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ABSTRACT/RESUME 

The Autonomous Sciencecraft Experiment (ASE) is 
currently flying onboard the Earth Observing One (EO-
1) Spacecraft.  This software enables the spacecraft to 
autonomously detect and respond to science events 
occurring on the Earth.  The package includes software 
systems that perform science data analysis, deliberative 
planning, and run-time robust execution.  Because of the 
deployment to the EO-1 spacecraft, the ASE software 
has stringent constraints of autonomy and limited 
computing resources.  We describe these constraints and 
how they are reflected in our operations approach.  A 
summary of the final results of the experiment is also 
included. This software has demonstrated the potential 
for space missions to use onboard decision-making to 
detect, analyze, and respond to science events, and to 
downlink only the highest value science data.  As a 
result, ground-based mission planning and analysis 
functions have been greatly simplified, thus reducing 
operations cost.  The operational cost savings are 
detailed within this paper. 
 
1. INTRODUCTION 

Since January 2004, the Autonomous Sciencecraft 
Experiment (ASE) running on the EO-1 spacecraft has 
demonstrated several integrated autonomy technologies 
to enable autonomous science. Several science 
algorithms including: onboard event detection, feature 
detection, change detection, and unusualness detection 
are being used to analyze science data. These algorithms 
are used to downlink science data only on change, and 
detect features of scientific interest such as volcanic 
eruptions, growth and retreat of ice caps, cloud 
detection, and crust deformation. These onboard science 
algorithms are inputs to onboard decision-making 
algorithms that modify the spacecraft observation plan 
to capture high value science events. This new 
observation plan is then executed by a robust goal and 
task oriented execution system, able to adjust the plan to 
succeed despite run-time anomalies and uncertainties. 
Together these technologies enable autonomous goal-
directed exploration and data acquisition to maximize 
science return. This paper describes the specifics of the 

ASE and relates it to past and future flights to validate 
and mature this technology. 
 
The ASE onboard flight software includes several 
autonomy software components:  
• Onboard science algorithms that analyze the image 

data to detect trigger conditions such as science 
events, “interesting” features, changes relative to 
previous observations, and cloud detection for 
onboard image masking 

• Robust execution management software using the 
Spacecraft Command Language, SCL (SCL Web 
Page, 2005) package to enable event-driven 
processing and low-level autonomy 

• The Continuous Activity Scheduling Planning 
Execution and Replanning (CASPER) (Chien, 
2000) software that replans activities, including 
downlink, based on science observations in the 
previous orbit cycles 

 
The onboard science algorithms analyze the images to 
extract static features and detect changes relative to 
previous observations. This software has already been 
demonstrated on EO-1 Hyperion data to automatically 
identify regions of interest including land, ice, snow, 
water, and thermally hot areas. Repeat imagery using 
these algorithms can detect regions of change (such as 
flooding, ice melt, and lava flows). Using these 
algorithms onboard enables retargeting and search, e.g., 
retargeting the instrument on a subsequent orbit cycle to 
identify and capture the full extent of a flood.  
 
Although the ASE software is running on the Earth 
observing spacecraft EO-1, the long-term goal is to use 
this software on future interplanetary space missions. 
On these missions, onboard science analysis will enable 
capture of short-lived science phenomena. In addition, 
onboard science analysis will enable data be captured at 
the finest time-scales without overwhelming onboard 
memory or downlink capacities by varying the data 
collection rate on the fly. Examples include: eruption of 
volcanoes on Io, formation of jets on comets, and phase 
transitions in ring systems. Generation of derived 
science products (e.g., boundary descriptions, catalogs) 



 

and change-based triggering will also reduce data 
volumes to a manageable level for extended duration 
missions that study long-term phenomena such as 
atmospheric changes at Jupiter and flexing and cracking 
of the ice crust on Europa.  
 
The onboard planner (CASPER) generates mission 
operations plans from goals provided by the onboard 
science analysis module. The model-based planning 
algorithms enable rapid response to a wide range of 
operations scenarios based on a deep model of 
spacecraft constraints, including faster recovery from 
spacecraft anomalies. The onboard planner accepts as 
inputs the science and engineering goals and ensures 
high-level goal-oriented behavior. 
 
The robust execution system (SCL) accepts the 
CASPER-derived plan as an input and expands the plan 
into low-level commands. SCL monitors the execution 
of the plan and has the flexibility and knowledge to 
perform event driven commanding to enable local 
improvements in execution as well as local responses to 
anomalies. 
 

Figure 1.  Autonomous Science Mission Concept  
 
A typical ASE demonstration scenario involves 
monitoring of active volcano regions such as Mt. Etna 
in Italy. (See Fig. 1.)  Hyperion data have been used in 

ground-based analysis to study this phenomenon. The 
ASE concept is applied as follows: 
 
1. Initially, ASE has a list of science targets to 

monitor that have been sent as high-level goals 
from the ground. 

2. As part of normal operations, CASPER generates a 
plan to monitor the targets on this list by 
periodically imaging them with the Hyperion 
instrument.  For volcanic studies, the infrared and 
near infrared bands are used. 

3. During execution of this plan, the EO-1 spacecraft 
images Mt. Etna with the Hyperion instrument. 

4. The onboard science algorithms analyze the image 
and detect a fresh lava flow.  Based on this 
detection the image is downlinked.  Had no new 
lava flow been detected, the science software would 
generate a goal for the planner to acquire the next 
highest priority target in the list of targets.  (See 
Fig. 1.) The addition of this goal to the current goal 
set triggers CASPER to modify the current 
operations plan to include numerous new activities 
in order to enable the new science observation.   

5. The SCL software executes the CASPER generated 
plans in conjunction with several autonomy 
elements. 

6. This cycle is then repeated on subsequent 
observations.  

  
However, building autonomy software for space 
missions has a number of key challenges; many of these 
issues increase the importance of building a reliable, 
safe, agent.  Some of these issues include: 
1. Limited, intermittent communications to the agent.   

A typical spacecraft in low earth orbit (such as EO-
1) has 8 communications opportunities per day, 
each lasting about 10 minutes.  This means that the 
spacecraft must be able to operate for long periods 
of time without supervision.  For deep space 
missions the spacecraft may be in communications 
far less frequently.  Some deep space missions only 
contact the spacecraft once per week, or even once 
every several weeks. 

2. Spacecraft are very complex.  A typical spacecraft 
has thousands of components, each of which must 
be carefully engineered to survive rigors of space 
(extreme temperature, radiation, physical stresses).  
Add to this the fact that many components are one-
of-a-kind and thus have behaviors that are hard to 
characterize. 

3. Limited observability. Because processing 
telemetry is expensive, onboard storage is limited, 
and downlink bandwidth is limited, engineering 
telemetry is limited.  Thus onboard software must 
be able to make decisions on limited information 
and ground operations teams must be able to 
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operate the spacecraft with even more limited 
information. 

4. Limited computing power.  Because of limited 
power onboard, spacecraft computing resources are 
usually very constrained.  An average spacecraft 
CPUs offer 25 MIPS and 128 MB RAM – far less 
than a typical personal computer.  Our CPU 
allocation for the ASE on EO-1 is 4 MIPS and 
128MB RAM. 

5. High stakes.  A typical space mission costs 
hundreds of millions of dollars, any failure has 
significant economic impact.  The total EO-1 
Mission cost is over $100 million dollars.  Over 
financial cost, many launch and/or mission 
opportunities are limited by planetary geometries.  
In these cases, if a space mission is lost it may be 
years before another similar mission can be 
launched.  Additionally, a space mission can take 
years to plan, construct the spacecraft, and reach 
their targets. This delay can be catastrophic.   

 
2. THE EO-1 MISSION  

Earth Observing-1 (EO-1) is the first satellite in NASA's 
New Millennium Program Earth Observing series (EO-1 
Web Page, 2005). The primary focus of EO-1 is to 
develop and test a set of advanced technology land 
imaging instruments. EO-1 was launched on a Delta 
7320 from Vandenberg Air Force Base on November 
21, 2000. It was inserted into a 705 km circular, sun-
synchronous orbit at a 98.7 degrees inclination. This 
orbit allows for 16-day repeat tracks, with 3 over flights 
per 16-day cycle with a less than 10-degree change in 
viewing angle. For each scene, between 13 to as much 
as 48 Gbits of data from the Advanced Land Imager 
(ALI), Hyperion, and Atmospheric Corrector (AC) are 
collected and stored on the onboard solid-state data 
recorder.  
 
EO-1 is currently in extended mission, having more 
than achieved its original technology validation goals. 
As an example, over 18,000 data collection events have 
been successfully completed, against original success 
criteria of 1,000 data collection events. The ASE 
described in this paper uses the Hyperion hyper-spectral 
instrument. The Hyperion is a high-resolution imager 
capable of resolving 220 spectral bands (from 0.4 to 2.5 
µm) with a 30-meter spatial resolution. The instrument 
images a 7.7 km by 42 km land area per image and 
provides detailed spectral mapping across all 220 
channels with high radiometric accuracy. 
 
The EO-1 spacecraft has two Mongoose M5 processors. 
The first M5 is used for the EO-1 command and data 
handling functions. The other M5 is part of the WARP 
(Wideband Advanced Recorder Processor), a large mass 
storage device. Each M5 runs at 12 MHz (for ~8 MIPS) 
and has 256 MB RAM. Both M5’s run the VxWorks 

operating system. The ASE software operates on the 
WARP M5. This provides an added level of safety for 
the spacecraft since the ASE software does not run on 
the main spacecraft processor. 
 
3. ONBOARD SCIENCE ANALYSIS 

The first step in the autonomous science decision cycle 
is detection of interesting science events. In the 
complete experiment, a number of science analysis 
technologies have been flown including: 
• Thermal anomaly detection – uses infrared spectra 

peaks to detect lava flows and other volcanic 
activity. (See Fig. 3a.) 

• Cloud detection (Griffin, 2003) – uses intensities at 
six different spectra and thresholds to identify 
likely clouds in scenes. (See Fig. 3b.) 

• Flood scene classification – uses ratios at several 
spectra to identify signatures of water inundation as 
well as vegetation changes caused by flooding. 

• Change detection – uses multiple spectra to identify 
regions changed from one image to another. This 
technique is applicable to many science phenomena 
including lava flows, flooding, freezing and 
thawing and is used in conjunction with cloud 
detection. (See Fig. 3c.) 

 
Fig. 3a shows both the visible and the infrared bands of 
the same image of the Mt. Etna volcano in Italy. The 
infrared bands are used to detect hot areas that might 
represent fresh lava flows within the image. In this 
picture, these hot spots are circled with red dotted lines. 
The area of hot pixels can be compared with the count 
of hot pixels from a previous image of the same area to 
determine if change has occurred. If there has been 
change, a new image might be triggered to get a more 
detailed look at the eruption. 
 
Fig. 3b shows a Hyperion scene and the results of the 
cloud detection algorithm. This MIT Lincoln Lab 
developed algorithm is able to discriminate between 
cloud pixels and land pixels within an image. 
Specifically, the gray areas in the detection results are 
clouds while the blue areas are land. The results of this 
algorithm can be used to discard images that are too 
cloudy. 
 
Fig. 3c contains 4 images. The top two are detailed 
Hyperion images taken of the Larson Ice Shelf in 
Antarctica on 4/6/2002 and 4/13/2002. A large change 
in the ice shelf is seen in comparing the images. The 
bottom 2 images are results of the land-ice-water 
detection algorithm. The white area of the image is ice 
and the blue area is water. The ice and water pixels can 
be counted and compared with the second image to 
determine if change has occurred. If change is detected, 
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the image can be downlinked and further images of the 
area can be planned. 
 

The onboard science algorithms are limited to using 12 
bands of the hyperion instrument.  Of these 12 bands, 6 

Figure 3a.  Thermal Anomalies associated with volcano 
activity at Mt. Etna, visual spectra at left and infrared 
at right.  

 
Figure 3b.  Cloud Detection of a Hyperion Scene – 
visual image at left, grey in the image at right indicates 
detected cloud. 

 
Figure 3c.  Change Detection Scenes indicating Ice 
Breakup in the Larsen Ice Shelf, Antarctica.  

 
are dedicated to the cloud detection algorithm. The 
other six are varied depending on which science 
algorithm is used. The images used by the algorithm are 
“Level 0.5,” an intermediate processing level between 
the raw Level 0, and the fully ground processed Level 1. 
Each of the science algorithms except the generalized 
feature detection use simple threshold checks on the 
spectral bands to classify the pixels.  
 
Initial experiments used the cloud detection triggers. 
The MIT Lincoln Lab developed cloud detection 
algorithm (Griffin, 2003) uses a combination of spectral 
bands to discriminate between clouds and surface 

features. The Hyperion Cloud Cover (HCC) algorithm 
was run on all images acquired during ASE 
experiments. In the event of high cloud cover, the image 
could be discarded and a new goal could be sent to 
CASPER to re-image the area or image another high 
priority area. Images with low cloud cover can either be 
downlinked or analyzed further by other ASE science 
algorithms. 
 
The JPL developed thermal anomaly algorithms uses 
the infrared spectral bands to detect sites of active 
volcanism. There are two different algorithms, one for 
daytime images and one for nighttime images. The 



 

algorithms compare the number of thermally active 
pixels within the image with the count from a previous 
image to determine if new volcanism is present. If no 
new volcanism is present, the image can be discarded 
onboard. Otherwise, the entire image or the interesting 
section of the image can be downlinked. 
 
The University of Arizona developed flood scene 
classification algorithm uses multiple spectral bands to 
differentiate between land and water. The results of the 
algorithm include are compared with land and water 
counts from a previous image to determine if flooding 
has occurred. If significant flooding has been detected, 
the image can be downlinked. In addition, a new goal 
can be sent to the CASPER planning software to image 
adjacent regions on subsequent orbits to determine the 
extent of the flooding. We have noticed a few problems 
when ground testing this algorithm with existing 
Hyperion data. The presence of clouds or heavy smoke 
within an image can cause the algorithm to fail.  
 
The Arizona State University developed Snow-Water-
Ice-Land (SWIL) algorithm is used to detect lake 
freeze/thaw cycles and seasonal sea ice. The SWIL 
algorithm uses six spectral bands for analysis. 
 
4. ONBOARD MISSION PLANNING 

In order for the spacecraft to respond autonomously to 
the science event, it must be able to independently 
perform the mission planning function. This requires 
software that can model all spacecraft and mission 
constraints. The Continuous Activity Scheduling 
Planning Execution and Replanning (CASPER) (Chien, 
2000) software performs this function for ASE. 
CASPER represents the operations constraints in a 
general modeling language and reasons about these 
constraints to generate new operations plans that respect 
spacecraft and mission constraints and resources. 
CASPER uses a local search approach (Rabideau, 1999) 
to develop operations plans.  
 
Because onboard computing resources are scarce, 
CASPER must be very efficient in generating plans. 
While a typical desktop or laptop PC may have 2000-
3000 MIPS performance, 5-20 MIPS is more typical 
onboard a spacecraft. In the case of EO-1, the 
Mongoose V CPU has approximately 8 MIPS. Of the 3 
software packages, CASPER is by far the most 
computationally intensive. For that reason, our 
optimization efforts were focused on CASPER. Since 
the software was already written and we didn’t have 
funding to make major changes in the software, we had 
to focus on developing an EO-1 CASPER model that 
didn’t require a lot of planning iterations. For that 
reason, the model has only a handful of resources to 
reason about. This ensures that CASPER is able to build 
a plan in tens of minutes on the relatively slow CPU. 

 
CASPER is responsible for mission planning in 
response to both science goals derived onboard as well 
as anomalies. In this role, CASPER must plan and 
schedule activities to achieve science and engineering 
goals while respecting resource and other spacecraft 
operations constraints. For example, when acquiring an 
initial image, a volcanic event is detected. This event 
may warrant a high priority request for a subsequent 
image of the target to study the evolving phenomena. In 
this case, CASPER modifies the operations plan to 
include the necessary activities to re-image. This may 
include determining the next over flight opportunity, 
ensuring that the spacecraft is pointed appropriately, 
that sufficient power, and data storage are available, that 
appropriate calibration images are acquired, and that the 
instrument is properly prepared for the data acquisition.  
 
5. ONBOARD ROBUST EXECUTION  

ASE uses the Spacecraft Command Language (SCL) 
(SCL Web Page, 2005) to provide robust execution. 
SCL is a software package that integrates procedural 
programming with a real-time, forward-chaining, rule-
based system. A publish/subscribe software bus, which 
is part of SCL, allows the distribution of notification 
and request messages to integrate SCL with other 
onboard software. This design enables both loose or 
tight coupling between SCL and other flight software as 
appropriate.  
 
The SCL “smart” executive supports the command and 
control function. Users can define scripts in an English-
like manner. Compiled on the ground, those scripts can 
be dynamically loaded onboard and executed at an 
absolute or relative time. Ground-based absolute time 
script scheduling is equivalent to the traditional 
procedural approach to spacecraft operations based on 
time. In the EO-1 experiment, SCL scripts are planned 
and scheduled by the CASPER onboard planner. The 
science analysis algorithms and SCL work in a 
cooperative manner to generate new goals for CASPER. 
These goals are sent as messages on the software bus. 
 
Many aspects of autonomy are implemented in SCL. 
For example, SCL implements many constraint checks 
that are redundant with those in the EO-1 fault 
protection software. Before SCL sends each command 
to the EO-1 command processor, it undergoes a series of 
constraint checks to ensure that it is a valid command. 
Any pre-requisite states required by the command are 
checked (such as the communications system being in 
the correct mode to accept a command). SCL also 
verifies that there is sufficient power so that the 
command does not trigger a low bus voltage condition 
and that there is sufficient energy in the battery. Using 
SCL to check these constraints and including them in 



 

the CASPER model provides an additional level of 
safety to the autonomy flight software. 
 
6. FLIGHT STATUS 

The ASE software was integrated under the flight 
version of VxWorks in December 2002, and has since 
been integrated and tested with the WARP flight 
software. We tested the individual software components 
in isolation to gain confidence before we performed an 
integrated flight test. 
 
The cloud detection algorithms were tested onboard in 
March 2003. The SCL software was tested onboard in 
May 2003. This test involved starting up the SCL 
software, testing the software bridge between the SCL 
software bus and WARP software bus, testing the SCL 
message and telemetry logs, testing the sending of 
commands, and testing the sending and executing of 
commands that performed a dark calibration of the 
Hyperion instrument.  
 
In July 2003, a ground version of CASPER generated 
several plans that were subsequently uplinked and 
executed onboard. These plans included image data 
takes, maneuvers, and telecommunication passes. The 
purpose of this test was to prove that CASPER could 
generate valid plans that could be executed by the 
satellite.  
 
In August 2003, onboard decompression was tested. 
This capability is used to compress the software before 
uplink because the uplink rate is only 2 Kb/s.  Without 
compression it would take more than a week to upload 
the entire ASE software. This test involved uplinking 
several compressed files, decompressing them onboard, 
and then downlinking them. The files were then 
checked for errors. 
 
The ASE software has been flying onboard the EO-1 
spacecraft since January 2004. In January and February 
2004, we tested several autonomous instrument data 
acquisition experiments using CASPER/SCL. This test 
involved uplinking a high level goal that includes a 
target location and a few instrument mode parameters. 
We have steadily increased the level of autonomy since 
this period. In April 2004, we started the first closed-
loop execution where ASE autonomously analyzes 
science data onboard and triggers subsequent 
observations. So far, we have run over 200 of these 
trigger experiments with over 2000 autonomously 
planned image data takes.   The ASE software is now 
the baseline planning software for EO-1, and has been 
running almost continuously onboard for several 
months. 
 

7. PREPARING THE ASE FOR SPACE 

FLIGHT 

Given the many challenges to developing flight 
software, this section discusses several issues 
encountered in preparing the CASPER planner for 
flight.  Specifically, we describe: 
• Reducing the CASPER image size – With 

infrequent and short ground contacts and limited 
available memory, we needed to reduce the 
CASPER image size.  We discuss our strategies to 
reduce the CASPER image size. 

• Approach to long term planning – CASPER must 
be able to autonomously plan for a week’s worth of 
EO-1 activities, which includes over 100 science 
observations.  We discuss how this is achieved 
within the available memory and CPU. 

• Speed improvements to meet autonomy 
requirements – Several model and code 
optimizations were performed to increase the 
running speed of ASE. 

 
In addition, we have performed several optimizations on 
the data collected relating to the state and actions of the 
planner.   
 
7.1  Reducing the CASPER image size 

CASPER’s core planning engine is the Automated 
Scheduling and Planning Environment (ASPEN) 
ground-based planner.  ASPEN is a re-usable 
framework, which is capable of supporting a wide 
variety of planning and scheduling applications.  It 
provides a set of software components commonly found 
in most planning systems such as: an expressive 
modeling language, resource management, a temporal 
reasoning system, and support of a graphical user 
interface.  Because of limited onboard computing 
memory, we had to reduce the image size.  CASPER 
developers took two approaches to reducing the image 
size: removing unneeded components and reducing code 
image size inefficiencies.  Prior to this work, the image 
size of CASPER was 12MB. 
 
The CASPER development team went through the core 
software and removed each software component 
deemed unnecessary for flight.  Several modules 
removed from the CASPER code include: 
• Backtracking Search – The ASPEN framework 

provides several search algorithms that perform 
backtracking search.  On ASE, we have decided to 
use the repair search algorithm, so these other 
algorithms were not needed. 

• Optimization – CASPER provides the capability to 
optimize the schedule based on several preferences 



 

defined by mission planners.  However, we have 
decided not to use this functionality for ASE. 

• GUI Sockets – Because ASPEN is a ground-based 
planner, it provides a GUI for visualizing the 
schedule and interacting with it.  Communication 
with this GUI is done through the ASPEN socket 
interface.  In flight, support for a GUI is not 
necessary. 

• General Heuristics – The ASPEN core contains 
multiple sets of generic heuristics that have been 
found to be useful across multiple projects.  
CASPER for ASE requires a subset of these 
heuristics; therefore, the unused sets were removed. 

• Generalized Timelines – Generalized timelines 
provides a general infrastructure to model complex 
state variables and resources.  This infrastructure 
was not required for ASE and was removed. 

 
Removing software components trimmed approximately 
3MB from the CASPER image size. 
 
CASPER also makes heavy use of the Standard 
Template Library (STL), specifically the containers 
provided.  STL templates are widely known to increase 
code size in C++ because for each container defined in 
CASPER, the code may be duplicated several times.  
There exist various compiler techniques available that 
attempts to minimize the duplication.  To minimize the 
impact of code bloat, we re-implemented the STL 
container and functions used in the CASPER code.  This 
re-implementation, dubbed “lite STL”, was developed 
to minimize the code generation, trading space for 
execution time.   We were able to remove 
approximately 3MB from the CASPER image using this 
strategy.   
 
Along with simple compiler optimization, removing 
unneeded software components, and reducing the 
impact of code duplication, the final size of the 
CASPER image was reduced to 5MB. 
 
7.2  Approach to long term planning 

One of the scenarios planned for ASE is autonomous 
control of EO-1 for a week.  This requires CASPER to 
support generation of a valid schedule for a week’s 
worth of EO-1 operations.  During a nominal week, EO-
1 averages over 100 science observations and 50 S-
Band/X-Band ground contacts.  The size of this problem 
presents a challenge to CASPER, given the limited 
memory and CPU constraints. 
 
While most desktop workstations have several GB’s of 
memory available, CASPER on EO-1 is constrained 
with a 32MB heap.  As result, we need to ensure that 
generation of a week’s plan does not exhaust all 

available heap space.  A science observation is the most 
complex activity within the CASPER model, consisting 
of over 78 activities.  Planning a week’s worth of 
operation would require scheduling over 7800 activities 
(not including downlink and momentum management 
activities) and exhaust our heap space. 
 
Also, as the number of goals in the schedule increase, 
the computation time to schedule a goal will also 
increase, due to the interaction between goals.  On EO-
1, this problem is exacerbated with an 8 MIPS 
processor, of which 4 MIPS are shared by the SCL, 
CASPER, and science processing software. 
 
To resolve the problems with CPU and memory 
consumption, CASPER utilizes a hierarchal planning 
approach with focused planning periods. CASPER 
performs abstract planning and scheduling of 
observations for the entire week, such as ensuring a 
constraint of one science observation per orbit.  It also 
performs near-term planning for the next 24 hours by 
detailing the science observations to the low-level 
activities.  This near-term planning window is 
continuously updated to include the next 24 hours of the 
schedule and as past observations exit the planning 
window, they are automatically removed from the plan.  
By reducing the number of science observations that 
need to be scheduled and detailed to a 24 hour period, 
we reduce memory and CPU consumption. 
 
7.3  Speed Improvements to Meet Autonomy 

Requirements 

The ASE experiment is constrained by the computing 
environment onboard EO-1.  Because each of the EO-1 
software builds is a single static image, all ASE 
components that dynamically allocate RAM require 
their own memory manager.  SCL contains a memory 
manager previously used on the FUSE mission.  
CASPER uses a separate memory manager adapted 
from JPL’s Deep Impact mission.  However, 
performance from early flight tests indicated that the 
SCL memory manager was significantly hampering 
performance, so SCL was switched to use the same 
memory manager as CASPER (but with its own heap 
space).  Note that these memory managers had to not 
only allocate and de-allocate memory quickly but also 
not suffer from longer-term issues such as 
fragmentation. 
 
The limited onboard computing power required changes 
to the SCL and CASPER models to meet operational 
timing constraints.  For example, initially within SCL a 
much larger set of safety constraints was modeled and 
execution was designed to be much more closed loop.  
However, testbed runs and early flight tests indicated 
that telemetry delays and CPU bottlenecks meant that 



 

this design was delaying time-sensitive commands.  
Most importantly, instrument on-times were delayed 
(e.g. late) and too long (resulting in extra data acquired).  
The ASE team was forced to both streamline the code 
(including the memory manager modification) and 
streamline the model to speed execution. 
 
The CASPER planner is a significant user of onboard 
CPU.  When CASPER is planning future observations it 
utilizes all of the available CPU cycles and takes 
approximately 8 minutes to plan each observation.  The 
CASPER model was designed to operate within a 
minimal CPU profile – and as a result observations are 
planned with less flexibility.  By setting fixed values for 
temporal offsets between activities rather than retaining 
flexible offset times, search is reduced and response 
time improved at the cost of plan quality (in some 
cases).  For example, an image take activity may require 
a camera heater warm up before the camera can operate.  
The heater may take 30-60 seconds to warm the camera 
up to its operational temperature.  By setting the 
duration of the heater warm up activity to 60 seconds, 
the temporal offset between the heater warm up activity 
and the image data take activity is fixed at 60 seconds, 
rather than variable. 
 
Other performance improvements for CASPER came 
from analysis of the running code.  We found 
bottlenecks and made improvements in redundant 
calculations. In particular, this was critical for functions 
performed on every loop of CASPER (such as 
collecting conflicts).  We made some simplifying 
assumptions to make some expensive calculations 
faster.  For example, when initially scheduling 
activities, we ignore timeline constraints, assuming that 
temporal constraints are more critical than timelines 
(calculating valid start times for timelines can be 
expensive).  
 
8. IMPACT ON OPERATIONS 

ASE can impact several aspects of spacecraft 
operations.  The mission planning process is simplified 
because the operations team no longer has to build 
detailed sequences of commands.  The spacecraft can be 
commanded using high-level goals, which are then 
detailed by the planner onboard.  The processes of 
planning, build sequence, upload sequence, execute 
sequence, downlink data, analyze data, and build new 
sequence are entirely automated using ASE.  For 
example, in the current EO-1 operations, a significant 
percentage of the images downlinked are of no value 
because they are mostly covered in clouds.  Using ASE, 
these images can now be discarded onboard and the 
satellite can acquire another image of a different area.  
This saves time and labor for the mission planning team, 
science analysis team, ground station team, flight 
operations team, and data processing and archive team. 

Due to computing limitations, the ASE architecture for 
EO-1 does not include an autonomous fault protection 
component.  Although this wasn’t included for EO-1, 
it’s a natural fit for the ASE onboard autonomy 
software.    
 
In one example, CASPER generates a mission level 
plan that includes a sequence of behavior goals, such as 
producing thrust.  The SCL executive is responsible for 
reducing these goals to a control sequence, for example, 
opening the relevant set of valves leading to a main 
engine.  A device, such as a valve, is commanded 
indirectly; hence, SCL must ensure that the components 
along the control path to the device are healthy and 
operating before commanding that device.  Components 
may be faulty, and redundant options for achieving a 
goal may exist; hence, SCL must ascertain the health 
state of components, determine repair options when 
viable, and select a course of action among the space of 
redundant options.  Adding this level of fault protection 
autonomy to a future mission could in theory, eliminate 
the spacecraft analysis team.  The team would no longer 
be required to monitor the spacecraft health because that 
would be done onboard using model-based mode 
estimation and mode reconfiguration. The team would 
also not be required to respond to “safe-hold” periods 
because anomalies would be handled and reconfigured 
onboard.  Using this software requires a greater up front 
investment in building the spacecraft models, but much 
of the underlying software has already been developed 
in research efforts. 
 
By combining automated planning with onboard science 
analysis and smart execution, an even more dramatic 
reduction is sequencing effort is obtained due to the 
reduction in sequences created in response to ground 
based science data analysis.  These sequences are 
created by ASE onboard the spacecraft without ground 
interaction. The feature detection algorithms onboard 
can identify specific features of interest within the 
images.  The spacecraft can then downlink the entire 
image when features are detected, only the detected 
features, or even a summary of the detected features.  
Scientists no longer have to analyze many different 
images to find a feature of interest.  In fact, images that 
do not contain features of interest do no even have to be 
downlinked.  These algorithms can be particularly 
useful on bandwidth-limited missions by returning the 
most important science data.   
 
For the specific case of using the ASE software on EO-
1, science return per data downlink was increased by 
over 100x by rapid response and returning the most 
important science data.  (See Tab. 1.) 
 
For specific cost savings (or value added) from 
increased science return from ASE, we submit the 



 

following analysis.  To compute an economic value to 
the baseline EO-1 science return we use a conservative 
estimate based on the minimum ($1000/image) cost for 
scenes, along with the typical number of paid images 
per day (8), and a conservative estimate of science 
operations days per month (some are lost for 
engineering operations): 
 
$1000/image x 8 images/day x 25 days/month x 12 
months/year = $2.4M/year 
 

Table 1.  Downlink Data Savings by Science Process 
Process Total 

Process 
Data 
Acquired 

Data 
returned 
by ASE 

Downlink 
Savings 

Savings 
Factor 
(goal 
was 
x10) 

Volcanism 33750 
MB 294 MB 33456 

MB 115 

Cyrosphere 
(ice) 

38100 
MB 304 MB 37796 

MB 125 

Flooding 25500 
MB 239 MB 25261 

MB 106 

Total 97350 
MB 

837 
MB 

96513 
MB 116 

 
We take this as a conservative estimate of the value of 
the science return from conventional EO-1 Operations.  
Assuming a conservative science increase of 10x 
(compared to the documented increase of over 100x), 
ASE has increased the science return of EO-1 as 
follows: 
 
science return with ASE – science return without ASE =  
                10x $2.4M/yr  – 1x $2.4M/yr  =  $21.6M/yr  
 
Reducing the ground operation team, which no longer 
has to prepare detailed spacecraft command sequence 
files, saves additional costs.  In the case of EO-1, the 
mission manager figured the labor costs for the ground 
operations team were reduced from $2.5M/year to 
$1.0M/year as a result of using the ASE software and 
automating the ground system as a result. 
 
Over a 5-year mission, using EO-1 as the example, the 
ASE software has the potential for saving $115.5M, as 
detailed in Tab. 2. 
 

Table 2.  Total Operational Savings Using ASE 
Science value 
increase 

$21.6M/yr x 5 yrs = $108.0M 

Operations cost 
reduction 

$  1.5M/yr x 5 yrs    =     $7.5M 
 

Total Savings  = $115.5M 
 

9. RELATED WORK & SUMMARY 

In 1999, the Remote Agent experiment (RAX) (RAX 
Web Page, 2005) executed for a few days onboard the 
NASA Deep Space One mission.  RAX is an example 
of a classic three-tiered architecture (Gat, 1998), as is 
ASE.  RAX demonstrated a batch onboard planning 
capability (as opposed to CASPER’s continuous 
planning) and RAX did not demonstrate onboard 
science.  PROBA (PROBA Web Page, 2005) is a 
European Space Agency (ESA) mission that is 
demonstrating onboard autonomy and launched in 
October 2001.  However, ASE has more of a focus on 
model-based autonomy than PROBA. 
 
The Three Corner Sat (3CS) University Nanosat 
mission used the CASPER onboard planning software 
integrated with the SCL ground and flight execution 
software (Chien, 2001).  The 3CS mission, launched in 
December 2004, only lasted a few hours due to a launch 
vehicle failure.  The 3CS autonomy software includes 
onboard science data validation, replanning, robust 
execution, and multiple model-based anomaly detection.  
The original planned 3CS mission is considerably less 
complex than EO-1. 
 
More recent work from NASA Ames Research Center is 
focused on building the IDEA planning and execution 
architecture (Muscettola, 2002).  In IDEA, the planner 
and execution software are combined into a “reactive 
planner” and operate using the same domain model.  A 
single planning and execution model can simplify 
validation, which is a difficult problem for autonomous 
systems.  For EO-1, the CASPER planner and SCL 
executive use separate models.  While this has the 
advantage of the flexibility of both procedural and 
declarative representations, a single model would be 
easier to validate.  We have designed the CASPER 
modeling language to be used by domain experts, thus 
not requiring planning experts.  Our use of SCL is 
similar to the “plan runner” in IDEA but SCL encodes 
more intelligence.  The EO-1 science analysis software 
is defined as one of the “controlling systems” in IDEA.  
In the IDEA architecture, a communications wrapper is 
used to send messages between the agents, similar to the 
software bus in EO-1.  In the description of IDEA there 
is no information about the deployment of IDEA to any 
domains, so a comparison of the performance or 
capabilities is not possible at this time. 
 
ASE on EO-1 demonstrates an integrated autonomous 
mission using onboard science analysis, replanning, and 
robust execution. The ASE performs intelligent science 
data selection that leads to a reduction in data downlink. 
In addition, the ASE increases science return through 
autonomous retargeting. Demonstration of these 
capabilities onboard EO-1 will enable radically different 
missions with significant onboard decision-making 



 

leading to novel science opportunities. The paradigm 
shift toward highly autonomous spacecraft will enable 
future NASA missions to achieve significantly greater 
science returns with reduced risk and reduced 
operations cost. 
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