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Introduction:  The objective of this investigation is  
to develop a prototype floodwater detection algorithm for 
Hyperion imagery.  It will be run autonomously onboard 
the EO-1 spacecraft under the Autonomous Sciencecraft 
Experiment (ASE)[1-3].  This effort resulted in the 
development of two classifiers for floodwater, one of 
several classifier types that have been developed and will 
be uploaded to EO-1 in early 2004 in order to detect 
change related to transient processes such as volcanism, 
flooding, and ice formation and retreat [4]. 

Data: L0.5 Hyperion data were used to develop two 
floodwater classifiers: Avra Valley (AV) and Muddy 
Water (MW).  For our investigation, we are most 
interested in seasonal flooding scenes, which include the 
following areas: (1) Avra Valley, Arizona (CAVSARP 
Recharge Facility [5]; ground-truthing field site; Fig. 1a), 
(2) Brahmaputra River, India, (3) Yukon Flats, Alaska 
(Fig 2a), (4) Yellow River, China (Fig. 3a), (5) Chief 
Island, Botswana, Africa, and (6) Rio Tanquari Pantanal 
Swamps, Brazil.  The advantage of using Hyperion data 
over some of the traditional satellite data is that it is 
hyperspectral with 242 spectral bands covering the 400 to 
2400 nm spectral range at ~10-nm spectral resolution and 
30-m spatial resolution.  As a result, we are not limited by 
a few spectral bands and can utilize the full visible and 
near infrared (NIR) spectrum  in classifier development 
for floodwater whose spectral signature can vary 
depending on its water composition. 

Influences on water spectral signature: Water 
absorbs more in longer wavelength visible and near 
infrared radiation than in shorter visible wavelengths. 
Thus, water typically looks blue or blue-green due to a 
strong reflectance at these shorter wavelengths, and 
darker if viewed at red or NIR wavelengths.  Suspended 
sediment in the upper layers of the water body will also 
allow better reflectivity and a brighter appearance of the 
water. The apparent color of the water will show a slight 
shift to longer wavelengths. Suspended sediment can be 
easily confused with shallow clear water, since these two 
conditions appear very similar. Sediments can also give 
water a dark brownish color (Fig.3a) or a milky color (as 
in the Yukon Flats scenes; Fig. 2a).  Chlorophyll in algae 
absorbs more of the blue wavelengths and reflects the 
green, making some water appear more green in color 
when algae is present. Topography of the water surface 
(e.g., smooth, rough, floating materials, vegetation poking 
out of the water, etc.) can also lead to complications for 
water-related interpretation due to potential problems of 
specular reflection and other influences on color and 

brightness.  All these complications in the water spectral 
signature led us to develop a general non-scene specific 
flowchart (see Fig. 4), as a guideline in the floodwater 
classifiers development. 

Approach: We began this effort by working with an 
existing band ratio developed from a scene that displayed 
the shield complex of Mt. Etna and nearby Mediterranean 
Sea, which discriminated the pristine volcanic landscape 
from the ocean water.  In general, the optical properties of 
ocean water is largely affected by phytoplankton and its 
breakdown products [6]. Next, we tried to apply the Mt. 
Etna band ratio to the Avra Valley scenes where there is 
ground truth information.  It did not perform well.  This 
observation was determined to result from a difference in 
the water composition.  The water from the CAVSARP 
recharge water [2] is influenced by ingredients more than 
phytoplankton.  These may include dissolved organic 
matter, dead particulate organic matter, and/or  inorganic 
matter (dissolved and particulate).  Using this 
information, candidate bands were then picked where 
there is a significant separation between the water and the 
other spectra.  Preferences were given to bands that were 
already chosen from other classifiers (in this case the 
cloud classifier). The new classifier performed optimally 
on the Avra Valley scenes (Fig. 1b).  This Avra Valley 
classifier (AV) was then applied to other areas.  AV 
worked relatively well for other areas such as Yukon 
Flats, Alaska (Fig. 2b), except in the case of the Yellow 
River where the water is laden with clay (Fig. 3b).  For 
example, AV details water from erosional features such as 
streamlined bedforms in many of the scenes (Fig. 2b).  
For the Yellow River case a muddy water classifier (MW) 
was developed using the same methodology. 

Description/Results: The criteria of using AV for 
floodwater detection is a ratio greater than 2.0 between 
radiance recorded in spectral bands 20 and 51 (0.549 and 
0.864 µm).  It works globally on river systems that have 
high flood probability and low sediment load.  For MW, the 
criterion for floodwater detection is a ratio of less than 
0.625 between band 85 and band 51 (0.993 and 0.864 
µm).  It works also globally on flood-prone river systems but 
with a relatively high sediment load.  At these selected 
bands, there is a large separation between radiance 
reflected by floodwater and by the surrounding features.  
Pixels detected using both methods are color-coded blue 
in the classifier test runs (Figs 1b,2b,3b). 

Summary and future work: The two floodwater 
classifiers are ready for upload to EO-1 and deployment 
for the 2004 ASE mission.  Future investigations for 
floodwater detection would include using spectral 
information changes caused by other flood-related  
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surface modification (e.g., topographic, geomorphic, and 
biologic), which could be indicative of flooding.     
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Figures 1a,b. Results for CAVSARP ground truth site.   Figures 2a,b. Results for Yukon Flats. 
     

 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 Figures 3a, b. Result for Yellow River scene.                Figures 4. Floodwater detection development flow chart.                     
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