
increased soil moisture

• Scattering by vegetation 
canopies reduces the magnitude 
of the backscatter signal

• Works best in fire scars and low 
canopy cover

• Backscatter is well correlated 
with the “Drought Code” portion 
of the Canadian Forest Fire 
Danger Rating System

Laura Bourgeau-Chavez

27 July 1992
Low Fire Danger

DC = 231

26 August 1994
Extreme Fire Danger

DC = 616



SMA Fractions for 
Fuel Condition Monitoring

• Fractions of green 
vegetation and non-
photosynthetic 
vegetation can be 
used to assess 
grass fuel condition

• Elmore et al., 2005 
used SMA fractions 
calculated from 
AVIRIS and MODIS 
data to monitor 
seasonal changes 
in grassland fuels

Elmore et al., 2005



Fire Potential Index for MODIS
• MODIS indices more 

closely related to live 
fuel moisture can be 
used to improve the 
Fire Potential Index

• A new FPI developed 
for Southern 
California uses VARI-
based relative 
greenness, dead fuel 
moisture, moisture of 
extinction, and live-to-
dead ratio

Schneider et al., 2008



Fire Danger Monitoring Based on 
Energy of Pre-ignition

• Pre-ignition energy is the 
energy required to bring 
fuel from its ambient 
temperature to ignition 
temperature

• Live fuel moisture and 
land surface temperature 
measured from MODIS 
data can be used to 
approximate pre-ignition 
energy

Dasgupta et al., 2006

Fire Susceptibility Index values



Future Research Directions
1. Increased exploitation of lidar data, 

hyperspectral data, and data fusion
2. Movement towards mapping continuous fuel 

properties rather than discrete fuel models
3. More complex models of fire danger and fuel 

condition
– Example: Non-photosynthetic vegetation fraction + 

soil water balance
4. Mapping disturbance and climate change 

impacts on fuels
– Fire, bark beetle outbreaks, invasive species, 

drought



Issues Facing Future Research: 
Limited Data Availability

• Recent research 
using hyperspectral 
and lidar data can’t 
be applied to large 
areas

• Data availability is 
also an issue for 
applications using 
multispectral data



Issues Facing Future Research: 
Fuel Properties as Inputs for Fire Models

• Current operational 
fire spread models 
don’t make good 
use of most remote 
sensing products

• Can remote 
sensing products 
drive future fire 
models?

Rod Linn



Issues Facing Future Research: 
Spatial Scale

• What scales are appropriate for research on 
remote measurement of fuel properties?
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