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Abstract.  This paper describes the validation process for 
the Autonomous Sciencecraft Experiment, a software agent 
currently flying onboard NASA’s EO-1 spacecraft.  The 
agent autonomously collects, analyzes, and reacts to 
onboard science data.  The agent has been designed using a 
layered architectural approach with specific redundant 
safeguards to reduce the risk of agent malfunction to the 
EO-1 spacecraft.  This “safe” design has been thoroughly 
validated by informal validation methods supplemented by 
sub-system and system-level testing.  This paper describes 
the analysis used to define agent safety, elements of the 
design that increase the safety of the agent, and the process 
used to validate agent safety. 

1 Introduction 
Autonomy technologies have incredible potential to 
revolutionize space exploration.  In the current mode of 
operations, space missions involve meticulous ground 
planning significantly in advance of actual operations.  In 
this paradigm, rapid responses to dynamic science events 
can require substantial operations effort.  Artificial 
Intelligence technologies enable onboard software to detect 
science events, replan upcoming mission operations, and 
enable successful execution of re-planned responses.  
Additionally, with onboard response, the spacecraft can 
acquire data, analyze it onboard to estimate its science 
value, and react autonomously to maximize science return.  
For example, our Autonomous Science Agent can monitor 
active volcano sites and schedule multiple observations 
when an eruption has been detected.  Or monitor river 
basins, and increase imaging frequency during periods of 
flooding. 
 
However, building autonomy software for space missions 
has a number of key challenges; many of these issues 
increase the importance of building a reliable, safe, agent. 
 

1. Limited, intermittent communications to the agent.   
A typical spacecraft in low earth orbit (such as EO-
1) has 8 10-minute communications opportunities 
per day.  This means that the spacecraft must be able 
to operate for long periods of time without 
supervision.  For deep space missions the spacecraft 
may be in communications far less frequently.  
Some deep space missions only contact the 

spacecraft once per week, or even once every 
several weeks. 

2. Spacecraft are very complex.  A typical spacecraft 
has thousands of components, each of which must 
be carefully engineered to survive rigors of space 
(extreme temperature, radiation, physical stresses).  
Add to this the fact that many components are one-
of-a-kind and thus have behaviors that are hard to 
characterize. 

3. Limited observability. Because processing telemetry 
is expensive, onboard storage is limited, and 
downlink bandwidth is limited, engineering 
telemetry is limited.  Thus onboard software must be 
able to make decisions on limited information and 
ground operations teams must be able to operate the 
spacecraft with even more limited information. 

4. Limited computing power.  Because of limited 
power onboard, spacecraft computing resources are 
usually very constrained.  An average spacecraft 
CPUs offer 25 MIPS and 128 MB RAM – far less 
than a typical personal computer.  Our CPU 
allocation for ASE on EO-1 is 4 MIPS and 128MB 
RAM. 

5. High stakes.  A typical space mission costs hundreds 
of millions of dollars, any failure has significant 
economic impact.  The total EO-1 Mission cost is 
over $100 million dollars.  Over financial cost, 
many launch and/or mission opportunities are 
limited by planetary geometries.  In these cases, if a 
space mission is lost it may be years before another 
similar mission can be launched.  Additionally, a 
space mission can take years to plan, construct the 
spacecraft, and reach their targets. This delay can be 
catastrophic.  

 
This paper discusses our efforts to build and validate a safe 
autonomous space science agent. The principal 
contributions of this paper are as follows: 
 

1. We describe our layered agent architecture and how 
it provides a framework for agent safety. 

2. We describe our knowledge engineering and model 
review process including identification of safety 
risks and mitigations. 



3. We describe our testing process designed to validate 
the safe design of our agent’s architecture and 
model. 

 
We describe these areas in the context of the Autonomous 
Sciencecraft Experiment (ASE), an autonomy software 
package adapted to NASA’s New Millennium Earth 
Observer One (EO-1) spacecraft [4] from a design 
originally proposed for flight on the Air Force’s Techsat-21 
Mission [2].   

2 Autonomy Architecture 
The autonomy software on EO-1 is organized as a 
traditional three-layer architecture [8] (See Figure 1.).  At 
the top layer, the Continuous Activity Scheduling Planning 
Execution and Replanning (CASPER) system [3, 12] plans 
activities to achieve long-term mission objectives.  
CASPER submits the planned sequences of activities to the 
Spacecraft Command Language (SCL) system [10] for 
execution.  Using an internal model, SCL expands the 
activities into sequences of EO-1 commands, which are 
then executed through the EO-1 Flight Software (FSW). 

 

Figure 1. Autonomy Software Architecture 

Operating on the tens-of-minutes timescale, CASPER 
responds to events that have multiple-orbit effects, 
including scheduling science observations and ground 
contacts.  CASPER commands activities traditionally 
initiated through sequences uplinked by the EO-1 ground 
operations team.  Consulting internal models of the 
spacecraft, CASPER searches for plans that combine these 
basic activities to satisfy high-level goals consistent with 
spacecraft operational and resource constraints. 
 
Plans generated by CASPER are given to SCL at this basic-
activity granularity.  SCL expands the CASPER plan to 
detailed sequences of  EO-1 spacecraft commands.  

Operating on the several-second timescale, SCL responds 
to events that have local effects, but require immediate 
attention and a quick resolution.  SCL performs activities 
using scripts to expand activities and rules that monitor and 
enforce flight constraints. 
 
SCL sends commands to the EO-1 FSW [9], the basic 
flight software that operates the EO-1 spacecraft.   The 
interface from SCL to the EO-1 FSW is at the same level as 
ground generated command sequences – in other words the 
FSW does not know, or care, whether commands were 
issued by SCL or EO-1 ground operations. 
 
SCL implements the commanding interface through a 
special component called the Autonomy Flight Software 
Bridge (FSB).  The FSB takes autonomy software 
messages and issues corresponding FSW commands.  The 
FSB also implements a new set of FSW commands to 
perform functions such as startup and shutdown of the 
autonomy software.  This single interface point allows the 
EO-1 operations team to easily turn on and off  the ASE 
commanding path, and thus ASE control, of EO-1. 
 
The FSW accepts low level spacecraft commands.  These 
commands can be either stored command loads uploaded 
from the ground (e.g. ground planned sequences) or real-
time commands (such as commands from the ground 
during an uplink pass).  The autonomy SW commands 
appear to the FSW as real-time commands.  As part of its 
core, the FSW has a full fault and spacecraft protection 
functionality designed to:  
 

1. Reject commands (from any source) that would 
endanger the spacecraft. 

2. Execute pre-determined sequences to enter a “safe” 
mode upon detection of a hazardous state thereby 
stabilizing the spacecraft for ground assessment and 
reconfiguration.   

 
For example, if a sequence issues commands that point the 
spacecraft imaging instruments at the sun, the fault 
protection software will abort the pointing activity; if a 
sequence issues commands that would expend power to 
unsafe levels, the fault protection software will shut down 
non-essential subsystems (such as science instruments) and 
orient the spacecraft to maximize solar power generation.  
While the intention of the fault protection is to cover all 
potentially hazardous scenarios, it is understood that the 
fault protection software is not foolproof.  Thus, there is a 
strong desire to not command the spacecraft into any 
hazardous situation even if it is believed that the fault 
protection will protect the spacecraft.   
 
Finally, the ASE software package includes a suite of 
science analysis algorithms.  These algorithms process,  
interpret, and suggest reactions to onboard science 
observations.  CASPER converts the science analysis 
suggestions to activities, and adds them to the onboard 
schedule for execution. 



 
This layered architecture enables each lower layer to 
validate the output of the higher layers – SCL checks 
CASPER activities prior to sending the corresponding 
commands to the FSW, while the FSW fault protection 
checks the command sequences from SCL.  This multiple-
layer safety check emboldens confidence in the safety of 
our agent. 

3 Model Building & Validation 
Both CASPER and SCL rely on high-fidelity internal 
models of the EO-1 spacecraft.  CASPER uses these 
models to delineate what goals can be achieved, and the 
scope of possible reactions.  SCL uses models to generate 
command sequences and monitor activity execution.  Any 
inaccuracies in these models could lead to ASE failing to 
achieve science objectives, or in the extreme, issuing 
unsafe sequences of commands.  As such, these models 
were the product of a methodical development and review 
process designed to ensure they correctly encoded the 
relevant operational and safety constraints of EO-1. 
 
The CASPER and SCL models share many of the same 
EO-1 constraints – including properties of physical 
subsystems, operation modes, valid command sequences, 
command prerequisites, and impacts of commands on 
spacecraft state.  As a general rule however, CASPER 
models EO-1 at a higher level of abstraction than SCL.  
The activities commanded by CASPER are more abstract 
usually requiring tens or hundreds of spacecraft commands 
to achieve.  Conversely, SCL activities sometimes expand 
to only a few spacecraft commands.   
 
CASPER models the basic activities that must be 
assembled to complete the high-level mission goals 
including science observations and downlinks. The 
decomposition from goals to activities continues until a 
suitable level is reached for planning – a level that allows 
CASPER to model spacecraft state and its progression over 
time, discrete states such as instrument modes, and 
resources such as memory available for data storage. At 
this level of abstraction CASPER can commit activities in 
order to generate and repair schedules, track state, and 
monitor resources against predicted evolution. 
 
SCL continues to model spacecraft activities and state at 
finer levels of detail. These activities are modeled as SCL 
scripts, which when chained together and executed, result 
in commands to the EO-1 FSW.  SCL models spacecraft 
state through an internal database where each record stores 
the current value of a sensor, resource, or sub-system 
mode. The SCL model also includes flight rules that 
monitor spacecraft state, and execute appropriate scripts in 
response to transient changes. SCL uses its model to 
generate and execute sequences that are valid and safe in 
the current context.  But while SCL has a detailed model of 

spacecraft state and resources, it does not generally model 
future evolution of state or resources. 
 
The ASE team developed the CASPER and SCL models 
using an iterative multiple step process, that defined, 
modeled, reviewed, and validated EO-1 activities.  Each of 
these steps focused on creating a high-fidelity model that 
was consistent with existing ground operations and 
constraints of the EO-1 spacecraft. 

3.1 Model Development 
The model development process began when a new high-
level goal was tasked to ASE.  At first ASE modeled 
simple goals, such as instrument calibrations.  As we 
gained experience with the spacecraft, our modeling 
activities evolved to more complex multi-activity 
objectives including science observations, data downlinks, 
and spacecraft pointing.   
 
With a new goal in hand, the ASE team would first identify 
the set of activities required to achieve the objective.  
Primarily this process was driven by a review of existing 
operations documents and engineering reports.  For 
example, when ASE was tasked to begin collecting science 
data, prior EO-1 data collects were analyzed to see what 
sequences of commands, and thus activities, were required 
to image a science target.  A science data collect requires 
activities to calibrate instruments, manage hardware 
operational modes, and command data recording from both 
the Hyperion and Advanced Land Imager (ALI) 
instruments.   
 
With the activities defined, the ASE team reviewed formal 
EO-1 operations procedures to identify constraints on the 
selected activities. For example, due to thermal constraints, 
the Hyperion cannot be left on longer than 19 minutes, and 
the ALI no longer than 60 minutes.  The EO-1 operations 
team also provided spreadsheets that specified timing 
constraints between activities. Downlink activities, for 
example, are often specified with start times relative to the 
ground station acquisition of signal (AOS) and loss of 
signal (LOS).  Finally, fault protection documents listing 
fault monitors (TSMs) were consulted, reasoning that 
acceptable operations should not trigger any TSMs. 

3.2 Model Reviews 
Next, the ASE team conducted reviews where the latest 
iterations of the CASPER and SCL models were tabletop 
reviewed by a team composed of EO-1 spacecraft 
engineers and operators.  Their working knowledge of the 
spacecraft,  and experience over three years of operations, 
verified that no incorrect parameters or assumptions were 
represented in the model. 
 
Finally, a spacecraft safety review process was performed.  
In this process, experts from each of the spacecraft 
subsystem areas (e.g. guidance, navigation and control, 



solid state recorder, Hyperion instrument, power, …)  
studied the description of the ASE software, including the 
commands that the ASE software could execute, and 
derived a list of potential hazards ASE could pose to the 
spacecraft’s health.  For each of these hazards, a set of 
possible safeguards were proposed, and then implemented 
through operations procedures, and constraints embedded 
in the CASPER and SCL models.  This analysis formed the 
basis for the testing of agent safety discussed in section 4.  
A sample analysis for two risks is shown below. 

Table 1. Sample safety analysis for two risks. 

 

Instruments 
overheat from 
being left on too 
long 

Instruments 
exposed to sun 

Operations 

For each turn on 
command, look 
for the following 
turn off 
command. Verify 
that they are 
within the 
maximum 
separation. 

Verify orientation 
of spacecraft 
during periods 
when instrument 
covers are open. 

CASPER 

High-level 
activity 
decomposes into 
turn on and turn 
off activities that 
are with the 
maximum 
separation. 

Maneuvers must be 
planned at times 
when the covers 
are closed  
(otherwise, 
instruments are 
pointing at the 
earth) 

SCL 

Rules monitor 
the “on” time and 
issue a turn off 
command if left 
on too long. 

Constraints prevent 
maneuver scripts 
from executing if 
covers are open. 

FSW 

Fault protection 
software will 
shut down the 
instrument if left 
on too long. 

Fault protection 
will safe the 
spacecraft if covers 
are open and 
pointing near the 
sun. 

 

3.3 Code Generation 
An interesting aspect of model development was the use of 
code generation techniques to derive SCL constraint checks 
from CASPER model constraints.  In this approach, certain 
types of CASPER modeling constraints could be translated 
into SCL code to ensure consistency at execution time.  If 
the CASPER model specifies that activities use resources, 

this can be translated into an SCL check for resource 
availability before the activity is executed.  If the CASPER 
model specifies a state requirement for an activity, a check 
could be auto-generated to verify a valid state before 
executing the activity.  Additionally, if the CASPER model 
specifies sequential execution of a set of activities, code 
can be generated so that SCL enforces this sequential 
execution. 
 
For example, in calibrating the Hyperion instrument, the 
solid state recorder (WARP) must be in record mode and 
the Hyperion instrument cover must be open.  Below we 
show the CASPER model and the generated SCL constraint 
checks. 
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// Hyperion calibration 
activity hsi_img_cal 
{ 
  durat caldur; 
  // schedule only when the WARP is in record 
  // mode, recording data, and 
  // when the hyperion cover is open 
  reservations = 
    wrmwmode must_be "rec", 
    ycovrstat must_be "closed"; 
  // start and stop the instrument 
  decompositions = 
    yscistart, yscistop 
    where yscistop starts_after  
          start of yscistart by caldur; 
} 
 
-- Hyperion calibration 
script hsi_img_cal caldur 
  -- verify that the WARP is in record 
  -- mode, recording data, and 
  -- that the hyperion cover is open 
  verify wrmwmode = rec  
     and ycovrstat = closed 
         within 5 seconds 
  -- start and stop the instrument 
  execute yscistart 
  wait caldur sec 
  execute yscistop 
end hsi_img_cal 
Figure 2. Sample model and script for Hyperion 
calibration. 

ote that this generated code also enforces the sequential 
xecution of the “yscistart” and “yscistop” activities, 
eparated by “caldur” seconds.  This shows how code is 
utomatically generated from a CASPER defined temporal 
onstraint over two activities. 

s another example, when initiating the WARP recording, 
ere is a limit on the total number of files on the WARP 

ecorder (63).  In CASPER we defined the constraint that 
wfl” new files are created.  We then auto-generated SCL 
ode to verify that number of files can be created without 
xceeding the file limit before the WARP recording 
ctivity is allowed to execute. 
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Or, more importantly, that the generated command 
sequences would never endanger the safety of the 
spacecraft. 
 
As demonstration software, the effort available for testing 
our agent was severely time and resource constrained.  
Therefore we decided early in the project that testing 
should focus primarily on ensuring that our agent executed 
safely.  Missing a data collect would be an unfortunate 
although tolerable failure - endangering the safety of the 
EO-1 spacecraft would not. 
 
Leveraging the completed safety analysis, we approached 
validation by breaking our testing strategy into three 
verification steps: 
 

1. CASPER generates plans consistent both with its 
internal model of the spacecraft and SCL’s model 
// Start the WARP recording 
activity wrmsrec 
{ 
  ... 
    reservations = 
      // reserve the required number of 
      // files on the WARP 
      wrmtotfl use wfl, 
      // change the warp to record mode when 
      // complete 
      wrmwmode change_to "rec" at_end, 
  ... 
} 
 
-- Start the WARP recording 
script wrmsrec 
  ... 
 verify 
        wrmfreebl wrmtotfl + wfl <= 63  
        and wrmtotfl + wfl >= 1 and 
  ... 
end wrmsrec 
Figure 3. Sample model and script for WARP 
recording. 

4 Sequence Generation 
ith the model defined, CASPER generated preliminary 
mmand sequences from past science requests 
presenting a range of potential flight situations. These 
quences were compared with the actual sequences 
nerated and uplinked by the EO-1 ground team for the 
me request. Significant differences between the two 
quences identified potential problems with the model. 
r example, if two commands were sequenced in a 

fferent order, this potentially revealed an overlooked 
nstraint on one or both of the commands. The EO-1 team 
so provided engineering telemetry from the onboard 
ecution of these sequences.  This telemetry allowed for 
ecution comparisons to the telemetry generated by ASE.  
dditionally a novel “played back” capability was 
veloped where the ASE software could be fed the results 
 commands using the actual effects observed onboard. 
e command sequences were aligned with the telemetry 

 identify the changes in spacecraft state and the exact 
ing of these changes. Again, any differences between 

e actual telemetry and the ASE telemetry revealed 
tential errors in the model. We converged on a consistent 
odel after several iterations through this sequence 
neration process.  

e sequence generation effort was in effect the crossover 
int between our model development process and the 
ginning of our system-level testing.  While feeding 
rectly into the iterative development process, it also 
lowed the first validation of the ASE model and software. 

Testing Enforcement of Safety 
sting ASE against prior sequences would not be enough.  
e needed to show that onboard EO-1 the system would 
rrectly plan, generate, and execute command sequences.  

and constraints. 
2. SCL does not issue any commands that violate the 

constraints of the spacecraft. 
3. Both models accurately encode the spacecraft 

operational and safety constraints. 
 
The first two steps build confidence that the ASE software 
executes within the constraints levied by the spacecraft 
model, while the third step verifies that the model encodes 
sufficient information to protect against potential safety 
violations. 
 
We validated these requirements by extensive testing of the 
autonomy software on generated test-cases, using 
simulation and rule-based verification at each step.  Note 
that the steps enumerated above, and the test cases 
described below, address only the top-two layers of the 
onboard autonomy software (CASPER and SCL).  The 
existing EO-1 flight software testing and validation was 
addressed prior to ASE by a separate, more conventional, 
test plan.  Additionally both CASPER and SCL are mature 
and tested software systems.  The majority of the 
development effort for ASE was in the two internal models 
that adapt the systems to EO-1.  Accordingly the testing 
strategy outlined below focuses the majority of the effort 
on exercising those models. 

4.1 Test Case Parameters 
Each EO-1 test case spans seven days of spacecraft 
operations covering multiple science observation and 
reaction opportunities.  Each observation opportunity, 
referred to as a CASPER schedule window, represents an 
time period where ASE has been cleared to command EO-
1.  The test cases vary the state observed by ASE entering 
schedule windows (spacecraft state parameters), and vary 
the goals given to ASE through changes to mission and 
science objectives (mission scenario parameters).  
Additionally we employed simulators that changed the 
spacecraft state during test execution to simulate unknown 
environmental changes.   



 
Mission scenario parameters represent the high-level 
planning goals passed to ASE.  They are derived from a 
combination of the orbit and long-term science objectives.  
Mission scenario parameters specify when targets will be 
available for imaging, the parameters of science 
observations (i.e. number of targets to image and science 
analysis algorithms we wish to execute), and reactions to 
observed science events (i.e. follow-up observations). 
 

Table 3. Mission-scenario parameters. 

Parameter Nominal Off-
nominal Extreme 

schedule 
windows 0-3 3-5 5+ 

orbits between 
windows 2-7 1,8 0,8+ 

window start 
time 

start of 
orbit +/- 10 min any 

window 
duration 

expected 
time of 
science 
analysis 

+/- 10 min any 

image start 
anytime in 
orbit, 1 per 
orbit 

1 per 3 
orbits any 

image duration 8 s +/- 2 +/- 5 0,60 

groundstation 
AOS 

anytime in 
orbit, 1 per 
orbit 

1 per 3 
orbits any 

groundstation 
LOS 

AOS + 10 
min +/- 1 +/- 3 any 

eclipse start 
60 min 
after orbit 
start 

+/- 5 any 

eclipse 
duration 30 min +/- 5 any 

science 
algorithm any any any 

science goal 
start fixed not-

specified any 

number of 
science goals 1 per orbit 1-2 >2 

warp allocated 0 32K blocks any 
 
Spacecraft state parameters encode the relevant state of 
EO-1 at the start of a schedule window, and change as a 
result of commanded sequences.  Changes to these 
parameters are simulated using a software simulator.   
 

Table 2. Sample spacecraft state parameters. 

Parameter Expected Initial State 
xband groundstation unknown 
xband controller enabled 

ACS mode nadir 
target selected unknown 
warp electronics mode stndops 
warp mode standby 
warp bytes allocated 0 
warp number files 0 
fault protection enabled 
eclipse state full sun 
target view unknown 
hyperion instrument power on 
hyperion imaging mode idle 
hyperion cover state closed 
ali instrument power on 
ali active mechanism telapercvr 
ali mechanism power disabled 
ali fpe power disabled 
ale fpe data gate disabled 
ali cover state closed 
groundstation view Unknown 
mission lock unlocked 

 
To exhaustively test every possible combination of state 
and observation parameters, even just assuming a nominal 
and failure case for each parameter and ignoring execution 
variations, would require 236 or over 68 billion test cases 
(each requiring on average a few hours to run).  The 
challenge therefore becomes selecting a set of tests that 
most effectively cover the space of possible parameter 
variations within a timeframe that allows for reasonable 
software delivery. 

4.2 Design of Test Cases  
Traditional flight software is designed to be tested through 
exhaustive execution of a known set of command 
sequences.  Command sequences usually must be run 
through a high-fidelity ground testbed before being cleared 
to run onboard. 
 
Autonomy software however enables the spacecraft to 
execute in, and react to, a much wider range of possible 
scenarios.  This flexibility enables new paradigms of 
operations and science, but comes at the price of 
complexity in testing and validation – tests that must 
attempt to intelligently cover the range of possible states 
and mission scenarios.   
 
To trim the set of possible inputs, we took advantage of the 
scenarios identified by the model review process.  For 
example, we never expect to take more than five science 



data collects before a downlink (and usually exactly five as 
that is the limit of the WARP data storage).  A downlink is 
almost always followed immediately by a format of the 
WARP.  Science collections are always preceded by a slew 
and wheel bias and followed by a slew to nadir.  Together 
these form a baseline mission scenario covering all the 
actions to be commanded by our agent. 
 
Instead of testing every possible combination of spacecraft 
and mission parameters, we instead decided to vary 
parameters off of this baseline scenario, thus reducing the 
number of parameter variations for our test cases to 
consider.  This is a similar approach to that used to validate 
the Remote Agent Planner for NASA’s Deep Space 1 
mission. [11]. 
 
We started the design process by using the nominal 
parameter values identified in the model review process.  
Using these assignments we generated test cases that varied 
each of the parameters across three distinct classes of 
values – nominal (single value), off-nominal (range of 
acceptable values), and extreme (failure conditions).  For 
each parameter, we defined a set of five values at the 
boundaries of these classes – a minimum value, an “off-
nominal-min” value at the boundary between the off-
nominal and the extreme, a nominal value, an “off-
nominal-max”, and a maximum value. 
 
 
 
 
 

nominal

off−nominal maxoff−nominal min

maxmin

 

Figure 4. Parameter Decompositions 
 
Using this decomposition we generated three sets of test 
cases: 
 

1. Baseline scenario test cases that exercised just the 
baseline mission scenario. 

2. Stochastic test cases, grounded in the baseline 
mission scenario, that varied parameters within 
nominal, off-nominal, and extreme ranges. 

3. Environmental test cases that varied initial state, 
and inserted execution uncertainty. 

 
4.2.1 Baseline-Scenario Test Set 
The baseline mission scenario, identified in the model 
review process, was used for the first and most basic test 
set validating ASE. 
 
This scenario provided exactly the expected sequences and 
parameter values to the ASE software.  Any inconsistencies 
or anomalies in execution were easily traced back as the 
scenario was well understood and used previously to 
generate command sequences during the model review 
process.  

4.2.2 Stochastic Test Set 
Clearly the baseline test set did not fully exercise the 
autonomous planning and reaction capabilities of the 
system.  In order to test more nominal scenarios, and also 
gain coverage in the off-nominal parameter ranges, we 
devised a procedure for generating stochastic test sets 
based on parameter value distributions.   
 
Parameters were given normal distributions around their 
nominal value, with standard deviations half the width of 
the off-nominal range (such that 95% of expected values 
will be either nominal or off-nominal).  Nominal test sets 
were then generated assigning values to parameters based 
on the defined distributions.  Furthermore, by modifying 
the construction of the parameter distribution, we were able 
to create off-nominal and extreme test sets that would 
stochastically favor some parameters to choose values 
outside of their nominal range.  
4.2.3 Environmental Test Set 
We further extended the stochastic test sets described 
above to include execution variations based on the 
parameter distributions.  The spacecraft simulator was 
modified to allow as input variations to expected parameter 
values.  During the execution of activities the simulator 
simulated changes to each parameter of the current activity, 
and then varied the value returned based on the provided 
parameter distributions.  Again nominal, off-nominal, and 
extreme test sets were generated that instructed the 
simulator to vary parameter values within the 
corresponding value class. 
 
Finally we needed a way to test how the system responded 
to unexpected or exogenous events within the environment.  
These events could be fault conditions in the spacecraft or 
events outside of the CASPER model.  Unlike the initial-
state and execution-based testing described above, these 
events could happen at any time, and do not necessarily 
correspond to any commanded action or modeled 
spacecraft event.  To accomplish this we added to our 
spacecraft simulator the ability to change the value of any 
parameter, at either an absolute time or time relative to the 
execution of an activity, to a fixed value or a value based 
on the distributions described above.  We added small-
variation events (within appropriate off-nominal and 
nominal classes) to our nominal and off-nominal stochastic 
test sets. 

4.3 Testing Procedure 
The test cases generated using the procedure outlined 
above were used in unit testing the individual agent layers 
and integrated system testing.  Unit testing verified 
primarily the first two decompositions of our test plan – 
that CASPER commanded within its model, and that SCL 
did not violate any spacecraft constraints.  Integrated 
testing verified that these constraints hold within the full 
system, and that the commanded sequences safely achieve 
the mission objectives. 
 



The vast majority of tests were run on the Solaris and 
Linux platforms - as they were the fastest and most readily 
available.  However, these test the software under a 
different operating system and processor, and therefore are 
primarily useful for testing assumptions in the CASPER 
and SCL models.  The operating system and timing 
differences are significant enough that many code 
behaviors occur only in the target operating system, 
compiler, and processor configuration.  Therefore every 
effort was made to extensively validate the agent on higher 
fidelity testbeds. 
 

Table 4. Testbeds available to validate EO-1 agent. 

Type Number Fidelity 

Solaris 
Sparc Ultra 5 

Low – can test 
model but not 
timing 

Linux 
2.5 GHz 7 ″ 

GESPAC 
PowerPC  
100-450 MHz 

10 Moderate – runs 
flight OS 

JPL Flight Testbed 
RAD 3000 1 Moderate 

EO-1 Flight Testbed 
Mongoose M5, 
12 MHz 

1 High – runs Flight 
Software 

EO-1 Autonomy 
Testbed  
Mongoose M5,  
12 MHz 

2 High – runs Flight 
Software 

 
On the Linux, Solaris, and GESPAC testbeds we used an 
automated test harness to setup, execute, and evaluate the 
results of each test run.  Tests were run at accelerated 
speeds using the capabilities of our software simulator and 
the resources of the faster processors.  The GESPAC and 
flight testbed configurations do not have similar 
acceleration capabilities, and therefore require tests to be 
run in real-time.  The test harness ran over six years of 
autonomous operations during the first six months of our 
validation process.  
 
To ensure stability, we implemented minimum 
requirements on the number of test cases that must execute 
without an identified failure before a build was cleared for 
flight.  These requirements varied by platform as follows: 1 
year of simulated operations on Linux/Solaris, 1 month on 
the GESPAC single board computers, and 1 week on the 
flight testbeds. 

4.4 Success Criteria 
To be considered successful a test run could not violate any 
spacecraft, operations, or safety constraints.  On the Linux, 
Solaris, and GESPAC testbeds these constraints were 
checked by a software simulator that monitored activities 
committed by CASPER and executed by SCL.  The 

simulator verified the timing, state, and resource 
constraints of the activities against those encoded in the 
CASPER model.   
 
Recalling that our primary testing objective was to verify 
that our agent commanded EO-1 safely, we developed a 
separate “safety monitor” that watched only for violations 
of the safety and operations constraints.  The safety 
monitor was developed with no knowledge of the CASPER 
or SCL models, and parsed the actual spacecraft commands 
issued by the autonomy software (isolated black-box 
testing).  These commands were fed into state machines 
that monitored each of the safety and operations constraints 
– the same constraints that were derived from the safety 
and model review process.  Any violations that were 
discovered were considered high-priority defects. 
 
The flight testbeds used a higher-fidelity “Virtual Satellite 
(VSat)” simulator, developed independently from the 
autonomy software.  The VSat simulator modeled the 
spacecraft at the subsystem level, including systems, states, 
and resources not modeled by CASPER or SCL. 

5 Status & Deployment 
The full ASE software has successfully commanded 
science observations onboard EO-1 since January 2004,  
As of April 2004, ASE has successfully collected target 
observations, analyzed science data onboard EO-1, and 
autonomously retargeted the spacecraft for subsequent 
observations. 
 

Test Description Test Date 
First test of onboard  cloud detection 
(science analysis) March 2003 

Verification of ASE-EO-1 FSW 
commanding path May 2003 

Onboard execution of CASPER 
ground-generated command sequences July 2003 

Full ASE software upload August 2003 
First ASE autonomously-commanded 
dark calibration image and downlink October 2003 

First ASE autonomous science 
observation January 2004 

First autonomous science analysis and 
subsequent reaction observation. April 2004 

Expanded EO-1 science operations 
automation. 

May 2004-
Present 

6 Conclusions 
This paper described the design and validation of a safe 
agent for autonomous space science operations.  First, we 
described the challenges in developing a robust, safe, 
spacecraft control agent.  Second, we described how we 
used a layered architecture to enhance redundant checks for 



agent safety.  Third, we described our model development, 
validation, and review.  Finally, we described our test plan, 
with an emphasis on verifying agent safety. 
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