

OPERATIONAL LESSONS LEARNED FROM THE

AUTONOMOUS SCIENCECRAFT EXPERIMENT

Rob Sherwood, Steve Chien, Daniel Tran, Benjamin Cichy,

Rebecca Castano, Ashley Davies, Gregg Rabideau

Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Dr., Pasadena, CA 91109, U.S.A.,

Email: firstname.lastname@jpl.nasa.gov

ABSTRACT/RESUME

The Autonomous Sciencecraft Experiment (ASE) is
currently flying onboard the Earth Observing One (EO-
1) Spacecraft. This software enables the spacecraft to
autonomously detect and respond to science events
occurring on the Earth. The package includes software
systems that perform science data analysis, deliberative
planning, and run-time robust execution. Because of the
deployment to the EO-1 spacecraft, the ASE software
has stringent constraints of autonomy and limited
computing resources. We describe these constraints and
how they are reflected in our operations approach. A
summary of the final results of the experiment is also
included. This software has demonstrated the potential
for space missions to use onboard decision-making to
detect, analyze, and respond to science events, and to
downlink only the highest value science data. As a
result, ground-based mission planning and analysis
functions have been greatly simplified, thus reducing
operations cost. The operational cost savings are
detailed within this paper.

1. INTRODUCTION

Since January 2004, the Autonomous Sciencecraft
Experiment (ASE) running on the EO-1 spacecraft has
demonstrated several integrated autonomy technologies
to enable autonomous science. Several science
algorithms including: onboard event detection, feature
detection, change detection, and unusualness detection
are being used to analyze science data. These algorithms
are used to downlink science data only on change, and
detect features of scientific interest such as volcanic
eruptions, growth and retreat of ice caps, cloud
detection, and crust deformation. These onboard science
algorithms are inputs to onboard decision-making
algorithms that modify the spacecraft observation plan
to capture high value science events. This new
observation plan is then executed by a robust goal and
task oriented execution system, able to adjust the plan to
succeed despite run-time anomalies and uncertainties.
Together these technologies enable autonomous goal-
directed exploration and data acquisition to maximize
science return. This paper describes the specifics of the

ASE and relates it to past and future flights to validate
and mature this technology.

The ASE onboard flight software includes several
autonomy software components:
• Onboard science algorithms that analyze the image

data to detect trigger conditions such as science
events, “interesting” features, changes relative to
previous observations, and cloud detection for
onboard image masking

• Robust execution management software using the
Spacecraft Command Language, SCL (SCL Web
Page, 2005) package to enable event-driven
processing and low-level autonomy

• The Continuous Activity Scheduling Planning
Execution and Replanning (CASPER) (Chien,
2000) software that replans activities, including
downlink, based on science observations in the
previous orbit cycles

The onboard science algorithms analyze the images to
extract static features and detect changes relative to
previous observations. This software has already been
demonstrated on EO-1 Hyperion data to automatically
identify regions of interest including land, ice, snow,
water, and thermally hot areas. Repeat imagery using
these algorithms can detect regions of change (such as
flooding, ice melt, and lava flows). Using these
algorithms onboard enables retargeting and search, e.g.,
retargeting the instrument on a subsequent orbit cycle to
identify and capture the full extent of a flood.

Although the ASE software is running on the Earth
observing spacecraft EO-1, the long-term goal is to use
this software on future interplanetary space missions.
On these missions, onboard science analysis will enable
capture of short-lived science phenomena. In addition,
onboard science analysis will enable data be captured at
the finest time-scales without overwhelming onboard
memory or downlink capacities by varying the data
collection rate on the fly. Examples include: eruption of
volcanoes on Io, formation of jets on comets, and phase
transitions in ring systems. Generation of derived
science products (e.g., boundary descriptions, catalogs)

and change-based triggering will also reduce data
volumes to a manageable level for extended duration
missions that study long-term phenomena such as
atmospheric changes at Jupiter and flexing and cracking
of the ice crust on Europa.

The onboard planner (CASPER) generates mission
operations plans from goals provided by the onboard
science analysis module. The model-based planning
algorithms enable rapid response to a wide range of
operations scenarios based on a deep model of
spacecraft constraints, including faster recovery from
spacecraft anomalies. The onboard planner accepts as
inputs the science and engineering goals and ensures
high-level goal-oriented behavior.

The robust execution system (SCL) accepts the
CASPER-derived plan as an input and expands the plan
into low-level commands. SCL monitors the execution
of the plan and has the flexibility and knowledge to
perform event driven commanding to enable local
improvements in execution as well as local responses to
anomalies.

Figure 1. Autonomous Science Mission Concept

A typical ASE demonstration scenario involves
monitoring of active volcano regions such as Mt. Etna
in Italy. (See Fig. 1.) Hyperion data have been used in

ground-based analysis to study this phenomenon. The
ASE concept is applied as follows:

1. Initially, ASE has a list of science targets to

monitor that have been sent as high-level goals
from the ground.

2. As part of normal operations, CASPER generates a
plan to monitor the targets on this list by
periodically imaging them with the Hyperion
instrument. For volcanic studies, the infrared and
near infrared bands are used.

3. During execution of this plan, the EO-1 spacecraft
images Mt. Etna with the Hyperion instrument.

4. The onboard science algorithms analyze the image
and detect a fresh lava flow. Based on this
detection the image is downlinked. Had no new
lava flow been detected, the science software would
generate a goal for the planner to acquire the next
highest priority target in the list of targets. (See
Fig. 1.) The addition of this goal to the current goal
set triggers CASPER to modify the current
operations plan to include numerous new activities
in order to enable the new science observation.

5. The SCL software executes the CASPER generated
plans in conjunction with several autonomy
elements.

6. This cycle is then repeated on subsequent
observations.

However, building autonomy software for space
missions has a number of key challenges; many of these
issues increase the importance of building a reliable,
safe, agent. Some of these issues include:
1. Limited, intermittent communications to the agent.

A typical spacecraft in low earth orbit (such as EO-
1) has 8 communications opportunities per day,
each lasting about 10 minutes. This means that the
spacecraft must be able to operate for long periods
of time without supervision. For deep space
missions the spacecraft may be in communications
far less frequently. Some deep space missions only
contact the spacecraft once per week, or even once
every several weeks.

2. Spacecraft are very complex. A typical spacecraft
has thousands of components, each of which must
be carefully engineered to survive rigors of space
(extreme temperature, radiation, physical stresses).
Add to this the fact that many components are one-
of-a-kind and thus have behaviors that are hard to
characterize.

3. Limited observability. Because processing
telemetry is expensive, onboard storage is limited,
and downlink bandwidth is limited, engineering
telemetry is limited. Thus onboard software must
be able to make decisions on limited information
and ground operations teams must be able to

Initial Image
taken by

Spacecraft

Onboard
Image

Processing &
Feature/Cloud

Detection

Onboard
Replanning

Image
New

Target

Retarget for New
Observation Goals

operate the spacecraft with even more limited
information.

4. Limited computing power. Because of limited
power onboard, spacecraft computing resources are
usually very constrained. An average spacecraft
CPUs offer 25 MIPS and 128 MB RAM – far less
than a typical personal computer. Our CPU
allocation for the ASE on EO-1 is 4 MIPS and
128MB RAM.

5. High stakes. A typical space mission costs
hundreds of millions of dollars, any failure has
significant economic impact. The total EO-1
Mission cost is over $100 million dollars. Over
financial cost, many launch and/or mission
opportunities are limited by planetary geometries.
In these cases, if a space mission is lost it may be
years before another similar mission can be
launched. Additionally, a space mission can take
years to plan, construct the spacecraft, and reach
their targets. This delay can be catastrophic.

2. THE EO-1 MISSION

Earth Observing-1 (EO-1) is the first satellite in NASA's
New Millennium Program Earth Observing series (EO-1
Web Page, 2005). The primary focus of EO-1 is to
develop and test a set of advanced technology land
imaging instruments. EO-1 was launched on a Delta
7320 from Vandenberg Air Force Base on November
21, 2000. It was inserted into a 705 km circular, sun-
synchronous orbit at a 98.7 degrees inclination. This
orbit allows for 16-day repeat tracks, with 3 over flights
per 16-day cycle with a less than 10-degree change in
viewing angle. For each scene, between 13 to as much
as 48 Gbits of data from the Advanced Land Imager
(ALI), Hyperion, and Atmospheric Corrector (AC) are
collected and stored on the onboard solid-state data
recorder.

EO-1 is currently in extended mission, having more
than achieved its original technology validation goals.
As an example, over 18,000 data collection events have
been successfully completed, against original success
criteria of 1,000 data collection events. The ASE
described in this paper uses the Hyperion hyper-spectral
instrument. The Hyperion is a high-resolution imager
capable of resolving 220 spectral bands (from 0.4 to 2.5
µm) with a 30-meter spatial resolution. The instrument
images a 7.7 km by 42 km land area per image and
provides detailed spectral mapping across all 220
channels with high radiometric accuracy.

The EO-1 spacecraft has two Mongoose M5 processors.
The first M5 is used for the EO-1 command and data
handling functions. The other M5 is part of the WARP
(Wideband Advanced Recorder Processor), a large mass
storage device. Each M5 runs at 12 MHz (for ~8 MIPS)
and has 256 MB RAM. Both M5’s run the VxWorks

operating system. The ASE software operates on the
WARP M5. This provides an added level of safety for
the spacecraft since the ASE software does not run on
the main spacecraft processor.

3. ONBOARD SCIENCE ANALYSIS

The first step in the autonomous science decision cycle
is detection of interesting science events. In the
complete experiment, a number of science analysis
technologies have been flown including:
• Thermal anomaly detection – uses infrared spectra

peaks to detect lava flows and other volcanic
activity. (See Fig. 3a.)

• Cloud detection (Griffin, 2003) – uses intensities at
six different spectra and thresholds to identify
likely clouds in scenes. (See Fig. 3b.)

• Flood scene classification – uses ratios at several
spectra to identify signatures of water inundation as
well as vegetation changes caused by flooding.

• Change detection – uses multiple spectra to identify
regions changed from one image to another. This
technique is applicable to many science phenomena
including lava flows, flooding, freezing and
thawing and is used in conjunction with cloud
detection. (See Fig. 3c.)

Fig. 3a shows both the visible and the infrared bands of
the same image of the Mt. Etna volcano in Italy. The
infrared bands are used to detect hot areas that might
represent fresh lava flows within the image. In this
picture, these hot spots are circled with red dotted lines.
The area of hot pixels can be compared with the count
of hot pixels from a previous image of the same area to
determine if change has occurred. If there has been
change, a new image might be triggered to get a more
detailed look at the eruption.

Fig. 3b shows a Hyperion scene and the results of the
cloud detection algorithm. This MIT Lincoln Lab
developed algorithm is able to discriminate between
cloud pixels and land pixels within an image.
Specifically, the gray areas in the detection results are
clouds while the blue areas are land. The results of this
algorithm can be used to discard images that are too
cloudy.

Fig. 3c contains 4 images. The top two are detailed
Hyperion images taken of the Larson Ice Shelf in
Antarctica on 4/6/2002 and 4/13/2002. A large change
in the ice shelf is seen in comparing the images. The
bottom 2 images are results of the land-ice-water
detection algorithm. The white area of the image is ice
and the blue area is water. The ice and water pixels can
be counted and compared with the second image to
determine if change has occurred. If change is detected,

7

the image can be downlinked and further images of the
area can be planned.

The onboard science algorithms are limited to using 12
bands of the hyperion instrument. Of these 12 bands, 6

Figure 3a. Thermal Anomalies associated with volcano
activity at Mt. Etna, visual spectra at left and infrared
at right.

Figure 3b. Cloud Detection of a Hyperion Scene –
visual image at left, grey in the image at right indicates
detected cloud.

Figure 3c. Change Detection Scenes indicating Ice
Breakup in the Larsen Ice Shelf, Antarctica.

are dedicated to the cloud detection algorithm. The
other six are varied depending on which science
algorithm is used. The images used by the algorithm are
“Level 0.5,” an intermediate processing level between
the raw Level 0, and the fully ground processed Level 1.
Each of the science algorithms except the generalized
feature detection use simple threshold checks on the
spectral bands to classify the pixels.

Initial experiments used the cloud detection triggers.
The MIT Lincoln Lab developed cloud detection
algorithm (Griffin, 2003) uses a combination of spectral
bands to discriminate between clouds and surface

features. The Hyperion Cloud Cover (HCC) algorithm
was run on all images acquired during ASE
experiments. In the event of high cloud cover, the image
could be discarded and a new goal could be sent to
CASPER to re-image the area or image another high
priority area. Images with low cloud cover can either be
downlinked or analyzed further by other ASE science
algorithms.

The JPL developed thermal anomaly algorithms uses
the infrared spectral bands to detect sites of active
volcanism. There are two different algorithms, one for
daytime images and one for nighttime images. The

algorithms compare the number of thermally active
pixels within the image with the count from a previous
image to determine if new volcanism is present. If no
new volcanism is present, the image can be discarded
onboard. Otherwise, the entire image or the interesting
section of the image can be downlinked.

The University of Arizona developed flood scene
classification algorithm uses multiple spectral bands to
differentiate between land and water. The results of the
algorithm include are compared with land and water
counts from a previous image to determine if flooding
has occurred. If significant flooding has been detected,
the image can be downlinked. In addition, a new goal
can be sent to the CASPER planning software to image
adjacent regions on subsequent orbits to determine the
extent of the flooding. We have noticed a few problems
when ground testing this algorithm with existing
Hyperion data. The presence of clouds or heavy smoke
within an image can cause the algorithm to fail.

The Arizona State University developed Snow-Water-
Ice-Land (SWIL) algorithm is used to detect lake
freeze/thaw cycles and seasonal sea ice. The SWIL
algorithm uses six spectral bands for analysis.

4. ONBOARD MISSION PLANNING

In order for the spacecraft to respond autonomously to
the science event, it must be able to independently
perform the mission planning function. This requires
software that can model all spacecraft and mission
constraints. The Continuous Activity Scheduling
Planning Execution and Replanning (CASPER) (Chien,
2000) software performs this function for ASE.
CASPER represents the operations constraints in a
general modeling language and reasons about these
constraints to generate new operations plans that respect
spacecraft and mission constraints and resources.
CASPER uses a local search approach (Rabideau, 1999)
to develop operations plans.

Because onboard computing resources are scarce,
CASPER must be very efficient in generating plans.
While a typical desktop or laptop PC may have 2000-
3000 MIPS performance, 5-20 MIPS is more typical
onboard a spacecraft. In the case of EO-1, the
Mongoose V CPU has approximately 8 MIPS. Of the 3
software packages, CASPER is by far the most
computationally intensive. For that reason, our
optimization efforts were focused on CASPER. Since
the software was already written and we didn’t have
funding to make major changes in the software, we had
to focus on developing an EO-1 CASPER model that
didn’t require a lot of planning iterations. For that
reason, the model has only a handful of resources to
reason about. This ensures that CASPER is able to build
a plan in tens of minutes on the relatively slow CPU.

CASPER is responsible for mission planning in
response to both science goals derived onboard as well
as anomalies. In this role, CASPER must plan and
schedule activities to achieve science and engineering
goals while respecting resource and other spacecraft
operations constraints. For example, when acquiring an
initial image, a volcanic event is detected. This event
may warrant a high priority request for a subsequent
image of the target to study the evolving phenomena. In
this case, CASPER modifies the operations plan to
include the necessary activities to re-image. This may
include determining the next over flight opportunity,
ensuring that the spacecraft is pointed appropriately,
that sufficient power, and data storage are available, that
appropriate calibration images are acquired, and that the
instrument is properly prepared for the data acquisition.

5. ONBOARD ROBUST EXECUTION

ASE uses the Spacecraft Command Language (SCL)
(SCL Web Page, 2005) to provide robust execution.
SCL is a software package that integrates procedural
programming with a real-time, forward-chaining, rule-
based system. A publish/subscribe software bus, which
is part of SCL, allows the distribution of notification
and request messages to integrate SCL with other
onboard software. This design enables both loose or
tight coupling between SCL and other flight software as
appropriate.

The SCL “smart” executive supports the command and
control function. Users can define scripts in an English-
like manner. Compiled on the ground, those scripts can
be dynamically loaded onboard and executed at an
absolute or relative time. Ground-based absolute time
script scheduling is equivalent to the traditional
procedural approach to spacecraft operations based on
time. In the EO-1 experiment, SCL scripts are planned
and scheduled by the CASPER onboard planner. The
science analysis algorithms and SCL work in a
cooperative manner to generate new goals for CASPER.
These goals are sent as messages on the software bus.

Many aspects of autonomy are implemented in SCL.
For example, SCL implements many constraint checks
that are redundant with those in the EO-1 fault
protection software. Before SCL sends each command
to the EO-1 command processor, it undergoes a series of
constraint checks to ensure that it is a valid command.
Any pre-requisite states required by the command are
checked (such as the communications system being in
the correct mode to accept a command). SCL also
verifies that there is sufficient power so that the
command does not trigger a low bus voltage condition
and that there is sufficient energy in the battery. Using
SCL to check these constraints and including them in

the CASPER model provides an additional level of
safety to the autonomy flight software.

6. FLIGHT STATUS

The ASE software was integrated under the flight
version of VxWorks in December 2002, and has since
been integrated and tested with the WARP flight
software. We tested the individual software components
in isolation to gain confidence before we performed an
integrated flight test.

The cloud detection algorithms were tested onboard in
March 2003. The SCL software was tested onboard in
May 2003. This test involved starting up the SCL
software, testing the software bridge between the SCL
software bus and WARP software bus, testing the SCL
message and telemetry logs, testing the sending of
commands, and testing the sending and executing of
commands that performed a dark calibration of the
Hyperion instrument.

In July 2003, a ground version of CASPER generated
several plans that were subsequently uplinked and
executed onboard. These plans included image data
takes, maneuvers, and telecommunication passes. The
purpose of this test was to prove that CASPER could
generate valid plans that could be executed by the
satellite.

In August 2003, onboard decompression was tested.
This capability is used to compress the software before
uplink because the uplink rate is only 2 Kb/s. Without
compression it would take more than a week to upload
the entire ASE software. This test involved uplinking
several compressed files, decompressing them onboard,
and then downlinking them. The files were then
checked for errors.

The ASE software has been flying onboard the EO-1
spacecraft since January 2004. In January and February
2004, we tested several autonomous instrument data
acquisition experiments using CASPER/SCL. This test
involved uplinking a high level goal that includes a
target location and a few instrument mode parameters.
We have steadily increased the level of autonomy since
this period. In April 2004, we started the first closed-
loop execution where ASE autonomously analyzes
science data onboard and triggers subsequent
observations. So far, we have run over 200 of these
trigger experiments with over 2000 autonomously
planned image data takes. The ASE software is now
the baseline planning software for EO-1, and has been
running almost continuously onboard for several
months.

7. PREPARING THE ASE FOR SPACE

FLIGHT

Given the many challenges to developing flight
software, this section discusses several issues
encountered in preparing the CASPER planner for
flight. Specifically, we describe:
• Reducing the CASPER image size – With

infrequent and short ground contacts and limited
available memory, we needed to reduce the
CASPER image size. We discuss our strategies to
reduce the CASPER image size.

• Approach to long term planning – CASPER must
be able to autonomously plan for a week’s worth of
EO-1 activities, which includes over 100 science
observations. We discuss how this is achieved
within the available memory and CPU.

• Speed improvements to meet autonomy
requirements – Several model and code
optimizations were performed to increase the
running speed of ASE.

In addition, we have performed several optimizations on
the data collected relating to the state and actions of the
planner.

7.1 Reducing the CASPER image size

CASPER’s core planning engine is the Automated
Scheduling and Planning Environment (ASPEN)
ground-based planner. ASPEN is a re-usable
framework, which is capable of supporting a wide
variety of planning and scheduling applications. It
provides a set of software components commonly found
in most planning systems such as: an expressive
modeling language, resource management, a temporal
reasoning system, and support of a graphical user
interface. Because of limited onboard computing
memory, we had to reduce the image size. CASPER
developers took two approaches to reducing the image
size: removing unneeded components and reducing code
image size inefficiencies. Prior to this work, the image
size of CASPER was 12MB.

The CASPER development team went through the core
software and removed each software component
deemed unnecessary for flight. Several modules
removed from the CASPER code include:
• Backtracking Search – The ASPEN framework

provides several search algorithms that perform
backtracking search. On ASE, we have decided to
use the repair search algorithm, so these other
algorithms were not needed.

• Optimization – CASPER provides the capability to
optimize the schedule based on several preferences

defined by mission planners. However, we have
decided not to use this functionality for ASE.

• GUI Sockets – Because ASPEN is a ground-based
planner, it provides a GUI for visualizing the
schedule and interacting with it. Communication
with this GUI is done through the ASPEN socket
interface. In flight, support for a GUI is not
necessary.

• General Heuristics – The ASPEN core contains
multiple sets of generic heuristics that have been
found to be useful across multiple projects.
CASPER for ASE requires a subset of these
heuristics; therefore, the unused sets were removed.

• Generalized Timelines – Generalized timelines
provides a general infrastructure to model complex
state variables and resources. This infrastructure
was not required for ASE and was removed.

Removing software components trimmed approximately
3MB from the CASPER image size.

CASPER also makes heavy use of the Standard
Template Library (STL), specifically the containers
provided. STL templates are widely known to increase
code size in C++ because for each container defined in
CASPER, the code may be duplicated several times.
There exist various compiler techniques available that
attempts to minimize the duplication. To minimize the
impact of code bloat, we re-implemented the STL
container and functions used in the CASPER code. This
re-implementation, dubbed “lite STL”, was developed
to minimize the code generation, trading space for
execution time. We were able to remove
approximately 3MB from the CASPER image using this
strategy.

Along with simple compiler optimization, removing
unneeded software components, and reducing the
impact of code duplication, the final size of the
CASPER image was reduced to 5MB.

7.2 Approach to long term planning

One of the scenarios planned for ASE is autonomous
control of EO-1 for a week. This requires CASPER to
support generation of a valid schedule for a week’s
worth of EO-1 operations. During a nominal week, EO-
1 averages over 100 science observations and 50 S-
Band/X-Band ground contacts. The size of this problem
presents a challenge to CASPER, given the limited
memory and CPU constraints.

While most desktop workstations have several GB’s of
memory available, CASPER on EO-1 is constrained
with a 32MB heap. As result, we need to ensure that
generation of a week’s plan does not exhaust all

available heap space. A science observation is the most
complex activity within the CASPER model, consisting
of over 78 activities. Planning a week’s worth of
operation would require scheduling over 7800 activities
(not including downlink and momentum management
activities) and exhaust our heap space.

Also, as the number of goals in the schedule increase,
the computation time to schedule a goal will also
increase, due to the interaction between goals. On EO-
1, this problem is exacerbated with an 8 MIPS
processor, of which 4 MIPS are shared by the SCL,
CASPER, and science processing software.

To resolve the problems with CPU and memory
consumption, CASPER utilizes a hierarchal planning
approach with focused planning periods. CASPER
performs abstract planning and scheduling of
observations for the entire week, such as ensuring a
constraint of one science observation per orbit. It also
performs near-term planning for the next 24 hours by
detailing the science observations to the low-level
activities. This near-term planning window is
continuously updated to include the next 24 hours of the
schedule and as past observations exit the planning
window, they are automatically removed from the plan.
By reducing the number of science observations that
need to be scheduled and detailed to a 24 hour period,
we reduce memory and CPU consumption.

7.3 Speed Improvements to Meet Autonomy

Requirements

The ASE experiment is constrained by the computing
environment onboard EO-1. Because each of the EO-1
software builds is a single static image, all ASE
components that dynamically allocate RAM require
their own memory manager. SCL contains a memory
manager previously used on the FUSE mission.
CASPER uses a separate memory manager adapted
from JPL’s Deep Impact mission. However,
performance from early flight tests indicated that the
SCL memory manager was significantly hampering
performance, so SCL was switched to use the same
memory manager as CASPER (but with its own heap
space). Note that these memory managers had to not
only allocate and de-allocate memory quickly but also
not suffer from longer-term issues such as
fragmentation.

The limited onboard computing power required changes
to the SCL and CASPER models to meet operational
timing constraints. For example, initially within SCL a
much larger set of safety constraints was modeled and
execution was designed to be much more closed loop.
However, testbed runs and early flight tests indicated
that telemetry delays and CPU bottlenecks meant that

this design was delaying time-sensitive commands.
Most importantly, instrument on-times were delayed
(e.g. late) and too long (resulting in extra data acquired).
The ASE team was forced to both streamline the code
(including the memory manager modification) and
streamline the model to speed execution.

The CASPER planner is a significant user of onboard
CPU. When CASPER is planning future observations it
utilizes all of the available CPU cycles and takes
approximately 8 minutes to plan each observation. The
CASPER model was designed to operate within a
minimal CPU profile – and as a result observations are
planned with less flexibility. By setting fixed values for
temporal offsets between activities rather than retaining
flexible offset times, search is reduced and response
time improved at the cost of plan quality (in some
cases). For example, an image take activity may require
a camera heater warm up before the camera can operate.
The heater may take 30-60 seconds to warm the camera
up to its operational temperature. By setting the
duration of the heater warm up activity to 60 seconds,
the temporal offset between the heater warm up activity
and the image data take activity is fixed at 60 seconds,
rather than variable.

Other performance improvements for CASPER came
from analysis of the running code. We found
bottlenecks and made improvements in redundant
calculations. In particular, this was critical for functions
performed on every loop of CASPER (such as
collecting conflicts). We made some simplifying
assumptions to make some expensive calculations
faster. For example, when initially scheduling
activities, we ignore timeline constraints, assuming that
temporal constraints are more critical than timelines
(calculating valid start times for timelines can be
expensive).

8. IMPACT ON OPERATIONS

ASE can impact several aspects of spacecraft
operations. The mission planning process is simplified
because the operations team no longer has to build
detailed sequences of commands. The spacecraft can be
commanded using high-level goals, which are then
detailed by the planner onboard. The processes of
planning, build sequence, upload sequence, execute
sequence, downlink data, analyze data, and build new
sequence are entirely automated using ASE. For
example, in the current EO-1 operations, a significant
percentage of the images downlinked are of no value
because they are mostly covered in clouds. Using ASE,
these images can now be discarded onboard and the
satellite can acquire another image of a different area.
This saves time and labor for the mission planning team,
science analysis team, ground station team, flight
operations team, and data processing and archive team.

Due to computing limitations, the ASE architecture for
EO-1 does not include an autonomous fault protection
component. Although this wasn’t included for EO-1,
it’s a natural fit for the ASE onboard autonomy
software.

In one example, CASPER generates a mission level
plan that includes a sequence of behavior goals, such as
producing thrust. The SCL executive is responsible for
reducing these goals to a control sequence, for example,
opening the relevant set of valves leading to a main
engine. A device, such as a valve, is commanded
indirectly; hence, SCL must ensure that the components
along the control path to the device are healthy and
operating before commanding that device. Components
may be faulty, and redundant options for achieving a
goal may exist; hence, SCL must ascertain the health
state of components, determine repair options when
viable, and select a course of action among the space of
redundant options. Adding this level of fault protection
autonomy to a future mission could in theory, eliminate
the spacecraft analysis team. The team would no longer
be required to monitor the spacecraft health because that
would be done onboard using model-based mode
estimation and mode reconfiguration. The team would
also not be required to respond to “safe-hold” periods
because anomalies would be handled and reconfigured
onboard. Using this software requires a greater up front
investment in building the spacecraft models, but much
of the underlying software has already been developed
in research efforts.

By combining automated planning with onboard science
analysis and smart execution, an even more dramatic
reduction is sequencing effort is obtained due to the
reduction in sequences created in response to ground
based science data analysis. These sequences are
created by ASE onboard the spacecraft without ground
interaction. The feature detection algorithms onboard
can identify specific features of interest within the
images. The spacecraft can then downlink the entire
image when features are detected, only the detected
features, or even a summary of the detected features.
Scientists no longer have to analyze many different
images to find a feature of interest. In fact, images that
do not contain features of interest do no even have to be
downlinked. These algorithms can be particularly
useful on bandwidth-limited missions by returning the
most important science data.

For the specific case of using the ASE software on EO-
1, science return per data downlink was increased by
over 100x by rapid response and returning the most
important science data. (See Tab. 1.)

For specific cost savings (or value added) from
increased science return from ASE, we submit the

following analysis. To compute an economic value to
the baseline EO-1 science return we use a conservative
estimate based on the minimum ($1000/image) cost for
scenes, along with the typical number of paid images
per day (8), and a conservative estimate of science
operations days per month (some are lost for
engineering operations):

$1000/image x 8 images/day x 25 days/month x 12
months/year = $2.4M/year

Table 1. Downlink Data Savings by Science Process
Process Total

Process
Data
Acquired

Data
returned
by ASE

Downlink
Savings

Savings
Factor
(goal
was
x10)

Volcanism 33750
MB 294 MB 33456

MB 115

Cyrosphere
(ice)

38100
MB 304 MB 37796

MB 125

Flooding 25500
MB 239 MB 25261

MB 106

Total 97350
MB

837
MB

96513
MB 116

We take this as a conservative estimate of the value of
the science return from conventional EO-1 Operations.
Assuming a conservative science increase of 10x
(compared to the documented increase of over 100x),
ASE has increased the science return of EO-1 as
follows:

science return with ASE – science return without ASE =
 10x $2.4M/yr – 1x $2.4M/yr = $21.6M/yr

Reducing the ground operation team, which no longer
has to prepare detailed spacecraft command sequence
files, saves additional costs. In the case of EO-1, the
mission manager figured the labor costs for the ground
operations team were reduced from $2.5M/year to
$1.0M/year as a result of using the ASE software and
automating the ground system as a result.

Over a 5-year mission, using EO-1 as the example, the
ASE software has the potential for saving $115.5M, as
detailed in Tab. 2.

Table 2. Total Operational Savings Using ASE
Science value
increase

$21.6M/yr x 5 yrs = $108.0M

Operations cost
reduction

$ 1.5M/yr x 5 yrs = $7.5M

Total Savings = $115.5M

9. RELATED WORK & SUMMARY

In 1999, the Remote Agent experiment (RAX) (RAX
Web Page, 2005) executed for a few days onboard the
NASA Deep Space One mission. RAX is an example
of a classic three-tiered architecture (Gat, 1998), as is
ASE. RAX demonstrated a batch onboard planning
capability (as opposed to CASPER’s continuous
planning) and RAX did not demonstrate onboard
science. PROBA (PROBA Web Page, 2005) is a
European Space Agency (ESA) mission that is
demonstrating onboard autonomy and launched in
October 2001. However, ASE has more of a focus on
model-based autonomy than PROBA.

The Three Corner Sat (3CS) University Nanosat
mission used the CASPER onboard planning software
integrated with the SCL ground and flight execution
software (Chien, 2001). The 3CS mission, launched in
December 2004, only lasted a few hours due to a launch
vehicle failure. The 3CS autonomy software includes
onboard science data validation, replanning, robust
execution, and multiple model-based anomaly detection.
The original planned 3CS mission is considerably less
complex than EO-1.

More recent work from NASA Ames Research Center is
focused on building the IDEA planning and execution
architecture (Muscettola, 2002). In IDEA, the planner
and execution software are combined into a “reactive
planner” and operate using the same domain model. A
single planning and execution model can simplify
validation, which is a difficult problem for autonomous
systems. For EO-1, the CASPER planner and SCL
executive use separate models. While this has the
advantage of the flexibility of both procedural and
declarative representations, a single model would be
easier to validate. We have designed the CASPER
modeling language to be used by domain experts, thus
not requiring planning experts. Our use of SCL is
similar to the “plan runner” in IDEA but SCL encodes
more intelligence. The EO-1 science analysis software
is defined as one of the “controlling systems” in IDEA.
In the IDEA architecture, a communications wrapper is
used to send messages between the agents, similar to the
software bus in EO-1. In the description of IDEA there
is no information about the deployment of IDEA to any
domains, so a comparison of the performance or
capabilities is not possible at this time.

ASE on EO-1 demonstrates an integrated autonomous
mission using onboard science analysis, replanning, and
robust execution. The ASE performs intelligent science
data selection that leads to a reduction in data downlink.
In addition, the ASE increases science return through
autonomous retargeting. Demonstration of these
capabilities onboard EO-1 will enable radically different
missions with significant onboard decision-making

leading to novel science opportunities. The paradigm
shift toward highly autonomous spacecraft will enable
future NASA missions to achieve significantly greater
science returns with reduced risk and reduced
operations cost.

10. REFERENCES

Chien, S., Knight, R., Stechert, A., Sherwood, R., and
Rabideau, G., "Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling,"
Proceedings of the Fifth International Conference
on Artificial Intelligence Planning and Scheduling,
Breckenridge, CO, April 2000. (also
casper.jpl.nasa.gov)

Chien, S., Engelhardt, B., Knight, R., Rabideau, G.,
Sherwood, R., Hansen, E., Ortiviz, A., Wilklow, C.,
and Wichman, S., "Onboard Autonomy on the
Three Corner Sat Mission," Proc i-SAIRAS 2001,
Montreal, Canada, June 2001.

EO-1 Mission Web Page, Goddard Space Flight Center,
http://EO-1.gsfc.nasa.gov

Gat, E., et al., Three-Layer Architectures. in D.
Kortenkamp et al. eds. AI and Mobile Robots.
AAAI Press, 1998.

Griffin, M., Burke, H., Mandl, M., and Miller, J.,
“Cloud Cover Detection Algorithm for the EO-1
Hyperion Imagery,” Proceedings of the 17th SPIE
AeroSense 2003, Orlando, FL, April 21-25, 2003.

Muscettola, N., Dorais, G., Fry, C., Levinson, R., and
Plaunt, C., “IDEA: Planning at the Core of
Autonomous Reactive Agents,” Proceedings of the
Workshops at the AIPS-2002 Conference, Tolouse,
France, April 2002.

PROBA Web Page, European Space Agency,
http://www.estec.esa.nl/proba/

Rabideau, G., Knight, R., Chien, S., Fukunaga, A., and
Govindjee, A., "Iterative Repair Planning for
Spacecraft Operations in the ASPEN System,"
International Symposium on Artificial Intelligence
Robotics and Automation in Space, Noordwijk, The
Netherlands, June 1999.

Remote Agent Experiment (RAX) Web Page, NASA
Ames Research Center, http://ic.arc.nasa.gov/
projects/remote-agent/.

SCL Web Page, Interface and Control Systems,
http://sclrules.com

11. ACKNOWLEDGEMENT

Portions of this work were performed at the Jet
Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration. We would like
to acknowledge the important contributions of Nghia
Tang and Michael Burl of JPL, Dan Mandl, Stuart Frye,
Seth Shulman, and Stephen Ungar of GSFC, Jerry
Hengemihle and Bruce Trout of Microtel LLC, Jeff

D’Agostino of the Hammers Corp., Robert Bote of
Honeywell Corp., Jim Van Gaasbeck and Darrell Boyer
of ICS, Michael Griffin and Hsiao-hua Burke of MIT
Lincoln Labs, Ronald Greeley and Thomas Doggett of
Arizona State University, and Victor Baker and James
Dohm of the University of Arizona.

