
Validating the Autonomous EO-1 Science Agent

Benjamin Cichy, Steve Chien, Steve Schaffer, Daniel Tran, Gregg Rabideau, Rob Sherwood

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

Firstname.Lastname@jpl.nasa.gov

Abstract. This paper describes the validation process for
the Autonomous Sciencecraft Experiment, a software agent
currently flying onboard NASA’s EO-1 spacecraft. The
agent autonomously collects, analyzes, and reacts to
onboard science data. The agent has been designed using a
layered architectural approach with specific redundant
safeguards to reduce the risk of agent malfunction to the
EO-1 spacecraft. This “safe” design has been thoroughly
validated by informal validation methods supplemented by
sub-system and system-level testing. This paper describes
the analysis used to define agent safety, elements of the
design that increase the safety of the agent, and the process
used to validate agent safety.

1 Introduction
Autonomy technologies have incredible potential to
revolutionize space exploration. In the current mode of
operations, space missions involve meticulous ground
planning significantly in advance of actual operations. In
this paradigm, rapid responses to dynamic science events
can require substantial operations effort. Artificial
Intelligence technologies enable onboard software to detect
science events, replan upcoming mission operations, and
enable successful execution of re-planned responses.
Additionally, with onboard response, the spacecraft can
acquire data, analyze it onboard to estimate its science
value, and react autonomously to maximize science return.
For example, our Autonomous Science Agent can monitor
active volcano sites and schedule multiple observations
when an eruption has been detected. Or monitor river
basins, and increase imaging frequency during periods of
flooding.

However, building autonomy software for space missions
has a number of key challenges; many of these issues
increase the importance of building a reliable, safe, agent.

1. Limited, intermittent communications to the agent.
A typical spacecraft in low earth orbit (such as EO-
1) has 8 10-minute communications opportunities
per day. This means that the spacecraft must be able
to operate for long periods of time without
supervision. For deep space missions the spacecraft
may be in communications far less frequently.
Some deep space missions only contact the

spacecraft once per week, or even once every
several weeks.

2. Spacecraft are very complex. A typical spacecraft
has thousands of components, each of which must
be carefully engineered to survive rigors of space
(extreme temperature, radiation, physical stresses).
Add to this the fact that many components are one-
of-a-kind and thus have behaviors that are hard to
characterize.

3. Limited observability. Because processing telemetry
is expensive, onboard storage is limited, and
downlink bandwidth is limited, engineering
telemetry is limited. Thus onboard software must be
able to make decisions on limited information and
ground operations teams must be able to operate the
spacecraft with even more limited information.

4. Limited computing power. Because of limited
power onboard, spacecraft computing resources are
usually very constrained. An average spacecraft
CPUs offer 25 MIPS and 128 MB RAM – far less
than a typical personal computer. Our CPU
allocation for ASE on EO-1 is 4 MIPS and 128MB
RAM.

5. High stakes. A typical space mission costs hundreds
of millions of dollars, any failure has significant
economic impact. The total EO-1 Mission cost is
over $100 million dollars. Over financial cost,
many launch and/or mission opportunities are
limited by planetary geometries. In these cases, if a
space mission is lost it may be years before another
similar mission can be launched. Additionally, a
space mission can take years to plan, construct the
spacecraft, and reach their targets. This delay can be
catastrophic.

This paper discusses our efforts to build and validate a safe
autonomous space science agent. The principal
contributions of this paper are as follows:

1. We describe our layered agent architecture and how
it provides a framework for agent safety.

2. We describe our knowledge engineering and model
review process including identification of safety
risks and mitigations.

3. We describe our testing process designed to validate
the safe design of our agent’s architecture and
model.

We describe these areas in the context of the Autonomous
Sciencecraft Experiment (ASE), an autonomy software
package adapted to NASA’s New Millennium Earth
Observer One (EO-1) spacecraft [4] from a design
originally proposed for flight on the Air Force’s Techsat-21
Mission [2].

2 Autonomy Architecture
The autonomy software on EO-1 is organized as a
traditional three-layer architecture [8] (See Figure 1.). At
the top layer, the Continuous Activity Scheduling Planning
Execution and Replanning (CASPER) system [3, 12] plans
activities to achieve long-term mission objectives.
CASPER submits the planned sequences of activities to the
Spacecraft Command Language (SCL) system [10] for
execution. Using an internal model, SCL expands the
activities into sequences of EO-1 commands, which are
then executed through the EO-1 Flight Software (FSW).

Figure 1. Autonomy Software Architecture

Operating on the tens-of-minutes timescale, CASPER
responds to events that have multiple-orbit effects,
including scheduling science observations and ground
contacts. CASPER commands activities traditionally
initiated through sequences uplinked by the EO-1 ground
operations team. Consulting internal models of the
spacecraft, CASPER searches for plans that combine these
basic activities to satisfy high-level goals consistent with
spacecraft operational and resource constraints.

Plans generated by CASPER are given to SCL at this basic-
activity granularity. SCL expands the CASPER plan to
detailed sequences of EO-1 spacecraft commands.

Operating on the several-second timescale, SCL responds
to events that have local effects, but require immediate
attention and a quick resolution. SCL performs activities
using scripts to expand activities and rules that monitor and
enforce flight constraints.

SCL sends commands to the EO-1 FSW [9], the basic
flight software that operates the EO-1 spacecraft. The
interface from SCL to the EO-1 FSW is at the same level as
ground generated command sequences – in other words the
FSW does not know, or care, whether commands were
issued by SCL or EO-1 ground operations.

SCL implements the commanding interface through a
special component called the Autonomy Flight Software
Bridge (FSB). The FSB takes autonomy software
messages and issues corresponding FSW commands. The
FSB also implements a new set of FSW commands to
perform functions such as startup and shutdown of the
autonomy software. This single interface point allows the
EO-1 operations team to easily turn on and off the ASE
commanding path, and thus ASE control, of EO-1.

The FSW accepts low level spacecraft commands. These
commands can be either stored command loads uploaded
from the ground (e.g. ground planned sequences) or real-
time commands (such as commands from the ground
during an uplink pass). The autonomy SW commands
appear to the FSW as real-time commands. As part of its
core, the FSW has a full fault and spacecraft protection
functionality designed to:

1. Reject commands (from any source) that would
endanger the spacecraft.

2. Execute pre-determined sequences to enter a “safe”
mode upon detection of a hazardous state thereby
stabilizing the spacecraft for ground assessment and
reconfiguration.

For example, if a sequence issues commands that point the
spacecraft imaging instruments at the sun, the fault
protection software will abort the pointing activity; if a
sequence issues commands that would expend power to
unsafe levels, the fault protection software will shut down
non-essential subsystems (such as science instruments) and
orient the spacecraft to maximize solar power generation.
While the intention of the fault protection is to cover all
potentially hazardous scenarios, it is understood that the
fault protection software is not foolproof. Thus, there is a
strong desire to not command the spacecraft into any
hazardous situation even if it is believed that the fault
protection will protect the spacecraft.

Finally, the ASE software package includes a suite of
science analysis algorithms. These algorithms process,
interpret, and suggest reactions to onboard science
observations. CASPER converts the science analysis
suggestions to activities, and adds them to the onboard
schedule for execution.

This layered architecture enables each lower layer to
validate the output of the higher layers – SCL checks
CASPER activities prior to sending the corresponding
commands to the FSW, while the FSW fault protection
checks the command sequences from SCL. This multiple-
layer safety check emboldens confidence in the safety of
our agent.

3 Model Building & Validation
Both CASPER and SCL rely on high-fidelity internal
models of the EO-1 spacecraft. CASPER uses these
models to delineate what goals can be achieved, and the
scope of possible reactions. SCL uses models to generate
command sequences and monitor activity execution. Any
inaccuracies in these models could lead to ASE failing to
achieve science objectives, or in the extreme, issuing
unsafe sequences of commands. As such, these models
were the product of a methodical development and review
process designed to ensure they correctly encoded the
relevant operational and safety constraints of EO-1.

The CASPER and SCL models share many of the same
EO-1 constraints – including properties of physical
subsystems, operation modes, valid command sequences,
command prerequisites, and impacts of commands on
spacecraft state. As a general rule however, CASPER
models EO-1 at a higher level of abstraction than SCL.
The activities commanded by CASPER are more abstract
usually requiring tens or hundreds of spacecraft commands
to achieve. Conversely, SCL activities sometimes expand
to only a few spacecraft commands.

CASPER models the basic activities that must be
assembled to complete the high-level mission goals
including science observations and downlinks. The
decomposition from goals to activities continues until a
suitable level is reached for planning – a level that allows
CASPER to model spacecraft state and its progression over
time, discrete states such as instrument modes, and
resources such as memory available for data storage. At
this level of abstraction CASPER can commit activities in
order to generate and repair schedules, track state, and
monitor resources against predicted evolution.

SCL continues to model spacecraft activities and state at
finer levels of detail. These activities are modeled as SCL
scripts, which when chained together and executed, result
in commands to the EO-1 FSW. SCL models spacecraft
state through an internal database where each record stores
the current value of a sensor, resource, or sub-system
mode. The SCL model also includes flight rules that
monitor spacecraft state, and execute appropriate scripts in
response to transient changes. SCL uses its model to
generate and execute sequences that are valid and safe in
the current context. But while SCL has a detailed model of

spacecraft state and resources, it does not generally model
future evolution of state or resources.

The ASE team developed the CASPER and SCL models
using an iterative multiple step process, that defined,
modeled, reviewed, and validated EO-1 activities. Each of
these steps focused on creating a high-fidelity model that
was consistent with existing ground operations and
constraints of the EO-1 spacecraft.

3.1 Model Development
The model development process began when a new high-
level goal was tasked to ASE. At first ASE modeled
simple goals, such as instrument calibrations. As we
gained experience with the spacecraft, our modeling
activities evolved to more complex multi-activity
objectives including science observations, data downlinks,
and spacecraft pointing.

With a new goal in hand, the ASE team would first identify
the set of activities required to achieve the objective.
Primarily this process was driven by a review of existing
operations documents and engineering reports. For
example, when ASE was tasked to begin collecting science
data, prior EO-1 data collects were analyzed to see what
sequences of commands, and thus activities, were required
to image a science target. A science data collect requires
activities to calibrate instruments, manage hardware
operational modes, and command data recording from both
the Hyperion and Advanced Land Imager (ALI)
instruments.

With the activities defined, the ASE team reviewed formal
EO-1 operations procedures to identify constraints on the
selected activities. For example, due to thermal constraints,
the Hyperion cannot be left on longer than 19 minutes, and
the ALI no longer than 60 minutes. The EO-1 operations
team also provided spreadsheets that specified timing
constraints between activities. Downlink activities, for
example, are often specified with start times relative to the
ground station acquisition of signal (AOS) and loss of
signal (LOS). Finally, fault protection documents listing
fault monitors (TSMs) were consulted, reasoning that
acceptable operations should not trigger any TSMs.

3.2 Model Reviews
Next, the ASE team conducted reviews where the latest
iterations of the CASPER and SCL models were tabletop
reviewed by a team composed of EO-1 spacecraft
engineers and operators. Their working knowledge of the
spacecraft, and experience over three years of operations,
verified that no incorrect parameters or assumptions were
represented in the model.

Finally, a spacecraft safety review process was performed.
In this process, experts from each of the spacecraft
subsystem areas (e.g. guidance, navigation and control,

solid state recorder, Hyperion instrument, power, …)
studied the description of the ASE software, including the
commands that the ASE software could execute, and
derived a list of potential hazards ASE could pose to the
spacecraft’s health. For each of these hazards, a set of
possible safeguards were proposed, and then implemented
through operations procedures, and constraints embedded
in the CASPER and SCL models. This analysis formed the
basis for the testing of agent safety discussed in section 4.
A sample analysis for two risks is shown below.

Table 1. Sample safety analysis for two risks.

Instruments
overheat from
being left on too
long

Instruments
exposed to sun

Operations

For each turn on
command, look
for the following
turn off
command. Verify
that they are
within the
maximum
separation.

Verify orientation
of spacecraft
during periods
when instrument
covers are open.

CASPER

High-level
activity
decomposes into
turn on and turn
off activities that
are with the
maximum
separation.

Maneuvers must be
planned at times
when the covers
are closed
(otherwise,
instruments are
pointing at the
earth)

SCL

Rules monitor
the “on” time and
issue a turn off
command if left
on too long.

Constraints prevent
maneuver scripts
from executing if
covers are open.

FSW

Fault protection
software will
shut down the
instrument if left
on too long.

Fault protection
will safe the
spacecraft if covers
are open and
pointing near the
sun.

3.3 Code Generation
An interesting aspect of model development was the use of
code generation techniques to derive SCL constraint checks
from CASPER model constraints. In this approach, certain
types of CASPER modeling constraints could be translated
into SCL code to ensure consistency at execution time. If
the CASPER model specifies that activities use resources,

this can be translated into an SCL check for resource
availability before the activity is executed. If the CASPER
model specifies a state requirement for an activity, a check
could be auto-generated to verify a valid state before
executing the activity. Additionally, if the CASPER model
specifies sequential execution of a set of activities, code
can be generated so that SCL enforces this sequential
execution.

For example, in calibrating the Hyperion instrument, the
solid state recorder (WARP) must be in record mode and
the Hyperion instrument cover must be open. Below we
show the CASPER model and the generated SCL constraint
checks.

N
e
s
a
c

A
th
r
“
c
e
a

// Hyperion calibration
activity hsi_img_cal
{
 durat caldur;
 // schedule only when the WARP is in record
 // mode, recording data, and
 // when the hyperion cover is open
 reservations =
 wrmwmode must_be "rec",
 ycovrstat must_be "closed";
 // start and stop the instrument
 decompositions =
 yscistart, yscistop
 where yscistop starts_after
 start of yscistart by caldur;
}

-- Hyperion calibration
script hsi_img_cal caldur
 -- verify that the WARP is in record
 -- mode, recording data, and
 -- that the hyperion cover is open
 verify wrmwmode = rec
 and ycovrstat = closed
 within 5 seconds
 -- start and stop the instrument
 execute yscistart
 wait caldur sec
 execute yscistop
end hsi_img_cal
Figure 2. Sample model and script for Hyperion
calibration.

ote that this generated code also enforces the sequential
xecution of the “yscistart” and “yscistop” activities,
eparated by “caldur” seconds. This shows how code is
utomatically generated from a CASPER defined temporal
onstraint over two activities.

s another example, when initiating the WARP recording,
ere is a limit on the total number of files on the WARP

ecorder (63). In CASPER we defined the constraint that
wfl” new files are created. We then auto-generated SCL
ode to verify that number of files can be created without
xceeding the file limit before the WARP recording
ctivity is allowed to execute.

3.
W
co
re
se
ge
sa
se
Fo
di
co
al
ex
ex
A
de
of
Th
to
tim
th
po
m
ge

Th
po
be
di
al

4
Te
W
co

Or, more importantly, that the generated command
sequences would never endanger the safety of the
spacecraft.

As demonstration software, the effort available for testing
our agent was severely time and resource constrained.
Therefore we decided early in the project that testing
should focus primarily on ensuring that our agent executed
safely. Missing a data collect would be an unfortunate
although tolerable failure - endangering the safety of the
EO-1 spacecraft would not.

Leveraging the completed safety analysis, we approached
validation by breaking our testing strategy into three
verification steps:

1. CASPER generates plans consistent both with its
internal model of the spacecraft and SCL’s model
// Start the WARP recording
activity wrmsrec
{
 ...
 reservations =
 // reserve the required number of
 // files on the WARP
 wrmtotfl use wfl,
 // change the warp to record mode when
 // complete
 wrmwmode change_to "rec" at_end,
 ...
}

-- Start the WARP recording
script wrmsrec
 ...
 verify
 wrmfreebl wrmtotfl + wfl <= 63
 and wrmtotfl + wfl >= 1 and
 ...
end wrmsrec
Figure 3. Sample model and script for WARP
recording.

4 Sequence Generation
ith the model defined, CASPER generated preliminary
mmand sequences from past science requests
presenting a range of potential flight situations. These
quences were compared with the actual sequences
nerated and uplinked by the EO-1 ground team for the
me request. Significant differences between the two
quences identified potential problems with the model.
r example, if two commands were sequenced in a

fferent order, this potentially revealed an overlooked
nstraint on one or both of the commands. The EO-1 team
so provided engineering telemetry from the onboard
ecution of these sequences. This telemetry allowed for
ecution comparisons to the telemetry generated by ASE.
dditionally a novel “played back” capability was
veloped where the ASE software could be fed the results
 commands using the actual effects observed onboard.
e command sequences were aligned with the telemetry

 identify the changes in spacecraft state and the exact
ing of these changes. Again, any differences between

e actual telemetry and the ASE telemetry revealed
tential errors in the model. We converged on a consistent
odel after several iterations through this sequence
neration process.

e sequence generation effort was in effect the crossover
int between our model development process and the
ginning of our system-level testing. While feeding
rectly into the iterative development process, it also
lowed the first validation of the ASE model and software.

Testing Enforcement of Safety
sting ASE against prior sequences would not be enough.
e needed to show that onboard EO-1 the system would
rrectly plan, generate, and execute command sequences.

and constraints.
2. SCL does not issue any commands that violate the

constraints of the spacecraft.
3. Both models accurately encode the spacecraft

operational and safety constraints.

The first two steps build confidence that the ASE software
executes within the constraints levied by the spacecraft
model, while the third step verifies that the model encodes
sufficient information to protect against potential safety
violations.

We validated these requirements by extensive testing of the
autonomy software on generated test-cases, using
simulation and rule-based verification at each step. Note
that the steps enumerated above, and the test cases
described below, address only the top-two layers of the
onboard autonomy software (CASPER and SCL). The
existing EO-1 flight software testing and validation was
addressed prior to ASE by a separate, more conventional,
test plan. Additionally both CASPER and SCL are mature
and tested software systems. The majority of the
development effort for ASE was in the two internal models
that adapt the systems to EO-1. Accordingly the testing
strategy outlined below focuses the majority of the effort
on exercising those models.

4.1 Test Case Parameters
Each EO-1 test case spans seven days of spacecraft
operations covering multiple science observation and
reaction opportunities. Each observation opportunity,
referred to as a CASPER schedule window, represents an
time period where ASE has been cleared to command EO-
1. The test cases vary the state observed by ASE entering
schedule windows (spacecraft state parameters), and vary
the goals given to ASE through changes to mission and
science objectives (mission scenario parameters).
Additionally we employed simulators that changed the
spacecraft state during test execution to simulate unknown
environmental changes.

Mission scenario parameters represent the high-level
planning goals passed to ASE. They are derived from a
combination of the orbit and long-term science objectives.
Mission scenario parameters specify when targets will be
available for imaging, the parameters of science
observations (i.e. number of targets to image and science
analysis algorithms we wish to execute), and reactions to
observed science events (i.e. follow-up observations).

Table 3. Mission-scenario parameters.

Parameter Nominal Off-
nominal Extreme

schedule
windows 0-3 3-5 5+

orbits between
windows 2-7 1,8 0,8+

window start
time

start of
orbit +/- 10 min any

window
duration

expected
time of
science
analysis

+/- 10 min any

image start
anytime in
orbit, 1 per
orbit

1 per 3
orbits any

image duration 8 s +/- 2 +/- 5 0,60

groundstation
AOS

anytime in
orbit, 1 per
orbit

1 per 3
orbits any

groundstation
LOS

AOS + 10
min +/- 1 +/- 3 any

eclipse start
60 min
after orbit
start

+/- 5 any

eclipse
duration 30 min +/- 5 any

science
algorithm any any any

science goal
start fixed not-

specified any

number of
science goals 1 per orbit 1-2 >2

warp allocated 0 32K blocks any

Spacecraft state parameters encode the relevant state of
EO-1 at the start of a schedule window, and change as a
result of commanded sequences. Changes to these
parameters are simulated using a software simulator.

Table 2. Sample spacecraft state parameters.

Parameter Expected Initial State
xband groundstation unknown
xband controller enabled

ACS mode nadir
target selected unknown
warp electronics mode stndops
warp mode standby
warp bytes allocated 0
warp number files 0
fault protection enabled
eclipse state full sun
target view unknown
hyperion instrument power on
hyperion imaging mode idle
hyperion cover state closed
ali instrument power on
ali active mechanism telapercvr
ali mechanism power disabled
ali fpe power disabled
ale fpe data gate disabled
ali cover state closed
groundstation view Unknown
mission lock unlocked

To exhaustively test every possible combination of state
and observation parameters, even just assuming a nominal
and failure case for each parameter and ignoring execution
variations, would require 236 or over 68 billion test cases
(each requiring on average a few hours to run). The
challenge therefore becomes selecting a set of tests that
most effectively cover the space of possible parameter
variations within a timeframe that allows for reasonable
software delivery.

4.2 Design of Test Cases
Traditional flight software is designed to be tested through
exhaustive execution of a known set of command
sequences. Command sequences usually must be run
through a high-fidelity ground testbed before being cleared
to run onboard.

Autonomy software however enables the spacecraft to
execute in, and react to, a much wider range of possible
scenarios. This flexibility enables new paradigms of
operations and science, but comes at the price of
complexity in testing and validation – tests that must
attempt to intelligently cover the range of possible states
and mission scenarios.

To trim the set of possible inputs, we took advantage of the
scenarios identified by the model review process. For
example, we never expect to take more than five science

data collects before a downlink (and usually exactly five as
that is the limit of the WARP data storage). A downlink is
almost always followed immediately by a format of the
WARP. Science collections are always preceded by a slew
and wheel bias and followed by a slew to nadir. Together
these form a baseline mission scenario covering all the
actions to be commanded by our agent.

Instead of testing every possible combination of spacecraft
and mission parameters, we instead decided to vary
parameters off of this baseline scenario, thus reducing the
number of parameter variations for our test cases to
consider. This is a similar approach to that used to validate
the Remote Agent Planner for NASA’s Deep Space 1
mission. [11].

We started the design process by using the nominal
parameter values identified in the model review process.
Using these assignments we generated test cases that varied
each of the parameters across three distinct classes of
values – nominal (single value), off-nominal (range of
acceptable values), and extreme (failure conditions). For
each parameter, we defined a set of five values at the
boundaries of these classes – a minimum value, an “off-
nominal-min” value at the boundary between the off-
nominal and the extreme, a nominal value, an “off-
nominal-max”, and a maximum value.

nominal

off−nominal maxoff−nominal min

maxmin

Figure 4. Parameter Decompositions

Using this decomposition we generated three sets of test
cases:

1. Baseline scenario test cases that exercised just the
baseline mission scenario.

2. Stochastic test cases, grounded in the baseline
mission scenario, that varied parameters within
nominal, off-nominal, and extreme ranges.

3. Environmental test cases that varied initial state,
and inserted execution uncertainty.

4.2.1 Baseline-Scenario Test Set
The baseline mission scenario, identified in the model
review process, was used for the first and most basic test
set validating ASE.

This scenario provided exactly the expected sequences and
parameter values to the ASE software. Any inconsistencies
or anomalies in execution were easily traced back as the
scenario was well understood and used previously to
generate command sequences during the model review
process.

4.2.2 Stochastic Test Set
Clearly the baseline test set did not fully exercise the
autonomous planning and reaction capabilities of the
system. In order to test more nominal scenarios, and also
gain coverage in the off-nominal parameter ranges, we
devised a procedure for generating stochastic test sets
based on parameter value distributions.

Parameters were given normal distributions around their
nominal value, with standard deviations half the width of
the off-nominal range (such that 95% of expected values
will be either nominal or off-nominal). Nominal test sets
were then generated assigning values to parameters based
on the defined distributions. Furthermore, by modifying
the construction of the parameter distribution, we were able
to create off-nominal and extreme test sets that would
stochastically favor some parameters to choose values
outside of their nominal range.
4.2.3 Environmental Test Set
We further extended the stochastic test sets described
above to include execution variations based on the
parameter distributions. The spacecraft simulator was
modified to allow as input variations to expected parameter
values. During the execution of activities the simulator
simulated changes to each parameter of the current activity,
and then varied the value returned based on the provided
parameter distributions. Again nominal, off-nominal, and
extreme test sets were generated that instructed the
simulator to vary parameter values within the
corresponding value class.

Finally we needed a way to test how the system responded
to unexpected or exogenous events within the environment.
These events could be fault conditions in the spacecraft or
events outside of the CASPER model. Unlike the initial-
state and execution-based testing described above, these
events could happen at any time, and do not necessarily
correspond to any commanded action or modeled
spacecraft event. To accomplish this we added to our
spacecraft simulator the ability to change the value of any
parameter, at either an absolute time or time relative to the
execution of an activity, to a fixed value or a value based
on the distributions described above. We added small-
variation events (within appropriate off-nominal and
nominal classes) to our nominal and off-nominal stochastic
test sets.

4.3 Testing Procedure
The test cases generated using the procedure outlined
above were used in unit testing the individual agent layers
and integrated system testing. Unit testing verified
primarily the first two decompositions of our test plan –
that CASPER commanded within its model, and that SCL
did not violate any spacecraft constraints. Integrated
testing verified that these constraints hold within the full
system, and that the commanded sequences safely achieve
the mission objectives.

The vast majority of tests were run on the Solaris and
Linux platforms - as they were the fastest and most readily
available. However, these test the software under a
different operating system and processor, and therefore are
primarily useful for testing assumptions in the CASPER
and SCL models. The operating system and timing
differences are significant enough that many code
behaviors occur only in the target operating system,
compiler, and processor configuration. Therefore every
effort was made to extensively validate the agent on higher
fidelity testbeds.

Table 4. Testbeds available to validate EO-1 agent.

Type Number Fidelity

Solaris
Sparc Ultra 5

Low – can test
model but not
timing

Linux
2.5 GHz 7 ″

GESPAC
PowerPC
100-450 MHz

10 Moderate – runs
flight OS

JPL Flight Testbed
RAD 3000 1 Moderate

EO-1 Flight Testbed
Mongoose M5,
12 MHz

1 High – runs Flight
Software

EO-1 Autonomy
Testbed
Mongoose M5,
12 MHz

2 High – runs Flight
Software

On the Linux, Solaris, and GESPAC testbeds we used an
automated test harness to setup, execute, and evaluate the
results of each test run. Tests were run at accelerated
speeds using the capabilities of our software simulator and
the resources of the faster processors. The GESPAC and
flight testbed configurations do not have similar
acceleration capabilities, and therefore require tests to be
run in real-time. The test harness ran over six years of
autonomous operations during the first six months of our
validation process.

To ensure stability, we implemented minimum
requirements on the number of test cases that must execute
without an identified failure before a build was cleared for
flight. These requirements varied by platform as follows: 1
year of simulated operations on Linux/Solaris, 1 month on
the GESPAC single board computers, and 1 week on the
flight testbeds.

4.4 Success Criteria
To be considered successful a test run could not violate any
spacecraft, operations, or safety constraints. On the Linux,
Solaris, and GESPAC testbeds these constraints were
checked by a software simulator that monitored activities
committed by CASPER and executed by SCL. The

simulator verified the timing, state, and resource
constraints of the activities against those encoded in the
CASPER model.

Recalling that our primary testing objective was to verify
that our agent commanded EO-1 safely, we developed a
separate “safety monitor” that watched only for violations
of the safety and operations constraints. The safety
monitor was developed with no knowledge of the CASPER
or SCL models, and parsed the actual spacecraft commands
issued by the autonomy software (isolated black-box
testing). These commands were fed into state machines
that monitored each of the safety and operations constraints
– the same constraints that were derived from the safety
and model review process. Any violations that were
discovered were considered high-priority defects.

The flight testbeds used a higher-fidelity “Virtual Satellite
(VSat)” simulator, developed independently from the
autonomy software. The VSat simulator modeled the
spacecraft at the subsystem level, including systems, states,
and resources not modeled by CASPER or SCL.

5 Status & Deployment
The full ASE software has successfully commanded
science observations onboard EO-1 since January 2004,
As of April 2004, ASE has successfully collected target
observations, analyzed science data onboard EO-1, and
autonomously retargeted the spacecraft for subsequent
observations.

Test Description Test Date
First test of onboard cloud detection
(science analysis) March 2003

Verification of ASE-EO-1 FSW
commanding path May 2003

Onboard execution of CASPER
ground-generated command sequences July 2003

Full ASE software upload August 2003
First ASE autonomously-commanded
dark calibration image and downlink October 2003

First ASE autonomous science
observation January 2004

First autonomous science analysis and
subsequent reaction observation. April 2004

Expanded EO-1 science operations
automation.

May 2004-
Present

6 Conclusions
This paper described the design and validation of a safe
agent for autonomous space science operations. First, we
described the challenges in developing a robust, safe,
spacecraft control agent. Second, we described how we
used a layered architecture to enhance redundant checks for

agent safety. Third, we described our model development,
validation, and review. Finally, we described our test plan,
with an emphasis on verifying agent safety.

7 Acknowledgement
Portions of this work were performed at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space
Administration.

We would like to acknowledge the important contributions
of Dan Mandl, Stuart Frye, and Stephen Ungar of NASA’s
Goddard Spaceflight Center, Jerry Hengemihle and Bruce
Trout of Microtel LLC, Jeff D’Agostino of the Hammers
Corp., Seth Shulman and Robert Bote of Honeywell Corp.,
and Jim Van Gaasbeck and Darrell Boyer of Interface and
Control Systems.

8 References
[1] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D.

Miller, M. Slack, Experiences with an Architecture for
Intelligent, Reactive Agents, Journal of Experimental
and Theoretical Artificial Intelligence, 9:237-256,
1997.

[2] S. Chien, R. Sherwood, M. Burl, R. Knight, G.
Rabideau, B. Engelhardt, A. Davies, P. Zetocha, R.
Wainright, P. Klupar, P. Cappelaere, D. Surka, B.
Williams, R. Greeley, V. Baker, J. Doan, "The TechSat
21 Autonomous Sciencecraft Constellation", Proc i-
SAIRAS 2001, Montreal, Canada, June 2001.

[3] S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, "Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling,"
Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling,
Breckenridge, CO, April 2000. (see also
casper.jpl.nasa.gov)

[4] S. Chien, R. Sherwood, D. Tran, R. Castano, B. Cichy,
A. Davies, G. Rabideau, N. Tang, M. Burl, D. Mandl,
S.Frye, J. Hengemihle, J. D’Agostino, R. Bote, B.
Trout, S. Shulman, S. Ungar, J. Van Gaasbeck, D.
Boyer, M. Griffin, R. Greeley, T. Doggett, K.
Williams, V. Baker, J. Dohm, “Autonomous Science
on the Earth Observer One Mission,” ," International
Symposium on Artificial Intelligence Robotics and
Automation in Space, Nara, Japan, May 2003.

[5] S. Chien et al, EO 1 Autonomous Sciencecraft
Experiment Safety Analysis Document, 2003.

[6] D. Cohen; Dalal, S.; Fredman, M.; and Patton, G.1997.
The AETG system: An approach to testing based on
combinatorial design. IEEE Transactions on Software
Engineering 23(7):437-444.

[7] A.G. Davies, R. Greeley, K. Williams, V. Baker, J.
Dohm, M. Burl, E. Mjolsness, R. Castano, T. Stough,
J. Roden, S. Chien, R. Sherwood, "ASC Science
Report," August 2001. (downloadable from
ase.jpl.nasa.gov)

[8] E. Gat, Three layer architectures, in Mobile Robots
and Artificial Intelligence, (Kortenkamp, Bonasso, and
Murphy eds.), Menlo Park, CA: AAAI Press, pp. 195-
210.

[9] Goddard Space Flight Center, EO-1 Mission page:
eo1.gsfc.nasa.gov

[10] Interface and Control Systems, SCL Home Page,
sclrules.com

[11] NASA Ames, http://ic.arc.nasa.gov/projects/remote-
agent/, Remote Agent Experiment Home Page.

[12] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, A.
Govindjee, "Iterative Repair Planning for Spacecraft
Operations in the ASPEN System," International
Symposium on Artificial Intelligence Robotics and
Automation in Space, Noordwijk, The Netherlands,
June 1999.

http://ic.arc.nasa.gov/projects/remote-agent/
http://ic.arc.nasa.gov/projects/remote-agent/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

